Complex Cd–Pb Multigenerational Exposure Improves the Growth and Food Utilization of the Cutworm Spodoptera litura
Abstract
:1. Introduction
2. Materials and Methods
2.1. S. litura Rearing and Complex Cd–Pb Treatment
2.2. S. litura Bioassay with Complex Cd–Pb Stress for the First, Fifth and Tenth Generations
2.3. S. litura Nutritional Indices with Complex Cd–Pb Stress for the First, Fifth and Tenth Generations
2.4. Measurement of Pb and Cd Concentrations
2.5. Statistical Analysis
3. Results
3.1. Impacts of Complex Cd–Pb Exposure on Survival, Growth and Food Utilization of S. litura
3.1.1. Impacts of Complex Cd–Pb Exposure on Survival and Growth of S. litura
3.1.2. Impacts of Complex Cd–Pb Exposure on Food Utilization of S. litura Larvae
3.1.3. AHP Method Analysis of Complex Cd–Pb Exposure Affecting S. litura
3.2. Cd Ingestion, Excretion, and Accumulation by S. litura
3.3. Pb Ingestion, Excretion, and Accumulation by S. litura
3.4. Correlation of Fitness Parameters with Cd or Pb Accumulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Malaj, E.; von der Ohe, P.C.; Grote, M.; Kühne, R.; Mondy, C.P.; Usseglio-Polatera, P.; Brack, W.; Schäfer, R.B. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc. Natl. Acad. Sci. USA 2014, 111, 9549–9554. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.N.; Zheng, N.; Tang, L.; Ji, X.F.; Li, Y.Y.; Hua, X.Y. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ. Int. 2019, 128, 430–437. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; Mcbratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Escher, B.I.; Stapleton, H.M.; Schymanski, E.L. Tracking complex mixtures of chemicals in our changing environment. Science 2020, 367, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Cobbina, S.J.; Mao, G.H.; Xu, H.; Zhang, Z.; Yang, L.Q. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. 2016, 23, 8244–8259. [Google Scholar] [CrossRef] [PubMed]
- Fargašová, A. Winter third-to fourth-instar larvae of Chironomus plumosus as bioassay tools for assessment of acute toxicity of metals and their binary combinations. Ecotoxicol. Environ. Saf. 2001, 48, 1–5. [Google Scholar] [CrossRef]
- An, Y.J.; Kim, Y.M.; Kwon, T.I.; Jeong, S.W. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci. Total Environ. 2004, 326, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Subashchandrabose, S.R.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Interaction effects of polycyclic aromatic hydrocarbons and heavy metals on a soil microalga, Chlorococcum sp. MM11. Environ. Sci. Pollut. Res. 2015, 22, 8876–8889. [Google Scholar] [CrossRef]
- Di, N.; Zhang, K.; Hladun, K.R.; Rust, M.; Chen, Y.F.; Zhu, Z.Y.; Liu, T.X.; Trumble, J.T. Joint effects of cadmium and copper on Apis mellifera forgers and larvae. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 237, 108839. [Google Scholar] [CrossRef]
- Yan, X.J.; Wang, J.H.; Zhu, L.S.; Wang, J.; Li, S.Y.; Kim, Y.M. Oxidative stress, growth inhibition, and DNA damage in earthworms induced by the combined pollution of typical neonicotinoid insecticides and heavy metals. Sci. Total Environ. 2021, 754, 141873. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Józefowska, A.; Zaleski, T.; Kępka, W.; Tymczuk, M.; Orłowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2017, 168, 839–850. [Google Scholar] [CrossRef]
