Herbicidal Activity of Smoke Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Seeds
2.2. Test Solutions
2.3. Germination Protocol
2.4. Emergence Protocol
2.5. Initial Growth in Laboratory Protocol
2.6. Initial Development in Greenhouse Protocol
2.7. Seedling Vigor Index in the Laboratory
2.8. Statistical Analysis
3. Results
3.1. Smoke Water Effects on Germination
3.2. Smoke Solutions on Emergence
3.3. Smoke Solutions Effects on Initial Growth in the Laboratory
3.4. Smoke Solutions on Initial Development in a Greenhouse
3.5. Seedling Vigor Index in the Laboratory
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Bhowmick, M.K.; Ray, P. Weeds as alternate and alternative hosts of crop pests. Indian J. Weed Sci. 2021, 53, 14–29. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chen, K.; Li, N.; Wang, X.-K.; Wang, S.-B.; Li, P.; Hua, X.-W.; Lei, K.; Ji, L.-S. Discovery of 3-(1-amino-2-phenoxyethylidene)-6-methyl-2H-pyran-2,4(3H)-dione derivatives as novel herbicidal leads. Agronomy 2023, 13, 202. [Google Scholar] [CrossRef]
- Diaz-Tielas, C.; Grana, E.; Reigosa, M.J.; Sanchez-Moreiras, A.M. Biological activities and novel applications of chalcones. Planta Daninha 2016, 34, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Khatun, M.R.; Tojo, S.; Teruya, T.; Kato-Noguchi, H. Allelopathic activity of Annona reticulata L. leaf extracts and identification of three allelopathic compounds for the development of natural herbicides. Agronomy 2022, 12, 2883. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Rengasamy, K.R.R.; Pendota, S.C.; Gruz, J.; Plačková, L.; Novák, O.; Doležal, K.; van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnol. 2019, 48, 83–89. [Google Scholar] [CrossRef]
- Senaratna, T.; Dixon, K.; Bunn, E.; Touchell, D. Smoke-saturated water promotes somatic embryogenesis in geranium. Plant Growth Regul. 1999, 28, 95–99. [Google Scholar] [CrossRef]
- Keeley, J.E. Smoke-induced flowering in the fire-lily Cyrtanthus ventricosus. S. Afr. J. Bot. 1993, 59, 638. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Fang, L.; Wang, X.; Guo, L.; Huang, L. Effects of smoke-water on photosynthetic characteristics of Isatis indigotica seedlings. Sustain. Agric. Res. 2013, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.L.S.; van Staden, J. Root Initiation in Vigna radiata (L.) Wilczek Hypocotyl cuttings is stimulated by smoke-derived extracts. Plant Growth Regul. 1996, 18, 165–168. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Ascough, G.D.; van Staden, J. Smoke-water and a smoke-isolated butenolide improve growth and yield of tomatoes under greenhouse conditions. Am. Soc. Agric. Sci. 2008, 18, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Flematti, G.R.; Dixon, K.W.; Smith, S.M. What are karrikins and how were they ‘discovered’ by plants? BMC Biol. 2015, 13, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, M.T.; Nelson, D.C.; Scaffidi, A.; Flematti, G.R.; Sun, Y.K.; Dixon, K.W.; Smith, S.M. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 2012, 139, 1285–1295. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.C.; Merritt, D.J.; Flematti, G.R.; Ghisalberti, E.L.; Dixon, K.W. Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plant Soil 2007, 298, 113–124. [Google Scholar] [CrossRef]
