Different Maize Ear Rot Fungi Deter the Oviposition of Yellow Peach Moth (Conogethes punctiferalis (Guenée)) by Maize Volatile Organic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Isolation and Purification of Four Fungal Strains
2.3. Morphological Identification of Four Fungal Strains
2.4. Molecular Identification of Four Fungal Strains
2.5. Pathogenicity Test of Four Fungal Strains
2.6. Maize Treatments
2.7. Oviposition Selection Experiments
2.8. Four-Arm Olfactometer Experiments
2.9. VOCs Collection and Analysis
2.10. Statistical Analysis
3. Results
3.1. Morphological and Molecular Identification of Maize Ear-Surface Fungi
3.2. The Host Preference of Mated YPM Females among MIM, MDM, Fungi-Infected Maize Ear, and the Same Fungal Strain Growing in PDA Medium
3.3. VOC Profiles of Different Treatments
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Biere, A.; Tack, A.J.M. Evolutionary adaptation in three-way interactions between plants, microbes and arthropods. Funct. Ecol. 2013, 27, 646–660. [Google Scholar] [CrossRef] [Green Version]
- Weeraddana, C.S.; Manolii, V.P.; Strelkov, S.E.; de la Mata, A.P.; Harynuk, J.J.; Evenden, M.L. Infection of canola by the root pathogen Plasmodiophora brassicae increases resistance to aboveground herbivory by bertha armyworm, Mamestra configurata Walker (Lepidoptera: Noctuidae). Plant Sci. 2020, 300, 110625. [Google Scholar] [CrossRef] [PubMed]
- Eberl, F.; Hammerbacher, A.; Gershenzon, J.; Unsicker, S.B. Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. New Phytol. 2018, 220, 760–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberl, F.; Uhe, C.; Unsicker, S.B. Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions. Fungal Ecol. 2019, 38, 104–112. [Google Scholar] [CrossRef]
- Eberl, F.; Bobadilla, M.F.D.; Reichelt, M.; Hammerbacher, A.; Unsicker, S.B. Herbivory meets fungivory: Insect herbivores feed on plant pathogenic fungi for their own benefit. Ecol. Lett. 2020, 23, 1073–1084. [Google Scholar] [CrossRef]
- Rivera, M.J.; Pelz-Stelinski, K.S.; Martini, X.; Stelinski, L.L. Bacterial phytopathogen infection disrupts belowground plant indirect defense mediated by tritrophic cascade. Ecol Evol. 2017, 7, 4844–4854. [Google Scholar] [CrossRef]
- Grunseich, J.M.; Thompson, M.N.; Aguirre, N.M.; Helms, A.M. The role of plant-associated microbes in mediating host-plant selection by insect herbivores. Plants 2019, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Al-Naemi, F.; Hatcher, P.E. Contrasting effects of necrotrophic and biotrophic plant pathogens on the aphid Aphis fabae. Entomol. Exp. Appl. 2013, 148, 234–245. [Google Scholar] [CrossRef]
- Guo, H.G.; Han, C.Y.; Zhang, A.H.; Yang, A.Z.; Qin, X.C.; Zhang, M.Z.; Du, Y.L. Penicillium fungi mediate behavioral responses of the yellow peach moth, Conogethes punctiferalis (Guenée) to apple fruits via altering the emissions of host plant VOCs. Arch. Iinsect. Biochem. 2022, 110, e21895. [Google Scholar] [CrossRef]
