Applicability of Smart Tools in Vegetable Disease Diagnostics
Abstract
:1. Introduction
2. Symptomatic Diagnosis
3. Serological Tests
4. Polymerase-Chain-Reaction (PCR)-Based Methods for Phytopathogen Detection
5. Isothermal Amplification
5.1. Loop-Mediated Isothermal Amplification (LAMP)
5.2. Isothermal Amplification of Nucleic Acid by Recombinant Polymerase—RPA
5.3. SMART Modifications
6. CRISPR-Based Techniques
7. Barcoding
8. Overview of Nucleic-Acid-Based Assays for the Detection of Vegetable Pathogens
8.1. Application of Different Nucleic-Acid-Based Tools for the Detection of Viral Diseases in Vegetables
Virus | Method | Species | Reference |
---|---|---|---|
Alexivirus | RP PCR | Garlic, onion | [99] |
Begomoviruses | RT PCR | Tomato, pepper | [100] |
Begomoviruses | LAMP | Chili | [101] |
BPMV | Lateral flow +RT CPA | Bean | [102] |
BPMV | RT CFA LF | Bean | [102] |
CCYV | RT RPA | Cucurbit | [103] |
CCYV | RT RPA | Cucumber | [103] |
CCYV | RT RPA | Pea | [103] |
CGMMV | RTqPCR | Cucumber | [104] |
CMV | Immunoassay, DAS ELISA | Cucumber, tomato | [105] |
CMV | DAS ELISA | Tomato, pepper | [105] |
Multiple | Nested PCR | Multiple | [106] |
Multiple | RT PCR | Multiple | [107] |
Multiple | NGS | Multiple | [108] |
Multiple | PCR, NGS | Multiple | [109] |
Multiple | PC, RT PCR | Sweet potato | [110] |
Multiple | RT PCR | Garlic, onion | [111] |
Multiple | hybridization | Artichoke | [112] |
Multiple | DAS-ELISA, IC-RTT PCR | Garlic, onion | [11] |
MYMV | CRISPR-Cas (CCI) | Legumes | [86] |
OYDV | serological | Garlic, onion | [113] |
OYDV | RT PCR+DAS ELISA | Garlic, onion | [113] |
OYDV | RT LAMP | Onion | [114] |
PLRV, PVY | Isothermal (RT LAMP) | Potato | [115] |
PLRV, PVY, PVM, PVA, PVX and PVS. | RT PCR (real-time DiRT-PCR) | Potato | [116] |
PMMoV | IC-RT-PCR (TAS-ELISA | Pepper | [26] |
Poleovirus | NGS | Garlic, onion, leek | [117] |
PsTDV | RT PCR | Solanum | [118] |
PVY | Isothermal RT RPA | Potato | [119] |
PVY, PLRV, ToTV and ToCV | NGS | Wild potato | [120] |
RNA virus | NGS | Potato | [121] |
SPCV | Immunoassay (ELISA) | Potato | [122] |
SPLCVs | NGS, Sanger | Sweet potato | [95] |
Sweepotvirus | Lateral flow + RT RPA | Sweet potato | [123] |
TMV, BWVV2 | LAMP | False starwort | [124] |
ToBRF | RT PCR | Tomato | [125] |
ToBRFV | RT PCR | Tomato | [126] |
ToBRFV | ddPCR | Tomato | [127] |
ToBRFV | ddPCR | Tomato | [127] |
ToBRFV | ddPCR | Tomato | [127] |
ToBRFV | RT PCR | Tomato | [128] |
ToLCJoV | LAMP | Tomato | [101] |
ToLCJoV | LAMP | Chili | [101] |
ToLCJoV | LAMP | Chili | [101] |
ToLCNDV | qPCR | Tomato | [129] |
ToMMV, ToBRFV | RT PCRT (duplex) | Tomato | [130] |
ToMV | Immunoassay | Tomato | [131] |
ToMV, ToBRFV | CRISPR-Cas | Tomato | [132] |
ToNStV | RT-LAMP | Tomato | [133] |
ToYLCV | Lateral flow dipstick RPA | Tomato | [134] |
TST | RT-PCR | Potato | [135] |
TSWW | RPA | Tomato | [136] |
TuYV | LAMP | Brassica | [137] |
TuYV | LAMP isothermal | Turnip | [137] |
TYLCSV, TSWV | Raman spectroscopy | Tomato | [138] |
TYMV | RT PCR | Brassica | [139] |
WMV | RTqPCR | Watermelon, cucurbits | [140] |
8.2. Applications of Different Tools for the Detection of Bacterial Diseases in Vegetables
Bacteria | Method | Species | Reference |
---|---|---|---|
Bacterial Spot | RPA | Tomato | [144] |
Clavibacter | PCR | Tomato | [145] |
Clavibacter | ddPCR | Tomato | [146] |
Clavibacter | Multiplex qPCR | Tomato | [147] |
Clavibacter | Multiplex qPCR | Tomato | [148] |
Clavibacter | Multiplex qPCR | Tomato | [149] |
Curtobacterium | LAMP | Legumes | [150] |
Erwinia, Acidovorax | CRISPR/Cas | Vegetable | [151] |
Multiple | PCR, NGS | Multiple | [109] |
Multiple | Bar-coding | Multiple | [152] |
Pectobacterium | LAMP | Radish | [153] |
Pseudomonas | qPCR | Mung bean | [154] |
Pectobacterium | LAMP | Celery | [155] |
Pectobacterium | PCR | Cabbage | [156] |
Pectobacterium | Multiplex PCR | Potato | [157] |
Pectobacterium | Multiplex qPCR | Multiple | [158] |
Phytoplasmas | CRISPR/Cas | Potato | [142] |
Pseudomonas | LAMP | Tomato | [159] |
Pseudomonas | LAMP | Pea | [160] |
Pseudomonas | qPCR | Tomato | [161] |
Pseudomonas | Multiplex qPCR | Cucumber | [162] |
Ralstonia | LAMP | Potato | [163] |
Ralstonia | Multiplex qPCR | Zingiberaceae | [164] |
Salmonella, Clavibacter | cultivation | Potato | [165] |
Xanthomonas | LAMP | Beans | [166] |
Xanthomonas | PCR | Brassica | [167] |
Yersinia | ddPCR, qPCR | Multiple | [168] |
8.3. Applications of Different Tools for the Detection of Fungal Diseases of Vegetables
Fungus | Method | Species | Reference |
---|---|---|---|
Alternaria | Targeted chem.anal. | Tomato | [170] |
Atlernaria | Multiplex PCR | Brassica | [171] |