- Adkins, S.W.; Peters, N.C.B. Smoke derived from burnt vegetation stimulates germination of arable weeds. Seed Sci. Res. 2001, 11, 213–222. [Google Scholar]
- Yaman, C.; Başaran, U. Effect of smoke solution of sage (Salvia officinalis L.) on root and shoot growth of grass pea (Lathyrus sativus L.). Turk. J. Agric. Food Sci. Technol. 2019, 7, 511. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Tripathi, D.K.; Roychoudhury, A. The karrikin ‘calisthenics’: Can compounds derived from smoke help in stress tolerance? Physiol. Plant 2019, 165, 290–302. [Google Scholar] [CrossRef]
- Meng, Y.; Shuai, H.; Luo, X.; Chen, F.; Zhou, W.; Yang, W.; Shu, K. Karrikins: Regulators involved in phytohormone signaling networks during seed germination and seedling development. Front. Plant Sci. 2017, 7, 2021. [Google Scholar] [CrossRef] [Green Version]
- Downes, K.S.; Lamont, B.B.; Light, M.E.; van Staden, J. The fire ephemeral Tersonia cyathiflora (Gyrostemonaceae) germinates in response to smoke but not the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one. Ann. Bot. 2010, 106, 381–384. [Google Scholar] [CrossRef] [Green Version]
- Kępczyński, J. Induction of agricultural weed seed germination by smoke and smoke-derived karrikin (KAR1), with a particular reference to Avena fatua L. Acta Physiol. Plant 2018, 40, 87. [Google Scholar] [CrossRef] [Green Version]
- Light, M.E.; Gardner, M.J.; Jäger, A.K.; van Staden, J. Dual regulation of seed germination by smoke solutions. Plant Growth Regul. 2002, 37, 135–141. [Google Scholar] [CrossRef]
- Akeel, A.; Khan, M.M.A.; Jaleel, H.; Uddin, M. Smoke-saturated water and karrikinolide modulate germination, growth, photosynthesis and nutritional values of carrot (Daucus carota L.). J. Plant Growth Regul. 2019, 38, 1387–1401. [Google Scholar] [CrossRef]
- Light, M.E.; Burger, B.V.; Staerk, D.; Kohout, L.; van Staden, J. Butenolides from plant-derived smoke: Natural plant-growth regulators with antagonistic actions on seed germination. J. Nat. Prod. 2010, 73, 267–269. [Google Scholar] [CrossRef] [Green Version]
- Drewes, F.E.; Smith, M.T.; van Staden, J. The effect of a plant-derived smoke extract on the germination of light-sensitive lettuce seed. Plant Growth Regul. 1995, 16, 205–209. [Google Scholar] [CrossRef]