- Clement, S.L.; Hu, J.; Stewart, A.V.; Wang, B.; Elberson, L.R. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance. J. Insect Sci. 2011, 11, 77. [Google Scholar] [CrossRef]
- Parker, N.S.; Anderson, N.R.; Richmond, D.S.; Long, E.Y.; Wise, K.A.; Krupke, C.H. Larval western bean cutworm feeding damage encourages the development of Gibberella ear rot on field corn. Pest Manag. Sci. 2017, 73, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Shi, J.; Zhang, H.; Guo, N.; Li, P.; Wang, Z.Y. Impacts of durian fruit borer Conogethes punctiferalis on yield loss of summer corn by injuring corn ears. J. Plant Prot. 2015, 42, 991–996. (In Chinese) [Google Scholar]
- Price, P.W.; Denno, R.F.; Eubanks, M.D.; Finke, D.L.; Kaplan, I. Insect Ecology: Behavior, Populations, and Communities; Cambridge University Press: New York, NY, USA, 2011; pp. 1–801. [Google Scholar]
- Davis, T.S.; Crippen, T.L.; Hofstetter, R.W.; Tomberlin, J.K. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 2013, 39, 840–859. [Google Scholar] [CrossRef] [PubMed]
- Groen, S.C.; Jiang, S.; Murphy, A.M.; Cunniffe, N.J.; Westwood, J.H.; Davey, M.P. Virus infection of plants alters pollinator preference: A payback for susceptible hosts? PLoS Pathog. 2016, 12, e1005790. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, S.Z.; Raman, A.; Wheatley, W.M.; Cook, G. Oviposition preference and larval performance of Epiphyas postvittana (Lepidoptera: Tortricidae) on Botrytis cinerea (Helotiales: Sclerotiniaceae) infected berries of Vitis vinifera (Vitales: Vitaceae). Insect Sci. 2016, 23, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Tasin, M.; Knudsen, G.K.; Pertot, I. Smelling a diseased host: Grapevine moth responses to healthy and fungus-infected grapes. Anim. Behav. 2012, 83, 555–562. [Google Scholar] [CrossRef]
- Fernandez-Conradi, P.; Jactel, H.; Robin, C.; Tack, A.J.M.; Castagneyrol, B. Fungi reduce preference and performance of insect herbivores on challenged plants. Ecology 2018, 99, 300–311. [Google Scholar] [CrossRef]
- Li, D.Y.; Ai, P.P.; Du, Y.L.; Sun, S.L.; Zhang, M.Z. Effects of different host plants on the development and reproduction of yellow peach moth, Conogethes punctiferalis (Guenée) (lepidoptera: Crambidae). Austral Entomol. 2015, 54, 149–153. [Google Scholar] [CrossRef]
- Chen, G.M.; Chi, H.; Wang, R.C.; Wang, Y.P.; Xu, Y.Y.; Li, X.D.; Yin, P.; Zheng, F.Q. Demography and uncertainty of population growth of Conogethes punctiferalis (Lepidoptera: Crambidae) reared on five host plants with discussion on some life history statistics. J. Econ. Entomol. 2018, 111, 2143–2152. [Google Scholar] [CrossRef]
- Wang, Z.Y.; He, K.L.; Shi, J.; Ma, S.Y. Analysis of the heavily occurrence trend of the yellow peach borer in corn and its management strategy. Plant Prot. 2016, 32, 67–69. (In Chinese) [Google Scholar]