Botrytis | Species-specific PCR | Onion | [172] |
Botrytis | PCR | Onion | [172] |
Botrytis | qPCR | Onion | [173] |
Downy mildew | RT PCR | Lettuce | [174] |
Erysiphe Palczewski | Visual + smarphone | Robinia | [175] |
Foot rot and head rot disease (S.rolfsii) | ITS PCR seq. | Cabbage | [176] |
Fusarium | ITS barcoding | Potato | [177] |
Fusarium | Visual/image anal. | Onion | [178] |
Fusarium | PCR-RFLP | Pea | [179] |
Fusarium | qPCR | Asparagus | [180] |
Fusarium | PCR | Tomato | [181] |
Fusarium | PCR | Onion | [182] |
Fusarium | ITS barcoding | Chili | [183] |
Fusarium, Rhizoctonia | Cultivation | Potato | [165] |
Multiple | NGS | Tomato | [184] |
Hyaloperonospora | Rt PCR | Cucumber | [185] |
Late blight | LAMP | Potato, tomato | [186] |
Multiple | PCR, NGS | Multiple | [109] |
Multiple | e-NOSE | Garlic | [171] |
Multiple | Machine vision | Cucumber | [187] |
Multiple | ITS RNA seq | Brassica | [187] |
Multiple | Image analysis | Brassica | [188] |
Multiple | Robotic vision | Bean, pea | [189] |
Multiple | ITS RNA seq | Bean | [190] |
Multiple | RT PCR | Fabaceae | [191] |
Multiple | Machine vision | Cucumber | [185] |
Multiple | Multiplex PCR | Cucumber | [192] |
Multiple | ITS barcoding | Tomato | [193] |
Pectobacterium carotovorum | Sensors | Lettuce | [194] |
Plasmodiophora | Species-specific PCR | Brassica | [195] |
Plasmodiophora | PCR, SNPaSHOT | Brassica | [196] |
Powdery mildew | Spectral data | Cucumber | [197] |
Powdery, down mildew | Multiplex qPCR | Cucumber | [198] |
Pseudoperonospora | RT PCR | Cucumber | [199] |
Rhizoctonia | Multiplex RTPCR | Lettuce | [200] |
Rhizoctonia | PCR, RTPCR | Pulse crop | [197] |
Rust | IR spectroscopy | Multiple | [201] |
Sclerotinia | Spec.specif. PCR | Carrot | [202] |
Sclerotinia | RTPCR | Potato | [203] |
Sclerotinia | Spec.spec. PCR | Lettuce | [202] |
Sclerotinia | Spec.spec. PCR | Lettuce | [204] |
Sclerotinia | PCR | Garlic | [205] |
Sclerotinia | ITS RNA seq. | Mung bean | [206] |
Tomato powdery mildew | RT PCR | Tomato | [207] |
Waitea circinata | ITS rDNA seq | Brassica sp. | [208] |
8.4. Commercially Available IPM Tools/Solutions
9. Biosensors
10. E-Senses
11. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eschen, R.; Britton, K.; Brockerhoff, E.; Burgess, T.; Dalley, V.; Epanchin-Niell, R.S.; Gupta, K.; Hardy, G.; Huang, Y.; Kenis, M.; et al. International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ. Sci. Policy 2015, 51, 228–237. [Google Scholar] [CrossRef]
- Kumar, P.L.; Cuervo, M.; Kreuze, J.F.; Muller, G.; Kulkarni, G.; Kumari, S.G.; Massart, S.; Mezzalama, M.; Alakonya, A.; Muchugi, A.; et al. Phytosanitary Interventions for Safe Global Germplasm Exchange and the Prevention of Transboundary Pest Spread: The Role of CGIAR Germplasm Health Units. Plants 2021, 10, 328. [Google Scholar] [CrossRef]
- World Trade Organization. World Trade Report 2012; World Trade Organization: Geneva, Switzerland, 2012; p. 252. [Google Scholar]
- Ratnadass, A.; Fernandes, P.; Avelino, J.; Habib, R. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agron. Sustain. Dev. 2012, 32, 273–303. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Introduction to Integrated Pest Management. 2022. Available online: https://www.epa.gov/ipm/introduction-integrated-pest-management (accessed on 3 December 2022).
- Miller, S.A.; Beed, F.D.; Harmon, C.L. Plant Disease Diagnostic Capabilities and Networks. Annu. Rev. Phytopathol. 2009, 47, 15–38. [Google Scholar] [CrossRef] [PubMed]
- Mansotra, R.; Vakhlu, J. Comprehensive account of present techniques for in-field plant disease diagnosis. Arch. Microbiol. 2021, 203, 5309–5320. [Google Scholar] [CrossRef]
- Hariharan, G.; Prasannath, K. Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Front. Cell. Infect. Microbiol. 2021, 10, 493–504. [Google Scholar] [CrossRef]
- Rubio, L.; Galipienso, L.; Ferriol, I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. Front. Plant Sci. 2020, 11, 1092. [Google Scholar] [CrossRef]
- Gooden, J.; Samac, D.; Caffier, D.; Ophel-Keller, K.; Sheppard, J. Method Validation by Ringtesting to Establish International Standards for Seed Testing; a Case Study. In Plant Pathogenic Bacteria; Springer: Berlin/Heidelberg, Germany, 2001; pp. 425–427. [Google Scholar] [CrossRef]
- Aveling, T. Global standards in seed health testing. In Global Perspectives on the Health of Seeds and Plant Propagation Material; Springer: Berlin/Heidelberg, Germany, 2014; pp. 17–28. [Google Scholar]
- European Union Reference Laboratories. 2018. Available online: https://food.ec.europa.eu/horizontal-topics/european-union-reference-laboratories_en (accessed on 9 April 2023).