- Daws, M.I.; Pritchard, H.W.; van Staden, J. Butenolide from plant-derived smoke functions as a strigolactone analogue: Evidence from parasitic weed seed germination. South Afr. J. Bot. 2008, 74, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Kandari, L.S.; Kulkarni, M.G.; van Staden, J. Effect of nutrients and smoke solutions on seed germination and seedling growth of tropical soda apple (Solanum viarum). Weed Sci. 2011, 59, 470–475. [Google Scholar] [CrossRef]
- Spitters, C.J.T.; van den Bergh, J.P. Competition between crop and weeds: A system approach. In Biology and Ecology of Weeds; Springer: Dordrecht, The Netherlands, 1982; Volume 2, pp. 137–148. [Google Scholar]
- Brito, I.P.; Tropaldi, L.; Carbonari, C.A.; Velini, E.D. Hormetic Effects of glyphosate on plants. Pest Manag. Sci. 2018, 74, 1064–1070. [Google Scholar] [CrossRef]
- Belz, R.G.; Duke, S.O. Herbicides and plant hormesis. Pest Manag. Sci. 2014, 70, 698–707. [Google Scholar] [CrossRef]
- Calabrese, E.J. Biphasic dose responses in biology, toxicology and medicine: Accounting for their generalizability and quantitative features. Environ. Pollut. 2013, 182, 452–460. [Google Scholar] [CrossRef]
- Elsadek; Yousef Smoke-water enhances germination and seedling growth of four horticultural crops. Plants 2019, 8, 104. [CrossRef] [Green Version]
- Baldwin, I.T.; Staszak-Kozinski, L.; Davidson, R. Up in Smoke: I. Smoke-derived germination cues for postfire annual Nicotiana attenuata Torr. Ex. Watson. J. Chem. Ecol. 1994, 20, 2345–2371. [Google Scholar] [CrossRef]
Treatment | Smoke Water (%) | Germination (%) 1 | MGT 2 (Days) 1 |
---|---|---|---|
Amaranthus viridis | 0 | 45 ±7 a | 2.6 ± 0.7 a |
2.5 | 44 ± 13 a | 4.9 ± 1.0 ab | |
5 | 6 ± 5 b | 18.4 ± 4.0 b | |
10 | 1 ± 2 b | 20.0 * | |
Digitaria insularis | 0 | 36 ± 11 a | 2.7 ± 0.6 a |
2.5 | 20 ± 9 ab | 3.4 ± 0.4 a | |
5 | 22 ± 11 ab | 4.6 ± 1.6 a | |
10 | 9 ± 3 b | 4.4 ± 1.0 a | |
Raphanus raphanistrum | 0 | 70 ± 12 a | 1.0 ± 0 a |
2.5 | 76 ± 15 a | 1.3 ± 0.2 a | |
5 | 41 ± 7 b | 1.8 ± 0.4 a | |
10 | 5 ± 4 c | 4.2 ± 4.2 a |
Treatment | Smoke Water (%) | Emergence (%) 1 | MET 2 (Days) 1 |
---|---|---|---|
Amaranthus viridis | 0 | 26 ± 10 a | 8.4 ± 4.0 a |
5 | 17 ± 10 ac | 10.6 ± 7.9 a | |
10 | 15 ± 11 ac | 7.2 ± 6.1 a | |
20 | 5 ± 6 bc | 25.2 ± 4.9 b | |
Digitaria insularis | 0 | 3 ± 34 a | 3.7 ± 1.1 a |
5 | 2 ± 3 a | 3.0 ± 0.7 a | |
10 | 4 ± 4 a | 5.0 ± 2.8 a | |
20 | 6 ± 2 a | 4.0 ± 0.7 a | |
Raphanus raphanistrum | 0 | 55 ± 10 a | 5.1 ± 2.5 a |
5 | 60 ± 14 a | 5.1 ± 3.8 a | |
10 | 51 ± 15 a | 4.9 ± 2.0 a | |
20 | 40 ± 7 a | 11.6 ± 2.3 b |
Treatment | Smoke Water (%) | Root Length (mm) 1 | Shoot Length (mm) 1 | Root + Shoot Length (Mm) 1 |
---|---|---|---|---|
Amaranthus viridis (n = 25) | 0 | 29.1 ± 8.6 a | 18.2 ± 6.6 a | 47.3 ± 13.7 a |
5 | 2.4 ± 1.7 b | 1.1 ± 0.8 b | 3.5 ± 2.3 b | |
Bidens pilosa (n = 14) | 0 | 21.1 ± 16.6 a | 16.4 ± 9.7 a | 37.6 ± 22.6 a |
5 | 8.2 ± 6.2 b | 8.8 ± 6.1 b | 17.1 ± 11.0 b | |
Conyza canadensis (n = 12) | 0 | 5.3 ± 5.6 a | 3.9 ± 4.0 a | 9.2 ± 8.3 a |
5 | 1.6 ± 0.8 b | 0.9 ± 0.5 b | 2.5 ± 1.2 b | |