- Shwe, S.M.; Prabu, S.; Chen, Y.; Li, Q.; Jing, D.; Bai, S.; He, K.; Wang, Z. Baseline susceptibility and laboratory selection of resistance to Bt Cry1Ab protein of Chinese populations of Yellow Peach Moth, Conogethes punctiferalis (Guenée). Toxins 2021, 13, 335. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Z.; He, K. Research history, progresses and prospects in the yellow peach moth, Conogethes punctiferalis. Plant Prot. 2010, 36, 31–38. (In Chinese) [Google Scholar]
- Jia, X.J.; Wang, H.X.; Yan, Z.G.; Zhang, M.Z.; Wei, C.H.; Qin, X.C.; Ji, W.R.; Falabella, P.; Du, Y.L. Antennal transcriptome and differential expression of olfactory genes in the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae). Sci. Rep. 2016, 6, 29067. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, P.J. Herbivore host choice and optimal bad motherhood. Trends Ecol. Evol. 2001, 16, 165–167. [Google Scholar] [CrossRef]
- Xiao, W.; Matsuyama, S.; Ando, T.; Millar, J.G.; Honda, H. Unsaturated cuticular hydrocarbons synergize responses to sex attractant pheromone in the yellow peach moth, Conogethes punctiferalis. J. Chem. Ecol. 2012, 38, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Honda, H. Olfactory and biophysical assessment of the oviposition stimulating potential of host and non-host plants for the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae). Appl. Entomol. Zool. 2015, 50, 183–189. [Google Scholar] [CrossRef]
- Lanubile, A.; Maschietto, V.; Borrelli, V.M.; Stagnati, L.; Logrieco, A.F.; Marocco, A. Molecular basis of resistance to fusarium ear rot in maize. Front. Plant Sci. 2017, 8, 1774. [Google Scholar] [CrossRef]
- Shang, G.; Yu, H.; Yang, J.; Zeng, Z.; Hu, Z. First report of Fusarium miscanthi causing ear rot on maize in China. Plant Dis. 2020, 105, 1565. [Google Scholar] [CrossRef]
- Tahat, M.M.; Aldakil, H.; Alananbeh, K.; Salem, N.M. First report of fusarium verticillioides causing fusarium ear rot of corn in Jordan. Plant Dis. 2022. Advance online publication. [Google Scholar] [CrossRef]
- Wang, J.H.; Li, H.P.; Zhang, J.B.; Wang, B.T.; Liao, Y.C. First report of Fusarium maize ear rot caused by Fusarium kyushuense in China. Plant Dis. 2014, 98, 279. [Google Scholar] [CrossRef]
- Duan, C.X.; Wang, X.M.; Song, F.J.; Sun, S.L.; Zhou, D.N.; Zhu, Z.D. Advances in research on maize resistance to ear rot. Sci. Agric. Sin. 2015, 48, 2152–2164. [Google Scholar]
- Liu, S.; Wang, J.; Guo, N.; Sun, H.; Ma, H.; Zhang, H.; Shi, J. Talaromyces funiculosus, a novel causal agent of maize ear rot and its sensitivity to fungicides. Plant Dis. 2021, 105, 3978–3984. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Guo, N.; Ma, H.; Liu, S.; Shi, J. First report of maize ear rot caused by Exserohilum rostratum in Hainan Province in southern China. Plant Dis. 2021, 106, 314. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Noor, N.M.; Zakaria, L. Identification and characterization of Colletotrichum spp. associated with chili anthracnose in peninsular Malaysia. Eur. J. Plant Pathol. 2018, 151, 961–973. [Google Scholar] [CrossRef]