- Bi, C.J.; Zhou, Y.; Chen, Z.L.; Jia, J.P.; Bao, X.Y. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Sci. Total Environ. 2018, 619, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.Q.; Yang, N.; Li, Y.Z.; Ren, B.; Ding, X.H.; Bian, H.L.; Yao, X. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Hossain Bhuiyan, M.A.; Chandra Karmaker, S.; Bodrud-Doza, M.; Rakib, M.A.; Saha, B.B. Enrichment, sources and ecological risk mapping of heavy metals in agricultural soils of dhaka district employing SOM, PMF and GIS methods. Chemosphere 2021, 263, 128339. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Duan, X.J.; Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. 2020, 710, 134953. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Li, Z.Y.; Lu, X.N.; Duan, Q.N.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Hyder, O.; Chung, M.; Cosgrove, D.; Herman, J.M.; Li, Z.P.; Firoozmand, A.; Gurakar, A.; Koteish, A.; Pawlik, T.M. Cadmium exposure and liver disease among US adults. J. Gastrointest. Surg. 2013, 17, 1265–1273. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ma, Z.W.; van der Kuijp, T.J.; Yuan, Z.W.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Buser, M.C.; Ingber, S.Z.; Raines, N.; Fowler, D.A.; Scinicariello, F. Urinary and blood cadmium and lead and kidney function: NHANES 2007–2012. Int. J. Hyg. Environ. Health 2016, 219, 261–267. [Google Scholar] [CrossRef]
- Karri, V.; Schuhmacher, M.; Kumar, V. Heavy metals (Pb, Cd, as and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environ. Toxicol. Pharmacol. 2016, 48, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Gundacker, C.; Forsthuber, M.; Szigeti, T.; Kakucs, R.; Mustieles, V.; Fernandez, M.F.; Bengtsen, E.; Vogel, U.; Hougaard, K.S.; Saber, A.T. Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int. J. Hyg. Environ. Health 2021, 238, 113855. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Dong, H.C.; Du, X.K.; Feng, L. Early warning on risk development in compound lead and cadmium contaminated sites. J. Hazard. Mater. 2021, 416, 126174. [Google Scholar] [CrossRef]
- Cai, L.M.; Xu, Z.C.; Ren, M.Z.; Guo, Q.W.; Hu, X.B.; Hu, G.C.; Wan, H.F.; Peng, P.G. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol. Environ. Saf. 2012, 78, 2–8. [Google Scholar] [CrossRef]
- Liu, Q.J.; Li, X.; Zhou, Y.M.; Tang, J.P.; Lin, Q.T.; Yao, K. Immobilization impact of goethite-fulvic acid composites on Pb-Cd contaminated soil. Environ. Sci. 2019, 40, 5623–5628. [Google Scholar]
- Wu, B.; Liu, Z.T.; Xu, Y.; Li, D.S.; Li, M. Combined toxicity of cadmium and lead on the earthworm Eisenia fetida (Annelida, Oligochaeta). Ecotoxicol. Environ. Saf. 2012, 81, 122–126. [Google Scholar] [CrossRef]
- Dar, M.I.; Green, I.D.; Naikoo, M.I.; Khan, F.A.; Ansari, A.A.; Lone, M.I. Assessment of biotransfer and bioaccumulation of cadmium, lead and zinc from fly ash amended soil in mustard-aphid-beetle food chain. Sci. Total Environ. 2017, 584, 1221–1229. [Google Scholar] [CrossRef]
- Sang, W.; Xu, J.; Bashir, M.H.; Ali, S. Developmental responses of Cryptolaemus montrouzieri to heavy metals transferred across multi-trophic food chain. Chemosphere 2018, 205, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, J.W.; Shu, Y.H. Review on the effects of heavy metal pollution on herbivorous insects. Chin. J. Appl. Ecol. 2020, 31, 1773–1782. [Google Scholar]
- Shu, Y.H.; Zhou, J.L.; Tang, W.C.; Lu, K.; Zhou, Q.; Zhang, G.R. Molecular characterization and expression pattern of Spodoptera litura (Lepidoptera: Noctuidae) vitellogenin, and its response to lead stress. J. Insect Physiol. 2009, 55, 608–616. [Google Scholar] [CrossRef]
- Di, N.; Hladun, K.R.; Zhang, K.; Liu, T.; Trumble, J.T. Laboratory bioassays on the impact of cadmium, copper and lead on the development and survival of honeybee (Apis mellifera L.) larvae and foragers. Chemosphere 2016, 152, 530–538. [Google Scholar] [CrossRef]