- Stack, J.; Cardwell, K.; Hammerschmidt, R.; Byrne, J.; Loria, R.; Snover-Clift, K.; Baldwin, W.; Wisler, G.; Beck, H.; Bostock, R.; et al. The National Plant Diagnostic Network. Plant Dis. 2006, 90, 128–136. [Google Scholar] [CrossRef]
- Pavithra, A.; Kalpana, G.; Vigneswaran, T. Deep learning-based automated disease detection and classification model for precision agriculture. Soft Comput. 2023. [Google Scholar] [CrossRef]
- Inoue, Y. Satellite- and drone-based remote sensing of crops and soils for smart farming—A review. Soil Sci. Plant Nutr. 2020, 66, 798–810. [Google Scholar] [CrossRef]
- Raffaini, P.; Manfredi, L. Chapter 15—Project management. In Endorobotics; Manfredi, L., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 337–358. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, L.R.; et al. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef]
- Zherdev, A.V.; Vinogradova, S.V.; Byzova, N.A.; Porotikova, E.V.; Kamionskaya, A.M.; Dzantiev, B.B. Methods for the Diagnosis of Grapevine Viral Infections: A Review. Agriculture 2018, 8, 195. [Google Scholar] [CrossRef]
- Mancini, V.; Murolo, S.; Romanazzi, G. Diagnostic methods for detecting fungal pathogens on vegetable seeds. Plant Pathol. 2016, 65, 691–703. [Google Scholar] [CrossRef]
- Wen, H.; Fu, Z.; Zhang, L.; Li, X.; Zhao, W. Video Assisted Diagnosis System for Cucumber Disease. J. Food Agric. Environ. 2012, 10, 857–860. [Google Scholar]
- Wei, Q.F.; Luo, C.S.; Cao, C.Z.; Guo, Q. The Intelligent Diagnostic System of Vegetable Diseases Based on a Fuzzy Neural Network. Appl. Mech. Mater. 2013, 321–324, 1907–1911. [Google Scholar] [CrossRef]
- Astuti, E.; Saragih, N.E.; Sribina, N.; Ramadhani, R. Dempster-Shafer Method for Diagnose Diseases on Vegetable. In Proceedings of the 6th International Conference on Cyber and IT Service Management (CITSM), Parapat, Indonesia, 7–9 August 2018; pp. 643–646. [Google Scholar]
- Bohnenkamp, D.; Behmann, J.; Paulus, S.; Steiner, U.; Mahlein, A.K. A Hyperspectral Library of Foliar Diseases of Wheat. Phytopathology 2021, 111, 1583–1593. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. A review on the main challenges in automatic plant disease identification based on visible range images. Biosyst. Eng. 2016, 144, 52–60. [Google Scholar] [CrossRef]
- Engvall, E.; Perlmann, P. Enzyme-Linked Immunosorbent Assay, Elisa: III. Quantitation of Specific Antibodies by Enzyme-Labeled Anti-Immunoglobulin in Antigen-Coated Tubes. J. Immunol. 1972, 109, 129–135. [Google Scholar] [CrossRef]
- Phatsaman, T.; Hongprayoon, R.; Wasee, S. Monoclonal antibody-based diagnostic assays for pepper mild mottle virus. J. Plant Pathol. 2020, 102, 327–333. [Google Scholar] [CrossRef]
- Mullis, K.B.; Faloona, F.A. Specific Synthesis of DNA Invitro via a Polymerase-Catalyzed Chain-Reaction. Methods Enzymol. 1987, 155, 335–350. [Google Scholar]
- Real-Time PCR Handbook. 2012. Available online: www.gene-quantification.de/real-time-pcr-handbook-life-technologies-update-flr.pdf (accessed on 8 April 2023).
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, F.H. Chapter 9—Real-Time PCR. In Calculations for Molecular Biology and Biotechnology, 3rd ed.; Stephenson, F.H., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 215–320. [Google Scholar] [CrossRef]
- Huggett, J.F.; Cowen, S.; Foy, C.A. Considerations for Digital PCR as an Accurate Molecular Diagnostic Tool. Clin. Chem. 2015, 61, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Fialova, E.; Zdenkova, K.; Jablonska, E.; Demnerova, K.; Ovesna, J. Digital polymerase chain reaction: Principle and Applications. Chem. Listy 2019, 113, 545–552. [Google Scholar]
- Schaad, N.W.; Frederick, R.D.; Shaw, J.; Schneider, W.L.; Hickson, R.; Petrillo, M.D.; Luster, D.G. Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annu. Rev. Phytopathol. 2003, 41, 305–324. [Google Scholar] [CrossRef]
- Kralik, P.; Ricchi, M. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything. Front. Microbiol. 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tang, J.; Liu, J.; Cai, Z.; Bai, X. Development and evaluation of a multiplex PCR for simultaneous detection of five foodborne pathogens. J. Appl. Microbiol. 2012, 112, 823–830. [Google Scholar] [CrossRef]
- Bustin, S.A.; Johnson, G.; Agrawal, S.G. MIQE—Guidelines for developing robust real-time PCR assays. Mycoses 2012, 55, 30. [Google Scholar]
- Pallas, V.; Sanchez-Navarro, J.; Varga, A.; Aparicio, F.; James, D. Multiplex polymerase chain reaction (PCR) and real-time multiplex PCR for the simultaneous detection of plant viruses. Methods Mol. Biol. 2009, 508, 193–208. [Google Scholar] [CrossRef]
- Catara, V.; Cubero, J.; Pothier, J.F.; Bosis, E.; Bragard, C.; Dermic, E.; Holeva, M.C.; Jacques, M.A.; Petter, F.; Pruvost, O.; et al. Trends in Molecular Diagnosis and Diversity Studies for Phytosanitary Regulated Xanthomonas. Microorganisms 2021, 9, 862. [Google Scholar] [CrossRef]
- Rahman, H.U.; Yue, X.; Yu, Q.; Zhang, W.; Zhang, Q.; Li, P. Current PCR-based methods for the detection of mycotoxigenic fungi in complex food and feed matrices. World Mycotoxin J. 2020, 13, 139–150. [Google Scholar] [CrossRef]
- Baker, M. qPCR: Quicker and easier but don’t be sloppy. Nat. Methods 2011, 8, 207–212. [Google Scholar] [CrossRef]
- ISO20395:2019; Biotechnology—Requirements for Evaluating the Performance of Quantification Methods for Nucleic Acid Target Sequences—qPCR and dPCR. ISO: Geneva, Switzerland, 2019; p. 50.