- Gaikpa, D.S.; Miedaner, T. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: Methods, advances and prospects. Theor. Appl. Genet. 2019, 132, 2721–2739. [Google Scholar] [CrossRef] [PubMed]
- Reese, B.N.; Payne, G.A.; Nielsen, D.M.; Woloshuk, C.P. Gene expression profile and response to maize kernels by Aspergillus flavus. Phytopathology 2011, 101, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Munkvold, G.P.; White, D.G. Compendium of Corn Diseases; APS:: St. Paul, MN, USA, 2016; p. 165. [Google Scholar]
- Sanna, M.; Pugliese, M.; Gullino, M.L.; Mezzalama, M. First report of Trichoderma afroharzianum causing seed rot on maize in Italy. Plant Dis. 2022, 106, 1982. [Google Scholar] [CrossRef]
- Chalivendra, S.; Huang, F.; Busman, M.; Williams, W.P.; Ham, J.H. Low aflatoxin levels in Aspergillus flavus-resistant maize are correlated with increased corn earworm damage and enhanced seed fumonisin. Front. Plant Sci. 2020, 11, 565323. [Google Scholar] [CrossRef]
- Franco, F.P.; Moura, D.S.; Vivanco, J.M.; Silva-Filho, M.C. Plant–insect–pathogen interactions: A naturally complex ménage à trois. Curr. Opin. Microbiol. 2017, 37, 54–60. [Google Scholar] [CrossRef]
- Arias-Martín, M.; Haidukowski, M.; Farinós, G.P.; Patiño, B. Role of Sesamia nonagrioides and Ostrinia nubilalis as vectors of Fusarium spp. and contribution of corn borer-resistant Bt Maize to mycotoxin reduction. Toxins 2021, 13, 780. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Li, P.C.; Chen, X.X.; Wang, C.X.; Yu, J.F. Isolation and identification of the pathogens causing wheat common root rot in Shandong Province. J. Plant Prot. 2016, 43, 233–240. (In Chinese) [Google Scholar]
- Fereres, A.; Peñaflor, M.F.; Favaro, C.F.; Azevedo, K.E.; Landi, C.H.; Maluta, N.K.; Bento, J.M.; Lopes, J.R. Tomato infection by whitefly-transmitted circulative and non-circulative viruses induce contrasting changes in plant volatiles and vector behaviour. Viruses 2016, 8, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, A.M.; Ganji, S.; Unelius, C.R.; Gemeno, C.; Ammagarahalli, B.; Butler, R.C.; Hoffmann, C. Feeding volatiles of larval Sparganothis pilleriana (Lepidoptera: Tortricidae) attract hetero specific adults of the European Grapevine Moth. Environ. Entomol. 2021, 50, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Disi, J.O.; Zebelo, S.; Kloepper, J.W.; Fadamiro, H. Seed inoculation with beneficial rhizobacteria affects European corn borer (Lepidoptera: Pyralidae) oviposition on maize plants. Entomol. Sci. 2018, 21, 48–58. [Google Scholar] [CrossRef]