- Nikolić, T.V.; Kojić, D.; Orčić, S.; Batinić, D.; Vukašinović, E.; Blagojević, D.P.; Purać, J. The impact of sublethal concentrations of Cu, Pb and Cd on honey bee redox status, superoxide dismutase and catalase in laboratory conditions. Chemosphere 2016, 164, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Yan, S.C. Effects of Cd, Zn or Pb stress in Populus alba berolinensis on the development and reproduction of Lymantria dispar. Ecotoxicology 2017, 26, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Vlahović, M.; Matić, D.; Mutić, J.; Trifković, J.; urđić, S.; Perić Mataruga, V. Influence of dietary cadmium exposure on fitness traits and its accumulation (with an overview on trace elements) in Lymantria dispar larvae. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017, 200, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ullah, M.I.; Saeed, M.F.; Khalid, S.; Saqib, M.; Arshad, M.; Afzal, M.; Damalas, C.A. Heavy metal exposure through artificial diet reduces growth and survival of Spodoptera litura (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 2019, 26, 14426–14434. [Google Scholar] [CrossRef]
- Kafel, A.; Nowak, A.; Bembenek, J.; SzczygieŁ, J.; Nakonieczny, M.; Świergosz-Kowalewska, R. The localisation of HSP70 and oxidative stress indices in heads of Spodoptera exigua larvae in a cadmium-exposed population. Ecotoxicol. Environ. Saf. 2012, 78, 22–27. [Google Scholar] [CrossRef]
- Kafel, A.; Rozpedek, K.; Szulińska, E.; Zawisza-Raszka, A.; Migula, P. The effects of cadmium or zinc multigenerational exposure on metal tolerance of Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 2014, 21, 4705–4715. [Google Scholar] [CrossRef]
- Płachetka-Bożek, A.; Augustyniak, M. Evaluation of candidate reference genes for quantitative gene expression analysis in Spodoptera exigua after long-time exposure to cadmium. Sci. Rep. 2017, 7, 8338. [Google Scholar] [CrossRef]
- Płachetka-Bożek, A.; Chwiałkowska, K.; Augustyniak, M. Molecular changes in vitellogenin gene of Spodoptera exigua after long-time exposure to cadmium—Toxic side effect or microevolution? Ecotoxicol. Environ. Saf. 2018, 147, 461–470. [Google Scholar] [CrossRef]
- Augustyniak, M.; Tarnawska, M.; Babczyńska, A.; Kafel, A.; Zawisza-Raszka, A.; Adamek, B.; Plachetka-Bozek, A. Cross tolerance in beet armyworm: Long-term selection by cadmium broadens tolerance to other stressors. Ecotoxicology 2017, 26, 1408–1418. [Google Scholar] [CrossRef]
- Płachetka-Bożek, A.; Kafel, A.; Augustyniak, M. Reproduction and development of Spodoptera exigua from cadmium and control strains under differentiated cadmium stress. Ecotoxicol. Environ. Saf. 2018, 166, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.C.; Wu, J.Q.; Wu, Y.Q.; Chilukuri, R.V.; Huang, L.H.; Yamamoto, K.; Feng, L.; Li, W.S.; Chen, Z.W.; Guo, H.Z.; et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 2017, 1, 1747–1756. [Google Scholar] [CrossRef]
- Shu, Y.; Gao, Y.; Sun, H.; Zou, Z.; Zhou, Q.; Zhang, G. Effects of zinc exposure on the reproduction of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Ecotoxicol. Environ. Saf. 2009, 72, 2130–2136. [Google Scholar] [CrossRef]