- Chikh-Ali, M.; Karasev, A.V. Immunocapture-Multiplex RT-PCR for the Simultaneous Detection and Identification of Plant Viruses and Their Strains: Study Case, Potato Virus Y (PVY). In Plant Pathology: Techniques and Protocols; Lacomme, C., Ed.; Springer: New York, NY, USA, 2015; pp. 177–186. [Google Scholar] [CrossRef]
- James, D.; Varga, A.; Pallas, V.; Candresse, T. Strategies for simultaneous detection of multiple plant viruses. Can. J. Plant Pathol. 2006, 28, 16–29. [Google Scholar] [CrossRef]
- Jacobi, V.; Bachand, G.D.; Hamelin, R.C.; Castello, J.D. Development of a multiplex immunocapture RT-PCR assay for detection and differentiation of tomato and tobacco mosaic tobamoviruses. J. Virol. Methods 1998, 74, 167–178. [Google Scholar] [CrossRef]
- Kokko, H.I.; Kivineva, M.; Kärenlampi, S.O. Single-Step Immunocapture RT-PCR in the Detection of Raspberry Bushy Dwarf Virus. BioTechniques 1996, 20, 842–846. [Google Scholar] [CrossRef]
- Kundu, J.K. A rapid and effective RNA release procedure for virus detection in woody plants by reverse transcription-polymerase chain reaction. Acta Virol. 2003, 47, 147–151. [Google Scholar]
- Pallas, V.; Sanchez-Navarro, J.A.; James, D. Recent Advances on the Multiplex Molecular Detection of Plant Viruses and Viroids. Front. Microbiol. 2018, 9, 2087. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, C.; Yadav, V.; Wong, A.; Senapati, S.; Chang, H.-C. A home-made pipette droplet microfluidics rapid prototyping and training kit for digital PCR, microorganism/cell encapsulation and controlled microgel synthesis. Sci. Rep. 2023, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Burpo, F.J. A critical review of PCR primer design algorithms and crosshybridization case study. Biochemistry 2001, 218, 1–12. [Google Scholar]
- Singh, V.K.; Kumar, A. PCR primer design. Mol. Biol. Today 2001, 2, 27–32. [Google Scholar]
- Asadi, R.; Mollasalehi, H. The mechanism and improvements to the isothermal amplification of nucleic acids, at a glance. Anal. Biochem. 2021, 631, 114260. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.-P.; Othman, S.; Lau, Y.-L.; Radu, S.; Chee, H.-Y. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef] [PubMed]
- Panno, S.; Matic, S.; Tiberini, A.; Caruso, A.; Bella, P.; Torta, L.; Stassi, R.; Davino, S. Loop Mediated Isothermal Amplification: Principles and Applications in Plant Virology. Plants 2020, 9, 461. [Google Scholar] [CrossRef] [PubMed]
- Fukuta, S.; Kato, S.; Yoshida, K.; Mizukami, Y.; Ishida, A.; Ueda, J.; Kanbe, M.; Ishimoto, Y. Detection of tomato yellow leaf curl virus by loop-mediated isothermal amplification reaction. J. Virol. Methods 2003, 112, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Fukuta, S.; Iida, T.; Mizukami, Y.; Ishida, A.; Ueda, J.; Kanbe, M.; Ishimoto, Y. Detection of Japanese yam mosaic virus by RT-LAMP. Arch. Virol. 2003, 148, 1713–1720. [Google Scholar] [CrossRef]
- Tanner, N.A.; Zhang, Y.H.; Evans, T.C. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. Biotechniques 2015, 58, 59–68. [Google Scholar] [CrossRef]
- Ahuja, A.; Somvanshi, V.S. Diagnosis of plant-parasitic nematodes using loop-mediated isothermal amplification (LAMP): A review. Crop Prot. 2021, 147, 105459. [Google Scholar] [CrossRef]
- Becherer, L.; Borst, N.; Bakheit, M.; Frischmann, S.; Zengerle, R.; von Stetten, F. Loop-mediated isothermal amplification (LAMP)—Review and classification of methods for sequence-specific detection. Anal. Methods 2020, 12, 717–746. [Google Scholar] [CrossRef]
- Moehling, T.J.; Choi, G.; Dugan, L.C.; Salit, M.; Meagher, R.J. LAMP Diagnostics at the Point-of-Care: Emerging Trends and Perspectives for the Developer Community. Expert Rev. Mol. Diagn. 2021, 21, 43–61. [Google Scholar] [CrossRef]
- ISO22942-1:2022; Molecular Biomarker Analysis—Isothermal Polymerase Chain Reaction (isoPCR) Methods—Part 1: General Requirements. ISO: Geneva, Switzerland, 2022.
- Cassedy, A.; Mullins, E.; O’Kennedy, R. Sowing seeds for the future: The need for on-site plant diagnostics. Biotechnol. Adv. 2020, 39, 107358. [Google Scholar] [CrossRef]
- Glais, L.; Jacquot, E. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays. Methods Mol. Biol. 2015, 1302, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Piepenburg, O.; Williams, C.; Stemple, D.; Armes, N. DNA Detection Using Recombination Proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal Amplification of Nucleic Acids. Chem. Rev. 2015, 115, 12491–12545. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Liao, C.; Liang, L.; Yi, X.; Zhou, Z.; Wei, G. Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front. Cell. Infect. Microbiol. 2022, 12, 1019071. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.L.; Ismail, I.b.; Mustapa, N.I.b.; Lai, M.Y.; Tuan Soh, T.S.; Haji Hassan, A.; Peariasamy, K.M.; Lee, Y.L.; Abdul Kahar, M.K.B.; Chong, J.; et al. Development of a reverse transcription recombinase polymerase amplification assay for rapid and direct visual detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). PLoS ONE 2021, 16, e0245164. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Yang, Y.C.; Liu, F.G.; Wang, Y.Y.; Chen, G.F. Recombinase polymerase amplification combined with lateral flow dipstick for the rapid detection of Chattonella marina. J. Appl. Phycol. 2022, 34, 1607–1620. [Google Scholar] [CrossRef]
- Roumani, F.; Rodrigues, C.; Barros-Velazquez, J.; Garrido-Maestu, A.; Prado, M. Development of a Panfungal Recombinase Polymerase Amplification (RPA) Method Coupled with Lateral Flow Strips for the Detection of Spoilage Fungi. Food Anal. Methods 2022. [Google Scholar] [CrossRef]
- Feng, Z.Z.; Chu, X.; Han, M.N.; Yu, C.W.; Jiang, Y.S.; Wang, H.; Lu, L.Q.; Xu, D. Rapid visual detection of Micropterus salmoides rhabdovirus using recombinase polymerase amplification combined with lateral flow dipsticks. J. Fish Dis. 2022, 45, 461–469. [Google Scholar] [CrossRef]