- Qawasmeh, A.; Raman, A.; Wheatley, W. Volatiles in perennial ryegrass infected with strains of endophytic fungus: Impact on African black beetle host selection. J. Appl. Entomol. 2014, 139, 94–104. [Google Scholar] [CrossRef]
- Gong, D.; Bi, Y.; Li, Y.; Zong, Y.; Han, Y.; Prusky, D. Both Penicillium expansum and Trichothecim roseum infections promote the ripening of apples and release specific volatile compounds. Front. Plant Sci. 2019, 10, 338. [Google Scholar] [CrossRef]
- Honda, H.; Ishiwatari, T.; Matsumoto, Y. Fungal volatiles as oviposition attractants for the yellow peach moth, Conogethes punctiferalis (Guenée) (Lepidoptera: Pyralidae). J. Insect Physiol. 1988, 34, 205–209. [Google Scholar] [CrossRef]
- Cossé, A.A.; Endris, J.J.; Millar, J.G.; Baker, T.C. Identification of volatile compounds from fungus-infected date fruit that stimulate upwind flight in female Ectomyelois-Ceratoniae. Entomol. Exp. Appl. 1994, 72, 233–238. [Google Scholar] [CrossRef]
- Cardoza, Y.J.; Teal, P.E.A.; Tumlinson, J.H. Effect of peanut plant fungal infection on oviposition preference by Spodoptera exigua and on host searching behaviour by Cotesia arginiventris. Environ. Entomol. 2003, 32, 970–976. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, L.; Li, C.; Cao, M.; Wang, J.; Yao, Z.; Zhou, S.; Zhou, G.; Zhang, D.; Lou, Y. The lipoxygenase gene OsRCI-1 is involved in the biosynthesis of herbivore-induced JAs and regulates plant defense and growth in rice. Plant Cell Environ. 2022, 45, 2827–2840. [Google Scholar] [CrossRef]
- Mohammed, K.; Agarwal, M.; Li, B.; Newman, J.; Liu, T.; Ren, Y. Evaluation of d-Limonene and β-Ocimene as attractants of Aphytis melinus (Hymenoptera: Aphelinidae), a parasitoid of Aonidiella aurantii (Hemiptera: Diaspididae) on Citrus spp. Insects 2020, 11, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiu, C.L.; Pan, H.S.; Liu, B.; Luo, Z.X.; Williams, L., 3rd; Yang, Y.Z.; Lu, Y.H. Perception of and behavioral responses to host plant volatiles for three Adelphocoris species. J. Chem. Ecol. 2019, 45, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Sawahata, T.; Shimano, S.; Suzuki, M. Tricholoma matsutake 1-Ocen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta). Mycorrhiza 2008, 18, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.H.; Schlyter, F.; Birgersson, G. Bark volatiles from nonhost angiosperm trees of spruce bark beetle, Ips typographus (L.) (Coleoptera: Scolytidae): Chemical and electrophysiological analysis. Chemoecology 2000, 10, 69–80. [Google Scholar] [CrossRef]
- Strickland, J.; Larson, N.R.; Feldlaufer, M.; Zhang, A. (2022). Characterizing repellencies of methyl benzoate and its analogs against the Common Bed Bug, Cimex lectularius. Insects 2022, 13, 1060. [Google Scholar] [CrossRef] [PubMed]
- Mostafiz, M.M.; Jhan, P.K.; Shim, J.K.; Lee, K.Y. (2018). Methyl benzoate exhibits insecticidal and repellent activities against Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PLoS ONE 2018, 13, e0208552. [Google Scholar] [CrossRef]