- Li, K.Q.; Chen, J.; Jin, P.; Li, J.F.; Wang, J.W.; Shu, Y.H. Effects of Cd accumulation on cutworm Spodoptera litura larvae via Cd treated Chinese flowering cabbage Brassica campestris and artificial diets. Chemosphere 2018, 200, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, Y.S.; Huang, S.M.; Zhan, H.R.; Zhang, M.F.; Wang, J.W.; Shu, Y.H. Integration of transcriptome and proteome reveals molecular mechanisms underlying stress responses of the cutworm, Spodoptera litura, exposed to different levels of lead (Pb). Chemosphere 2021, 283, 131205. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Chen, J.; Zhan, H.R.; Huang, S.M.; Wang, J.W.; Shu, Y.H. Accumulation and excretion of zinc and their effects on growth and food utilization of Spodoptera litura (Lepidoptera: Noctuidae). Ecotoxicol. Environ. Saf. 2020, 202, 110883. [Google Scholar] [CrossRef] [PubMed]
- Waldbauer, G.P. The consumption and utilization of food by insects. Adv. Insect Physiol. 1968, 5, 229–288. [Google Scholar]
- Santos, P.H.D.; Neves, S.M.; Sant’Anna, D.O.; de Oliveira, C.H.; Carvalho, H.D. The analytic hierarchy process supporting decision making for sustainable development: An overview of applications. J. Clean. Prod. 2019, 212, 119–138. [Google Scholar] [CrossRef]
- Yuan, G.P.; Dai, S.J.; Yin, Z.Q.; Lu, H.K.; Jia, R.Y.; Xu, J.; Song, X.; Li, L.; Shu, Y.; Zhao, X.H. Toxicological assessment of combined lead and cadmium: Acute and sub-chronic toxicity study in rats. Food Chem. Toxicol. 2014, 65, 260–268. [Google Scholar] [CrossRef]
- Frat, L.; Chertemps, T.; Pesce, E.; Bozzolan, F.; Dacher, M.; Planelló, R.; Herrero, O.; Llorente, L.; Moers, D.; Siaussat, D. Single and mixed exposure to cadmium and mercury in Drosophila melanogaster: Molecular responses and impact on post-embryonic development. Ecotoxicol. Environ. Saf. 2021, 220, 112377. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Gancarz, D.; Rofe, A.; Kempson, I.M.; Weber, J.; Juhasz, A.L. Antagonistic effects of cadmium on lead accumulation in pregnant and non-pregnant mice. J. Hazard. Mater. 2012, 199, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.F.; Xu, Y.X.; Zheng, X.J.; Cui, Y.H. Effect of silkworm fed on mixtures of Pb2+ and Cd2+ on its development and inducement of apoptosis. Sci. Seric. 2006, 32, 125–128. [Google Scholar]
- Stolpe, C.; Müller, C. Effects of single and combined heavy metals and their chelators on aphid performance and preferences. Environ. Toxicol. Chem. 2016, 35, 3023–3030. [Google Scholar] [CrossRef] [PubMed]
- Kazemi-Dinan, A.; Thomaschky, S.; Stein, R.J.; Kramer, U.; Müller, C. Zinc and cadmium hyperaccumulation act as deterrents towards specialist herbivores and impede the performance of a generalist herbivore. New Phytol. 2014, 202, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Jhee, E.M.; Boyd, R.S.; Eubanks, M.D. Effectiveness of metal-metal and metal-organic compound combinations against Plutella xylostella: Implications for plant elemental defense. J. Chem. Ecol. 2006, 32, 239–259. [Google Scholar] [CrossRef]
- Song, Y.Q.; Gao, H.H.; Zhang, L.; Zhao, H.Y. Effects of combined stress of heavy metal cadmium and zinc on the life table parameters and fecundity of English grain aphid Sitobion avenae (Hemiptera: Aphididae). J. Plant Prot. 2017, 44, 406–412. [Google Scholar]
- Yazdanfar, H.; GhodskhahDariaii, M.; JalaliSendi, J. The effects of host plants on the feeding indices and chemical activities of elm leaf beetle, Xanthogaleruca luteola (Muller) (Coleoptera: Chrysomelidae). Iran. Agric. Res. 2016, 35, 81–87. [Google Scholar]
- Bednarska, A.J.; Opyd, M.; Żurawicz, E.; Laskowski, R. Regulation of body metal concentrations: Toxicokinetics of cadmium and zinc in crickets. Ecotoxicol. Environ. Saf. 2015, 119, 9–14. [Google Scholar] [CrossRef]