- Bai, Y.M.; Ji, J.C.; Ji, F.D.; Wu, S.; Tian, Y.; Jin, B.R.; Li, Z.D. Recombinase polymerase amplification integrated with microfluidics for nucleic acid testing at point of care. Talanta 2022, 240, 123209. [Google Scholar] [CrossRef]
- Bektaş, A.; Covington, M.F.; Aidelberg, G.; Arce, A.; Matute, T.; Núñez, I.; Walsh, J.; Boutboul, D.; Delaugerre, C.; Lindner, A.B.; et al. Accessible LAMP-Enabled Rapid Test (ALERT) for Detecting SARS-CoV-2. Viruses 2021, 13, 742. [Google Scholar] [CrossRef]
- Tamari, F.; Hinkley, C. Extraction of DNA from Plant Tissue: Review and Protocols. In Sample Preparation Techniques for Soil, Plant, and Animal Samples; Springer: Berlin/Heidelberg, Germany, 2016; pp. 245–263. [Google Scholar] [CrossRef]
- Jina, H.; Rajkumar, K.; Pranab Behari, M. The Chemistry Behind Plant DNA Isolation Protocols. Biochem. Anal. Tools—Methods Bio-Mol. Stud. 2020, 8, 131–141. [Google Scholar] [CrossRef]
- Jansen, R.; van Embden, J.D.A.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002, 43, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.L.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.B.; Jiang, W.Y.; Marraffini, L.A.; et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Brooks, C.; Nekrasov, V.; Lippman, Z.B.; Van Eck, J. Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated9 System. Plant Physiol. 2014, 166, 1292–1297. [Google Scholar] [CrossRef] [PubMed]
- Li, L.X.; Li, S.Y.; Wu, N.; Wu, J.C.; Wang, G.; Zhao, G.P.; Wang, J. HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation. ACS Synth. Biol. 2019, 8, 2228–2237. [Google Scholar] [CrossRef]
- Javalkote, V.S.; Kancharla, N.; Bhadra, B.; Shukla, M.; Soni, B.; Sapre, A.; Goodin, M.; Bandyopadhyay, A.; Dasgupta, S. CRISPR-based assays for rapid detection of SARS-CoV-2. Methods 2022, 203, 594–603. [Google Scholar] [CrossRef]
- Kostyusheva, A.; Brezgin, S.; Babin, Y.; Vasilyeva, I.; Glebe, D.; Kostyushev, D.; Chulanov, V. CRISPR-Cas systems for diagnosing infectious diseases. Methods 2022, 203, 431–446. [Google Scholar] [CrossRef]
- Mahas, A.; Hassan, N.; Aman, R.; Marsic, T.; Wang, Q.C.; Ali, Z.; Mahfouz, M.M. LAMP-Coupled CRISPR-Cas12a Module for Rapid and Sensitive Detection of Plant DNA Viruses. Viruses 2021, 13, 466. [Google Scholar] [CrossRef]
- Zhai, S.S.; Yang, Y.; Wu, Y.H.; Li, J.; Li, Y.J.; Wu, G.; Liang, J.A.; Gao, H.F. A visual CRISPR/dCas9-mediated enzyme-linked immunosorbent assay for nucleic acid detection with single-base specificity. Talanta 2023, 257, 124318. [Google Scholar] [CrossRef]
- Liu, F.X.; Cui, J.Q.; Wu, Z.H.; Yao, S.H. Recent progress in nucleic acid detection with CRISPR. Lab Chip 2023, 23, 1467–1492. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gupta, O.P.; Pathaw, N.; Sharma, D.; Maibam, A.; Sharma, P.; Sanasam, J.; Karkute, S.G.; Kumar, S.; Bhattacharjee, B. CRISPR-Cas-Led Revolution in Diagnosis and Management of Emerging Plant Viruses: New Avenues Toward Food and Nutritional Security. Front. Nutr. 2021, 8, 751512. [Google Scholar] [CrossRef] [PubMed]
- Osborn, M.J.; Bhardwaj, A.; Bingea, S.P.; Knipping, F.; Feser, C.J.; Lees, C.J.; Collins, D.P.; Steer, C.J.; Blazar, B.R.; Tolar, J. CRISPR/Cas9-Based Lateral Flow and Fluorescence Diagnostics. Bioengineering 2021, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Gupta, T.; Srivastava, S.; Dhir, S.; Kumar, P.; Singhal, T.; Rani, A.; Rishi, N. Development of a new Collateral Cleavage-independent CRISPR/Cas12a based easy detection system for plant viruses. J. Virol. Methods 2022, 300, 114432. [Google Scholar] [CrossRef]
- Selvam, K.; Najib, M.A.; Khalid, M.F.; Ozsoz, M.; Aziah, I. CRISPR-Cas Systems-Based Bacterial Detection: A Scoping Review. Diagnostics 2022, 12, 1335. [Google Scholar] [CrossRef]
- Wu, X.L.; Chan, C.; Springs, S.L.; Lee, Y.H.; Lu, T.K.; Yu, H. A warm-start digital CRISPR/Cas-based method for the quantitative detection of nucleic acids. Anal. Chim. Acta 2022, 1196, 339494. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, M.; Sen, A.; Vachher, M.; Nigam, A. Delineating Bacteria Using DNA Barcoding. Mol. Genet. Microbiol. Virol. 2021, 36, S65–S73. [Google Scholar] [CrossRef]
- Schoch, C.; Seifert, K.; Huhndorf, S.M.; Robert, V.; Spouge, J.; Levesque, C.A.; Chen, W.; Crous, P.; Boekhout, T.; Damm, U.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples. PLoS ONE 2012, 7, e40863. [Google Scholar] [CrossRef]
- Xu, J. Fungal DNA barcoding. Genome 2016, 59, 913–932. [Google Scholar] [CrossRef]
- Bonants, P.; Groenewald, E.; Rasplus, J.-Y.; Maes, M.; De Vos, P.; Frey, J.; Boonham, N.; Nicolaisen, M.; Bertacini, A.; Robert, V.; et al. QBOL: A new EU project focusing on DNA barcoding of Quarantine organisms. EPPO Bull. 2010, 40, 30–33. [Google Scholar] [CrossRef]
- Choudhary, P.; Singh, B.N.; Chakdar, H.; Saxena, A.K. DNA barcoding of phytopathogens for disease diagnostics and bio-surveillance. World J. Microbiol. Biotechnol. 2021, 37, 54. [Google Scholar] [CrossRef]
- Bachwenkizi, H.S.; Temu, G.E.; Mbanzibwa, D.R.; Lupembe, M.D.; Ngailo, S.; Tairo, F.D.; Massawe, D.P. Recombination and darwinian selection as drivers of genetic diversity and evolution of sweet potato leaf curl viruses in Tanzania. Physiol. Mol. Plant Pathol. 2022, 120, 101853. [Google Scholar] [CrossRef]
- Harjes, J.; Link, A.; Weibulat, T.; Triebel, D.; Rambold, G. FAIR digital objects in environmental and life sciences should comprise workflow operation design data and method information for repeatability of study setups and reproducibility of results. Database 2020, 2020, baaa059. [Google Scholar] [CrossRef]
- PM 7/129 (2) DNA barcoding as an identification tool for a number of regulated pests. EPPO Bull. 2021, 51, 100–143. [CrossRef]
- Dawnay, N.; Ogden, R.; McEwing, R.; Carvalho, G.R.; Thorpe, R.S. Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Sci. Int. 2007, 173, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ayed, C.; Hamdi, I.; Najar, A.; Marais, A.; Faure, C.; Candresse, T.; Dridi, B.A.-M. First Report of Garlic virus A, Garlic virus B, and Garlic virus C on Garlic (Allium sativum) in Tunisia. Plant Dis. 2022, 106, 1312. [Google Scholar] [CrossRef]