Factor | P. oxalicum | T. asperellum | A. phoenicis | A. flavus | ||||
---|---|---|---|---|---|---|---|---|
F Value | p Value | F Value | p Value | F Value | p Value | F Value | p Value | |
Days | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 |
Fungi infection | 120.374 | <0.001 | 48.759 | <0.001 | 84.714 | <0.001 | 3.146 | <0.001 |
Days × Fungi infection | 2.198 | 0.010 | 1.770 | 0.046 | 0.933 | 0.025 | 2.525 | 0.003 |
No. | Compound Type | Retention Time (min) | Compounds Ⅱ | MIM Ⅲ | MDM Ⅲ | POM Ⅲ | TAM Ⅲ | APM Ⅲ | AFM Ⅲ | PPO Ⅲ | PAT Ⅲ | PAP Ⅲ | PAF Ⅲ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Alkane | 8.22 | 3,7-dimethyldecane | 1.0375 ± 0.37 4 bc | 1.52 ± 0.39 4 b | 0.9525 ± 0.25 4 bc | 0.34 ± 0.09 3 c | 3.542 ± 0.26 3 a | |||||
2 | Alkane | 9.427 | Undecane | 45.13 ± 7.46 4 a | 30.198 ± 3.28 4 b | 3.42 ± 0.59 5 c | 0.89 ± 0.14 5 c | 1.54 ± 0.37 4 c | |||||
3 | Alkane | 14.269 | 5-(2-methylpropyl)nonane | 9.23 ± 0.92 5 b | 11.40 ± 1.91 5 b | 2.07 ± 0.32 4 b | 1.82 ± 0.42 5 b | 1367.61 ± 121.00 5 a | 3.66 ± 0.70 3 b | 0.70 ± 0.05 5 b | 2.19 ± 1.00 5 b | ||
4 | Alkane | 14.289 | 2,3,6,7-tetramethyl-Octane | 11.41 ± 1.81 5 a | 9.66 ± 0.95 4 a | 0.65 ± 0.14 5 b | 0.69 ± 0.12 4 b | 1.83 ± 0.39 5 b | |||||
5 | Alkane | 14.491 | 3,8-Dimethylundecane | 28.85 ± 4.29 4 a | 32.22 ± 2.12 4 a | 9.94 ± 2.40 5 b | 1.19 ± 0.29 4 c | ||||||
6 | Alkane | 14.793 | Dodecane | 0.91 ± 0.30 5 b | 1.05 ± 0.30 5 b | 22.97 ± 2.44 5 a | 1.18 ± 0.26 5 b | ||||||
7 | Alkane | 14.86 | 5-Butylnonane | 1.74 ± 0.14 4 bc | 4.12 ± 0.92 3 b | 3.85 ± 0.09 4 b | 2.40 ± 0.23 5 bc | 2.11 ± 0.72 5 bc | 2.31 ± 0.10 5 bc | 3.33 ± 0.42 4 b | 11.17 ± 1.84 3 a | ||
8 | Alkane | 15.494 | 3-methyl-5-propylnonane | 10.51 ± 2.15 5 | |||||||||
9 | Alkane | 17.372 | 5-Propyltridecane | 1.21 ± 0.13 4 | |||||||||
10 | Alkane | 17.395 | Tridecane | 1.84 ± 0.25 5 a | 1.00 ± 0.13 5 b | ||||||||
11 | Alkane | 19.791 | Eicosane | 17.51 ± 2.82 5 | |||||||||
12 | Alkane | 19.876 | Tetradecane | 41.42 ± 5.21 5 | |||||||||
13 | Alkane | 20.865 | Nonadecane | 2.15 ± 0.28 5 c | 14.08 ± 1.37 4 c | 277.97 ± 39.74 5 a | 92.20 ± 20.59 3 b | 7.11 ± 0.24 3 c | 11.21 ± 0.73 4 b | 82.21 ± 5.23 5 b | 50.50 ± 12.45 4 c | ||
14 | Alkane | 22.231 | Pentadecane | 2 ± 0.40 5 b | 12.10 ± 3.92 5 b | 148.20 ± 9.93 4 a | |||||||
15 | Alkane | 24.447 | Hexadecane | 45.48 ± 1.11 3 | |||||||||
16 | Alkane | 24.709 | 2,6,11,15-tetramethyl- Hexadecane | 14.95 ± 1.08 5 a | 3.11 ± 0.20 5 b | 2.63 ± 0.56 3 b | |||||||
17 | Alkene | 4.343 | Styrene | 2.54 ± 0.53 5 b | 15.81 ± 0.57 3 a | ||||||||
18 | Alkene | 5.165 | (2E,4E,6E)-octa-2,4,6-triene | 3.69 ± 0.70 5 | |||||||||
19 | Alkene | 5.229 | (1R)-( + )-α-piene | 8.79 ± 0.20 4 d | 13.00 ± 0.44 4 cd | 21.48 ± 0.78 5 b | 16.67 ± 2.20 5 bc | 38.70 ± 4.63 4 a | 21.82 ± 1.90 5 b | 2.64 ± 0.37 3 e | |||