- Perić-Mataruga, V.; Ilijin, L.; Mrdaković, M.; Todorović, D.; Prokić, M.; Matić, D.; Vlahović, M. Parameters of oxidative stress, cholinesterase activity, Cd bioaccumulation in the brain and midgut of Lymantria dispar (Lepidoptera: Lymantriidae) caterpillars from unpolluted and polluted forests. Chemosphere 2019, 218, 416–424. [Google Scholar] [CrossRef]
- Vedamanikam, V.J.; Shazilli, N.A.M. The effect of multi-generational exposure to metals and resultant change in median lethal toxicity tests values over subsequent generations. Bull. Environ. Contam. Toxicol. 2008, 80, 63–67. [Google Scholar] [CrossRef]
- Kafel, A.; Zawisza-Raszka, A.; Szulińska, E. Effects of multigenerational cadmium exposure of insects (Spodoptera exigua larvae) on anti-oxidant response in haemolymph and developmental parameters. Environ. Pollut. 2012, 162, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Mireji, P.O.; Keating, J.; Hassanali, A.; Mbogo, C.M.; Muturi, M.N.; Githure, J.I.; Beier, J.C. Biological cost of tolerance to heavy metals in the mosquito Anopheles gambiae. Med. Vet. Entomol. 2010, 24, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Krantzberg, G.; Stokes, P.M. Metal regulation, tolerance and body burdens in the larvae of the genus Chironomus. Can. J. Fish. Aquat. Sci. 1989, 46, 389–398. [Google Scholar] [CrossRef]
- Sadeq, S.A.; Beckerman, A.P. Evaluating additive versus interactive effects of copper and cadmium on Daphnia pulex life history. Environ. Sci. Pollut. R. 2020, 27, 2015–2026. [Google Scholar] [CrossRef]
Generation | Treatments | Survival | Weight | Food Utilization | Weighted Score | Rank | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Larval Survival | Pupation Rate | Eclosion Rate | Larval Weight | Pupal Weight | Adult Weight | AD | ECI | ECD | RCR | RGR | ||||
The first generation | CK | 5 | 5 | 5 | 3 | 5 | 5 | 1 | 3 | 5 | 1 | 3 | 3.96 | 3 |
M | 5 | 5 | 4 | 3 | 5 | 5 | 1 | 5 | 5 | 1 | 5 | 4.13 | 1 | |
Cd | 5 | 5 | 4 | 5 | 5 | 5 | 1 | 4 | 5 | 1 | 3 | 4.12 | 2 | |
Pb | 5 | 5 | 3 | 3 | 5 | 5 | 1 | 4 | 5 | 1 | 3 | 3.81 | 4 | |
The fifth generation | CK | 5 | 5 | 5 | 5 | 4 | 3 | 2 | 4 | 4 | 4 | 5 | 4.30 | 2 |
M | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 5 | 5 | 5 | 3 | 4.72 | 1 | |
Cd | 5 | 5 | 5 | 5 | 1 | 3 | 1 | 3 | 3 | 1 | 5 | 3.58 | 4 | |
Pb | 5 | 5 | 5 | 5 | 2 | 3 | 2 | 5 | 4 | 3 | 5 | 4.10 | 3 | |
The tenth generation | CK | 5 | 5 | 5 | 5 | 3 | 3 | 1 | 3 | 3 | 1 | 5 | 3.78 | 2 |
M | 5 | 5 | 5 | 5 | 5 | 5 | 1 | 5 | 5 | 3 | 1 | 4.30 | 1 | |
Cd | 5 | 5 | 5 | 5 | 3 | 3 | 1 | 3 | 4 | 2 | 3 | 3.78 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Chen, J.; Wu, K.; Chen, S.; Wang, J.; Shu, Y. Complex Cd–Pb Multigenerational Exposure Improves the Growth and Food Utilization of the Cutworm Spodoptera litura. Agronomy 2023, 13, 1207. https://doi.org/10.3390/agronomy13051207
Zhang M, Chen J, Wu K, Chen S, Wang J, Shu Y. Complex Cd–Pb Multigenerational Exposure Improves the Growth and Food Utilization of the Cutworm Spodoptera litura. Agronomy. 2023; 13(5):1207. https://doi.org/10.3390/agronomy13051207
Chicago/Turabian StyleZhang, Meifang, Jin Chen, Kaixuan Wu, Shiru Chen, Jianwu Wang, and Yinghua Shu. 2023. "Complex Cd–Pb Multigenerational Exposure Improves the Growth and Food Utilization of the Cutworm Spodoptera litura" Agronomy 13, no. 5: 1207. https://doi.org/10.3390/agronomy13051207
APA StyleZhang, M., Chen, J., Wu, K., Chen, S., Wang, J., & Shu, Y. (2023). Complex Cd–Pb Multigenerational Exposure Improves the Growth and Food Utilization of the Cutworm Spodoptera litura. Agronomy, 13(5), 1207. https://doi.org/10.3390/agronomy13051207