Digitaria insularis (n = 46) | 0 | 41.5 ± 13.6 a | 2.7 ± 1.0 a | 44.2 ± 13.9 a |
5 | 8.1 ± 6.3 b | 1.5 ± 0.8 b | 9.5 ± 6.8 b | |
Emilia fosbergii (n = 14) | 0 | 47.0 ± 11.2 a | 17.1 ± 3.2 a | 64.1 ± 12.7 a |
5 | 14.7 ± 6.6 b | 4.5 ± 1.5 b | 19.2 ± 7.4 b | |
Mucuna pruriens (n = 113) | 0 | 64.1 ± 56.2 a | 34.3 ± 24.5 a | 98.4 ± 77.0 a |
5 | 56.5 ± 54.2 a | 32.0 ± 22.7 a | 88.4 ± 72.6 a | |
Raphanus raphanistrum (n = 38) | 0 | 45.3 ± 40.6 a | 25.4 ± 14.4 a | 70.7 ± 49.4 a |
5 | 6.4 ± 4.5 b | 6.5 ± 9.1 b | 12.9 ± 8.5 b | |
Rottboellia cochinchinensis (n = 41) | 0 | 35.8 ± 22.9 a | 30.1 ± 9.3 a | 65.9 ± 28.5 a |
5 | 21.3 ± 23.0 b | 22.4 ± 8.2 b | 43.7 ± 26.4 b | |
Urochloa decumbens (n = 47) | 0 | 70.7 ±26.8 a | 7.2 ± 3.0 a | 77.9 ± 28.8 a |
5 | 12.5 ± 14.9 b | 3.9 ± 2.5 b | 16.4 ± 16.6 b |
Treatment | Smoke Water (%) | Injury Rating (%) 1 | |
---|---|---|---|
Ten Days after the 1st Spray 2 | Ten Days after the 2nd Spray 2 | ||
Amaranthus viridis | 0 | 0 ± 0 aA | 3 ± 3 aA |
5 | 39 ± 42 bA | 88 ± 24 bB | |
10 | 64 ± 35 bA | 83 ± 23 bA | |
Digitaria insularis | 0 | 0 ± 0 aA | 0 ± 0 aA |
5 | 10 ± 22 aA | 21 ± 34 acA | |
10 | 38 ± 42 aA | 44 ± 46 bcA | |
Raphanus raphanistrum | 0 | 0 ± 0 aA | 0 ± 0 aA |
5 | 11 ± 19 aA | 13 ± 23 aA | |
10 | 14 ± 19 aA | 16 ± 20 aA |
Treatment | Smoke Water (%) 1 | Mortality Rate (%) 1 |
---|---|---|
Amaranthus viridis | 0 | 0 ± 0 a |
5 | 70 ± 50 bc | |
10 | 60 ± 50 ac | |
Digitaria insularis | 0 | 0 ± 0 a |
5 | 10 ± 30 a | |
10 | 30 ± 50 a | |
Raphanus raphanistrum | 0 | 0 ± 0 a |
5 | 0 ± 0 a | |
10 | 0 ± 0 a |
Treatment | Smoke Water (%) | Seedling Vigor Index 1 |
---|---|---|
Amaranthus viridis | 0 | 2270.4 ± 99.3 |
5 | 28.0 ± 24.5 | |
Bidens pilosa | 0 | 1725.0 ± 303.8 |
5 | 799.0 ± 129.4 | |
Conyza canadensis | 0 | 82.8 ± 27.2 |
5 | 1.3 ± 0.8 | |
Digitaria insularis | 0 | 1524.9 ± 83.8 |
5 | 196.8 ± 51.0 | |
Emilia fosbergii | 0 | 3846.0 ± 182.2 |
5 | 902.4 ± 85.2 | |
Mucuna pruriens | 0 | 8757.6 ± 309.1 |
5 | 6726.0 ± 1305.0 | |
Raphanus raphanistrum | 0 | 4949.0 ± 660.0 |
5 | 528.9 ± 92.9 | |
Rottboellia cochinchinensis | 0 | 1318.0 ± 223.1 |
5 | 786.6 ± 222.1 | |
Urochloa decumbens | 0 | 2414.9 ± 417.2 |
5 | 459.2 ± 242.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido, R.M.; Dayan, F.E.; Kolb, R.M. Herbicidal Activity of Smoke Water. Agronomy 2023, 13, 975. https://doi.org/10.3390/agronomy13040975
Garrido RM, Dayan FE, Kolb RM. Herbicidal Activity of Smoke Water. Agronomy. 2023; 13(4):975. https://doi.org/10.3390/agronomy13040975
Chicago/Turabian StyleGarrido, Raphael Mota, Franck Emmanuel Dayan, and Rosana Marta Kolb. 2023. "Herbicidal Activity of Smoke Water" Agronomy 13, no. 4: 975. https://doi.org/10.3390/agronomy13040975
APA StyleGarrido, R. M., Dayan, F. E., & Kolb, R. M. (2023). Herbicidal Activity of Smoke Water. Agronomy, 13(4), 975. https://doi.org/10.3390/agronomy13040975