- Kwak, H.R.; Hong, S.B.; Byun, H.S.; Park, B.; Choi, H.S.; Myint, S.S.; Kyaw, M.M. Incidence and Molecular Identification of Begomoviruses Infecting Tomato and Pepper in Myanmar. Plants 2022, 11, 1031. [Google Scholar] [CrossRef]
- Krishnan, N.; Kumari, S.; Kumar, R.; Pandey, K.K.; Singh, J. Loop-mediated isothermal amplification assay for quicker detection of tomato leaf curl Joydebpur virus infection in chilli. J. Virol. Methods 2022, 302, 114474. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Zhao, X.X.; Wang, D.; Zhang, P.J.; Hu, X.N.; Wei, S.; Liu, J.Y.; Ye, Z.H.; Yu, X.P. A reverse transcription-cross-priming amplification method with lateral flow dipstick assay for the rapid detection of Bean pod mottle virus. Sci. Rep. 2022, 12, 681. [Google Scholar] [CrossRef]
- Zang, L.Y.; Qiao, N.; Sun, X.H.; Zhang, X.P.; Zhao, D.; Li, J.T.; Zhu, X.P. Reverse transcription recombinase polymerase amplification assay for rapid detection of the cucurbit chlorotic yellows virus. J. Virol. Methods 2022, 300, 114388. [Google Scholar] [CrossRef]
- Pitman, T.L.; Vu, S.; Tian, T.; Posis, K.; Falk, B.W. Genome and Phylogenetic Analysis of Cucumber Green Mottle Mosaic Virus Global Isolates and Validation of a Highly Sensitive RT-qPCR Assay. Plant Dis. 2022, 106, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Deloko, D.C.T.; Chofong, N.G.; Ali, I.M.; Kachiwouo, I.G.; Songolo, F.O.; Manock, A.R.N.; Kamgaing, M.; Fonkou, T.; Njukeng, A.P. Detection of Cucumber mosaic virus on Solanum lycopersicum L. and Capsicum annuum L. in the Western region of Cameroon. J. Agric. Food Res. 2022, 8, 100294. [Google Scholar] [CrossRef]
- Davis, R.I.; Tsatsia, H. A survey for plant diseases caused by viruses and virus-like pathogens in the Solomon Islands. Australas. Plant Pathol. 2009, 38, 193–201. [Google Scholar] [CrossRef]
- Almeida, J.E.M.; Figueira, A.D.; Duarte, P.D.G.; Lucas, M.A.; Alencar, N.E. Procedure for detecting tobamovirus in tomato and pepper seeds decreases the cost analysis. Bragantia 2018, 77, 590–598. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, P.; Zhou, Q.; Zhou, X.J.; Guo, Z.Q.; Cheng, L.R.; Zhu, L.Y.; He, X.C.; Zhu, Y.D.; Hu, Y. Detection of disease in Cucurbita maxima Duch. ex Lam. caused by a mixed infection of Zucchini yellow mosaic virus, Watermelon mosaic virus, and Cucumber mosaic virus in Southeast China using a novel small RNA sequencing method. PeerJ 2019, 7, e7930. [Google Scholar] [CrossRef]
- Diseases/Symptoms Diagnosed on Commercial Crop Samples Submitted to the British Columbia Ministry of Agriculture, Food and Fisheries (Bcmaff), Plant Health Laboratory in 2020 Abstracts. Can. J. Plant Pathol. 2021, 43, S10–S182. Available online: https://www.tandfonline.com/doi/full/10.1080/07060661.2021.1932163 (accessed on 8 April 2023).
- Kiemo, F.W.; Salamon, P.; Jewehan, A.; Toth, Z.; Szabo, Z. Detection and elimination of viruses infecting sweet potatoes in Hungary. Plant Pathol. 2022, 71, 1001–1009. [Google Scholar] [CrossRef]
- Valle-Gough, R.E.; Samaniego-Gamez, B.Y.; Cervantes-Diaz, L.; Samaniego-Gamee, S.U.; Garruna-Hernandez, R.; Nunez-Ramirez, F.; Ruiz-Sanchez, E.; Torres-Bojorquee, A.I. Viral complexes in the Allium cepa L.- Frankliniella occidentalis P. interaction by DAS-ELISA in Baja California, Mexico. Rev. Fac. Agron. Univ. Zulia 2021, 38, 585–607. [Google Scholar] [CrossRef]
- Minutillo, S.A.; Spano, R.; Gallitelli, D.; Mascia, T. Simultaneous detection of 10 viruses in globe artichoke by a synthetic oligonucleotide-based DNA polyprobe. Eur. J. Plant Pathol. 2021, 160, 991–997. [Google Scholar] [CrossRef]
- Kumar, R.; Pant, R.P.; Kapoor, S.; Khar, A.; Baranwal, V.K. Development of polyclonal antibodies using bacterially expressed recombinant coat protein for the detection of Onion yellow dwarf virus (OYDV) and identification of virus free onion genotypes. 3 Biotech 2021, 11, 388. [Google Scholar] [CrossRef]
- Tiberini, A.; Tomlinson, J.; Micali, G.; Fontana, A.; Albanese, G.; Tomassoli, L. Development of a reverse transcription-loop-mediated isothermal amplification (LAMP) assay for the rapid detection of onion yellow dwarf virus. J. Virol. Methods 2019, 271, 113680. [Google Scholar] [CrossRef] [PubMed]
- Halabi, M.H.; Oladokun, J.O.; Nath, P.D. Rapid detection of Potato leafroll virus and Potato virus Y by reverse transcription loop-mediated isothermal amplification method in north-east India. J. Virol. Methods 2022, 300, 114363. [Google Scholar] [CrossRef] [PubMed]
- Prinz, M.; Kellermann, A.; Bauch, G.; Hadersdorfer, J.; Stammler, J. Development of the first PVM TaqMan (R) primer set and a one-step real-time multiplex DiRT-PCR for the detection of PLRV, PVY, PVM, PVS, PVA and PVX in potato tuber sap. Eur. J. Plant Pathol. 2022, 162, 807–823. [Google Scholar] [CrossRef]
- Nurulita, S.; Geering, A.D.W.; Crew, K.S.; Harper, S.M.; Thomas, J.E. Detection of two poleroviruses infecting garlic (Allium sativum) in Australia. Australas. Plant Pathol. 2022, 51, 461–465. [Google Scholar] [CrossRef]
- Matsushita, Y.; Usugi, T.; Tsuda, S. Development of a multiplex RT-PCR detection and identification system for Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. Eur. J. Plant Pathol. 2010, 128, 165–170. [Google Scholar] [CrossRef]
- Cassedy, A.; Della Bartola, M.; Parle-McDermott, A.; Mullins, E.; O’Kennedy, R. A one-step reverse transcription recombinase polymerase amplification assay for lateral flow-based visual detection of PVY. Anal. Biochem. 2022, 642. [Google Scholar] [CrossRef]
- Mahlanza, T.; Pierneef, R.E.; Makwarela, L.; Roberts, R.; van der Merwe, M. Metagenomic analysis for detection and discovery of plant viruses in wild Solanum spp. in South Africa. Plant Pathol. 2022, 71, 1633–1644. [Google Scholar] [CrossRef]