20 | Alkene | 6.52 | 3-butan-2-ylcyclohexene | 4.64 ± 0.14 4 a | 2.03 ± 0.19 4 b | 1.78 ± 0.09 4 c | |||||||
21 | Alkene | 7.47 | D-Limonene | 18.75 ± 2.94 5 | |||||||||
22 | Alkene | 7.493 | 4-methylene-1-(1-methylethyl)bicyclo [3.1.0]hexane | 1.55 ± 0.15 5 b | 3.54 ± 0.63 5 a | ||||||||
23 | Alkene | 10.788 | 1-ethenyl-4-methoxybenzene | 0.66 ± 0.15 4 b | 1.63 ± 0.22 5 b | 3.21 ± 0.49 5 a | |||||||
24 | Alkene | 17.935 | (4Z)-4,11,11-trimethyl-8-methylidenebicyclo [7.2.0]undec-4-ene | 1.71 ± 0.25 4 | |||||||||
25 | Alkene | 20.127 | β-Bisabolene | 4.72 ± 1.10 5 a | 1.10 ± 0.30 4 c | 3.18 ± 0.36 4 b | |||||||
26 | Alcohol | 4.478 | 2-Heptanol | 14.16 ± 1.33 3 a | 13.93 ± 2.01 4 a | 0.71 ± 0.11 3 b | |||||||
27 | Alcohol | 6.207 | 1-Octen-3-ol | 2.76 ± 0.25 5 | |||||||||
28 | Alcohol | 6.607 | 3-Octanol | 2.89 ± 0.67 5 b | 8.32 ± 1.26 5 a | ||||||||
29 | Alcohol | 8.196 | 2-propylheptanol | 7.75 ± 0.39 3 c | 7.29 ± 0.63 5 c | 4.15 ± 0.28 5 cd | 16.79 ± 2.61 5 b | 22.76 ± 3.94 5 a | 2.21 ± 0.17 5 cd | 2.60 ± 0.55 5 cd | |||
30 | Alcohol | 9.32 | 2-Pentadecanol | 3.00 ± 0.36 4 | |||||||||
31 | Alcohol | 9.347 | Linalool | 1.70 ± 0.27 5 | |||||||||
32 | Alcohol | 10.805 | cis-3-nonenol | 3.63 ± 0.75 5 | |||||||||
33 | Aldehyde | 5.776 | Benzaldehyde | 5.48 ± 3.27 5 | |||||||||
34 | Aldehyde | 9.185 | (E)-non-4-enal | 234.59 ± 102.11 5 | |||||||||
35 | Aldehyde | 9.444 | Nonanal | 1.49 ± 0.53 5 b | 2.87 ± 0.81 4 a | ||||||||
36 | Aldehyde | 12.232 | Decanal | 3.53 ± 0.05 4 c | 19.01 ± 3.92 4 a | 7.01 ± 0.86 5 bc | 2.49 ± 0.18 5 c | 12.66 ± 2.66 5 b | 7.06 ± 0.90 4 bcd | 3.11 ± 0.32 5 c | 12.29 ± 0.73 5 b | ||
37 | Ester | 4.052 | Isoamyl acetate | 4.72 ± 0.99 4 a | 2.73 ± 0.34 4 b | 0.87 ± 0.11 4 c | |||||||
38 | Ester | 4.967 | Methyl hexanoate | 3.00 ± 0.58 5 d | 3.41 ± 0.42 5 cd | 1.73 ± 0.34 5 d | 1.23 ± 0.18 5 d | 6.14 ± 1.32 5 b | 11.95 ± 1.65 4 a | 1.53 ± 0.27 5 d | 1.38 ± 0.13 4 d | ||
39 | Ester | 6.636 | Butanoic acid, butyl ester | 3.14 ± 0.40 4 d | 4.13 ± 0.47 5 cd | 3.03 ± 0.15 4 d | 10.30 ± 1.19 5 b | 10.44 ± 1.42 4 b | 15.10 ± 1.51 5 a | ||||
40 | Ester | 9.175 | Benzoic acid, methyl ester | 1.75 ± 0.27 5 | |||||||||
41 | Ester | 11.275 | Ethyl benzoate | 2.41 ± 0.18 5 | |||||||||
42 | Ester | 16.075 | Malonic acid, bis(2-trimethylsilylethyl ester | 2.26 ± 0.24 5 c | 3.41 ± 0.32 5 b | 1.28 ± 0.16 4 c | 2.01 ± 0.33 4 c | 5.11 ± 0.56 5 a | 4.06 ± 0.46 5 b | ||||
43 | Ester | 30.474 | Ethyl palmitate | 2.50 ± 0.30 5 | |||||||||
44 | Ketone | 4.291 | 2-Heptanone | 2.11 ± 0.31 5 b | 3.29 ± 0.48 5 bc | 1.60 ± 0.18 4 c | 7.29 ± 0.77 5 a | 7.89 ± 1.09 5 a | |||||
45 | Ketone | 5.303 | 2-ethyl-Cyclopentanone | 5.01 ± 1.13 5 cd | 2.78 ± 0.17 3 d | 6.14 ± 0.95 5 c | 3.31 ± 0.31 4 cd | 14.99 ± 0.71 3 a | 4.93 ± 0.60 5 cd | 2.89 ± 0.07 5 d | 3.76 ± 0.86 4 c | 9.83 ± 1.04 4 b | |
46 | Ketone | 6.192 | 1-Octen-3-one | 4.24 ± 0.37 5 | |||||||||
47 | Ketone | 6.379 | 3-Octanone | 3.56 ± 0.22 4 cd | 6.89 ± 0.59 5 c | 4.02 ± 0.5 5 cd | 15.04 ± 1.57 5 a | 10.29 ± 1.05 5 b | 1.73 ± 0.19 5 d | 2.4 ± 0.58 5 d | |||
48 | Ketone | 6.463 | 3-methyl-2-Heptanone | 4.12 ± 0.74 4 a | 3.79 ± 0.48 5 a | 0.78 ± 0.01 3 b | |||||||
49 | Ketone | 9.096 | 2-Nonanone | 4.01 ± 0.24 5 e | 6.40 ± 0.58 5 d | 4.16 ± 0.75 5 e | 10.72 ± 0.77 5 c | 15.13 ± 1.24 4 a | 13.43 ± 0.41 5 b | ||||
50 | Aromatic | 4.379 | m-Xylene | 6.69 ± 0.775 c | 10.53 ± 0.775 b | 7.30 ± 0.735 c | 3.97 ± 0.375 de | 12.77 ± 1.435 a | 2.10 ± 0.544 e | 2.70 ± 0.484 de | |||
51 | Aromatic | 4.833 | Anisole | 8.32 ± 1.04 5 b | 15.93 ± 1.81 5 b | 81.49 ± 16.76 5 a | 13.83 ± 0.77 4 b | ||||||
52 | Aromatic | 7.017 | 1,3-Dichlorobenzene | 3.11 ± 1.20 5 d | 4.20 ± 1.09 5 d | 12.55 ± 1.05 4 b | 6.19 ± 1.62 3 cd | 66.86 ± 3.15 4 a | 2.2 ± 0.62 5 de | 2.89 ± 0.99 5 de | 10.86 ± 1.07 3 bc | 11.95 ± 2.71 3 bc | |
53 | Aromatic | 7.984 | m-Diethylbenzene | 3.88 ± 0.15 5 b | 4.53 ± 0.72 5 b | 3.61 ± 0.59 5 b | 7.86 ± 0.40 5 a | 8.89 ± 1.22 4 a | |||||
54 | Aromatic | 8.143 | 1,4-Diethylbenzene | 7.04 ± 0.915 d | 10.05 ± 0.965 c | 10.90 ± 1.455 bc | 4.07 ± 0.395 de | 24.90 ± 1.754 a | 14.83 ± 3.404 b | 2.09 ± 0.505 de | 2.99 ± 0.424 de | ||
55 | Aromatic | 9.724 | 1-ethyl-4-Methoxybenzene | 4.54 ± 0.955 cd | 4.83 ± 0.885 cd | 5.23 ± 1.355 cd | 2.52 ± 0.65 d | 5.74 ± 2.765 c | 11.62 ± 4.714 b | 2 ± 0.273 d | 12.75 ± 2.205 a | ||
56 | Aromatic | 20.223 | Butylated Hydroxytoluene | 1.53 ± 0.272 b | 5.25 ± 0.484 a | 4.28 ± 0.954 a | 0.55 ± 0.112 b | ||||||
57 | Others | 2-Amino-m-cresol, N,O-bis(trimethylsilyl)- | 2.71 ± 0.214 b | 2.56 ± 0.395 b | 2.49 ± 0.145 b | 2.54 ± 0.075 b | 5.00 ± 1.005 a | 4.94 ± 0.514 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Han, J.; Yang, H.; Qin, X.; Guo, H.; Du, Y. Different Maize Ear Rot Fungi Deter the Oviposition of Yellow Peach Moth (Conogethes punctiferalis (Guenée)) by Maize Volatile Organic Compounds. Agronomy 2023, 13, 251. https://doi.org/10.3390/agronomy13010251
Chen Y, Han J, Yang H, Qin X, Guo H, Du Y. Different Maize Ear Rot Fungi Deter the Oviposition of Yellow Peach Moth (Conogethes punctiferalis (Guenée)) by Maize Volatile Organic Compounds. Agronomy. 2023; 13(1):251. https://doi.org/10.3390/agronomy13010251
Chicago/Turabian StyleChen, Yinhu, Jie Han, Haiqing Yang, Xiaochun Qin, Honggang Guo, and Yanli Du. 2023. "Different Maize Ear Rot Fungi Deter the Oviposition of Yellow Peach Moth (Conogethes punctiferalis (Guenée)) by Maize Volatile Organic Compounds" Agronomy 13, no. 1: 251. https://doi.org/10.3390/agronomy13010251
APA StyleChen, Y., Han, J., Yang, H., Qin, X., Guo, H., & Du, Y. (2023). Different Maize Ear Rot Fungi Deter the Oviposition of Yellow Peach Moth (Conogethes punctiferalis (Guenée)) by Maize Volatile Organic Compounds. Agronomy, 13(1), 251. https://doi.org/10.3390/agronomy13010251