- Gallo, Y.; Marín, M.; Gutiérrez, P. Detection of RNA viruses in Solanum quitoense by high-throughput sequencing (HTS) using total and double stranded RNA inputs. Physiol. Mol. Plant Pathol. 2021, 113, 101570. [Google Scholar] [CrossRef]
- Sukal, A.C.; Dennien, S.; Kidanemariam, D.B.; Norkunas, K.; Coleman, E.; Harding, R.M.; James, A.P. Characterisation of Sweet potato collusive virus (SPCV) isolates from sweet potato (Ipomea batatas) in Australia. Australas. Plant Pathol. 2022, 51, 391–397. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.K.; Tuo, D.C.; Liu, Y.H.; Zhou, P.; Shen, W.T.; Zhu, G.P. Rapid detection of sweepoviruses through lateral flow dipstick-based recombinase polymerase amplification. Acta Virol. 2022, 66, 186–191. [Google Scholar] [CrossRef]
- Liang, S.; Chen, X.R.; Liu, Y.; Feng, W.Z.; Li, C.; Chen, X.S.; Li, Z. Rapid detection of Broad bean wilt virus 2 and Turnip mosaic virus in Pseudostellaria heterophylla by reverse transcription loop-mediated isothermal amplification assay. J. Phytopathol. 2022, 170, 535–545. [Google Scholar] [CrossRef]
- Luigi, M.; Manglli, A.; Tiberini, A.; Bertin, S.; Ferretti, L.; Taglienti, A.; Faggioli, F.; Tomassoli, L. Inter-Laboratory Comparison of RT-PCR-Based Methods for the Detection of Tomato Brown Rugose Fruit Virus on Tomato. Pathogens 2022, 11, 207. [Google Scholar] [CrossRef]
- Nolasco-Garcia, L.I.; Marin-Leon, J.L.; Ruiz-Nieto, J.E.; Hernandez-Ruiz, J. Identification methods for Tomato brown rugose fruit virus (ToBRFV) in Mexico. Agron. Mesoam. 2020, 31, 835–844. [Google Scholar] [CrossRef]
- Vargas-Hernandez, B.Y.; Ramirez-Pool, J.A.; Nunez-Munoz, L.A.; Calderon-Perez, B.; De la Torre-Almaraz, R.; Hinojosa-Moya, J.; Xoconostle-Cazares, B.; Ruiz-Medrano, R. Development of a droplet digital polymerase chain reaction (ddPCR) assay for the detection of Tomato brown rugose fruit virus (ToBRFV) in tomato and pepper seeds. J. Virol. Methods 2022, 302, 114466. [Google Scholar] [CrossRef] [PubMed]
- Fidan, H.; Sarikaya, P.; Yildiz, K.; Topkaya, B.; Erkis, G.; Calis, O. Robust molecular detection of the new Tomato brown rugose fruit virus in infected tomato and pepper plants from Turkey. J. Integr. Agric. 2021, 20, 2170–2179. [Google Scholar] [CrossRef]
- Romero-Masegosa, J.; Martinez, C.; Aguado, E.; Garcia, A.; Cebrian, G.; Iglesias-Moya, J.; Paris, H.S.; Jamilena, M. Response ofCucurbitaspp. to tomato leaf curl New Delhi virus inoculation and identification of a dominant source of resistance inCucurbita moschata. Plant Pathol. 2021, 70, 206–218. [Google Scholar] [CrossRef]
- Tiberini, A.; Manglli, A.; Taglienti, A.; Vucurovic, A.; Brodaric, J.; Ferretti, L.; Luigi, M.; Gentili, A.; Mehle, N. Development and Validation of a One-Step Reverse Transcription Real-Time PCR Assay for Simultaneous Detection and Identification of Tomato Mottle Mosaic Virus and Tomato Brown Rugose Fruit Virus. Plants 2022, 11, 489. [Google Scholar] [CrossRef]
- Mrkvova, M.; Hancinsky, R.; Gresikova, S.; Kanukova, S.; Barilla, J.; Glasa, M.; Hauptvogel, P.; Kraic, J.; Mihalik, D. Evaluation of New Polyclonal Antibody Developed for Serological Diagnostics of Tomato Mosaic Virus. Viruses 2022, 14, 1331. [Google Scholar] [CrossRef]
- Alon, D.M.; Hak, H.; Bornstein, M.; Pines, G.; Spiegelman, Z. Differential Detection of the Tobamoviruses Tomato Mosaic Virus (ToMV) and Tomato Brown Rugose Fruit Virus (ToBRFV) Using CRISPR-Cas12a. Plants 2021, 10, 1256. [Google Scholar] [CrossRef]
- Li, R.G.; Ling, K.S. Development of reverse transcription loop-mediated isothermal amplification assay for rapid detection of an emerging potyvirus: Tomato necrotic stunt virus. J. Virol. Methods 2014, 200, 35–40. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, H.Y.; Jiang, D.M.; Liu, M.; Zhang, W.; Yan, J.Y. A rapid detection of tomato yellow leaf curl virus using recombinase polymerase amplification-lateral flow dipstick assay. Lett. Appl. Microbiol. 2022, 74, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.; Higuita, M.; Hoyos, R.; Gallo, Y.; Marin, M.; Gutierrez, P. Indexing of RNA viruses in certified and uncertified potato seed-tubers from Solanum tuberosum cv. Diacol Capiro, and S. phureja cv. Criolla Colombia: A pilot study. Arch. Phytopathol. Plant Prot. 2022, 55, 1082–1101. [Google Scholar] [CrossRef]
- Lee, H.J.; Cho, I.S.; Ju, H.J.; Jeong, R.D. Rapid and visual detection of tomato spotted wilt virus using recombinase polymerase amplification combined with lateral flow strips. Mol. Cell. Probes 2021, 57, 101727. [Google Scholar] [CrossRef] [PubMed]
- Congdon, B.S.; Kehoe, M.A.; Filardo, F.F.; Coutts, B.A. In-field capable loop-mediated isothermal amplification detection of Turnip yellows virus in plants and its principal aphid vector Myzus persicae. J. Virol. Methods 2019, 265, 15–21. [Google Scholar] [CrossRef]
- Mandrile, L.; Rotunno, S.; Miozzi, L.; Vaira, A.M.; Giovannozzi, A.M.; Rossi, A.M.; Noris, E. Nondestructive Raman Spectroscopy as a Tool for Early Detection and Discrimination of the Infection of Tomato Plants by Two Economically Important Viruses. Anal. Chem. 2019, 91, 9025–9031. [Google Scholar] [CrossRef]
- Lee, S.; Rho, J.Y. Development of a Specific Diagnostic System for Detecting Turnip Yellow Mosaic Virus from Chinese Cabbage in Korea. Indian J. Microbiol. 2016, 56, 103–107. [Google Scholar] [CrossRef]
- Rubio, L.; Gimenez, K.; Romero, J.; Font-San-Ambrosio, M.I.; Alfaro-Fernandez, A.; Galipienso, L. Detection and absolute quantitation of watermelon mosaic virus by real-time RT-PCR with a TaqMan probe. J. Virol. Methods 2022, 300, 114416. [Google Scholar] [CrossRef]
- Morning Star. World Processing Tomato Council (WPTC) Forecasts 6.1% Reduction from Initial Production Intentions. 2022 Season Global Tomato Crop Update 2022. Available online: http://www.morningstarco.com/2022-season-global-tomato-crop-update/ (accessed on 8 April 2023).
- Wheatley, M.S.; Wang, Q.; Wei, W.; Bottner-Parker, K.D.; Zhao, Y.; Yang, Y. Cas12a-Based Diagnostics for Potato Purple Top Disease Complex Associated with Infection by ‘Candidatus Phytoplasma trifolii’-Related Strains. Plant Dis. 2022, 106, 2039–2045. [Google Scholar] [CrossRef]
- Yang, H.; Ledesma-Amaro, R.; Gao, H.; Ren, Y.; Deng, R. CRISPR-based biosensors for pathogenic biosafety. Biosens. Bioelectron. 2023, 228, 115189. [Google Scholar] [CrossRef]
- Strayer-Scherer, A.; Jones, J.B.; Paret, M.L. Recombinase Polymerase Amplification Assay for Field Detection of Tomato Bacterial Spot Pathogens. Phytopathology 2019, 109, 690–700. [Google Scholar] [CrossRef]
- Tripathi, R.; Vishunavat, K.; Tewari, R. Morphological and molecular characterization of Clavibacter michiganensis subsp. michiganensis causing bacterial canker in tomatoes. Physiol. Mol. Plant Pathol. 2022, 119, 101833. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Q.; Zhou, P.; Zhao, W.J.; Sun, X.C. Evaluation of Droplet Digital PCR for the Detection of Black Canker Disease in Tomato. Plant Dis. 2022, 106, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Dobhal, S.; Alvarez, A.M.; Arif, M. Improved multiplex TaqMan qPCR assay with universal internal control offers reliable and accurate detection of Clavibacter michiganensis. J. Appl. Microbiol. 2021, 131, 1405–1416. [Google Scholar] [CrossRef]
- Thapa, S.P.; O’Leary, M.; Jacques, M.A.; Gilbertson, R.L.; Coaker, G. Comparative Genomics to Develop a Specific Multiplex PCR Assay for Detection of Clavibacter michiganensis. Phytopathology 2020, 110, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Penazova, E.; Dvorak, M.; Ragasova, L.; Kiss, T.; Pecenka, J.; Cechova, J.; Eichmeier, A. Multiplex real-time PCR for the detection of Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and pathogenic Xanthomonas species on tomato plants. PLoS ONE 2020, 15, e0227559. [Google Scholar] [CrossRef]
- Tegli, S.; Biancalani, C.; Ignatov, A.N.; Osdaghi, E. A Powerful LAMP Weapon against the Threat of the Quarantine Plant Pathogen Curtobacterium flaccumfaciens pv. flaccumfaciens. Microorganisms 2020, 8, 1705. [Google Scholar] [CrossRef]
- Jiao, J.; Yang, M.J.; Zhang, T.F.; Zhang, Y.L.; Yang, M.L.; Li, M.; Liu, C.H.; Song, S.W.; Bai, T.H.; Song, C.H.; et al. A sensitive visual method for onsite detection of quarantine pathogenic bacteria from horticultural crops using an LbCas12a variant system. J. Hazard. Mater. 2022, 426, 128038. [Google Scholar] [CrossRef]
- Hussain, B.; Chen, J.S.; Hsu, B.M.; Chu, I.T.; Koner, S.; Chen, T.H.; Rathod, J.; Chan, M.W.Y. Deciphering Bacterial Community Structure, Functional Prediction and Food Safety Assessment in Fermented Fruits Using Next-Generation 16S rRNA Amplicon Sequencing. Microorganisms 2021, 9, 1574. [Google Scholar] [CrossRef]
- Chandrashekar, B.S.; PrasannaKumar, M.K.; Parivallal, P.B.; Pramesh, D.; Banakar, S.N.; Patil, S.S.; Mahesh, H.B. Host range and virulence diversity of Pectobacterium carotovorum subsp. brasiliense strain RDKLR infecting radish in India, and development of a LAMP-based diagnostics. J. Appl. Microbiol. 2022, 132, 4400–4412. [Google Scholar] [CrossRef]
- Noble, T.J.; Williams, B.; Douglas, C.A.; Giblot-Ducray, D.; Mundree, S.; Young, A.J. Evaluating molecular diagnostic techniques for seed detection of Pseudomonas savastanoi pv. phaseolicola, causal agent of halo blight disease in mungbean (Vigna radiata). Australas. Plant Pathol. 2022, 51, 453–459. [Google Scholar] [CrossRef]
- Shi, Y.X.; Jin, Z.W.; Meng, X.L.; Wang, L.X.; Xie, X.W.; Chai, A.; Li, B.J. Development and Evaluation of a Loop-mediated Isothermal Amplification Assay for the Rapid Detection and Identification of Pectobacterium carotovorum on Celery in the Field. Hortic. Plant J. 2020, 6, 313–320. [Google Scholar] [CrossRef]
- Chen, C.L.; Li, X.Y.; Bo, Z.J.; Du, W.X.; Fu, L.; Tian, Y.; Cui, S.; Shi, Y.X.; Xie, H. Occurrence, Characteristics, and PCR-Based Detection of Pectobacterium polaris Causing Soft Rot of Chinese Cabbage in China. Plant Dis. 2021, 105, 2872–2879. [Google Scholar] [CrossRef] [PubMed]
- Aono, Y.; Nakayama, T.; Ozawa, T.; Ushio, Y.; Yasuoka, S.; Fujimoto, T.; Ohki, T.; Oka, N.; Maoka, T. Simple and sensitive BIO-PCR detection of potato blackleg pathogens from stem, tuber, and soil samples. J. Gen. Plant Pathol. 2021, 87, 209–218. [Google Scholar] [CrossRef]
- Zaczek-Moczydlowska, M.A.; Fleming, C.C.; Young, G.K.; Campbell, K.; O’Hanlon, R. Pectobacterium and Dickeya species detected in vegetables in Northern Ireland. Eur. J. Plant Pathol. 2019, 154, 635–647. [Google Scholar] [CrossRef]
- Chen, Z.D.; Kang, H.J.; Chai, A.L.; Shi, Y.X.; Xie, X.W.; Li, L.; Li, B.J. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Pseudomonas syringae pv. tomato in planta. Eur. J. Plant Pathol. 2020, 156, 739–750. [Google Scholar] [CrossRef]
- Kant, P.; Fruzangohar, M.; Mann, R.; Rodoni, B.; Hollaway, G.; Rosewarne, G. Development and Application of a Loop-Mediated Isothermal Amplification (LAMP) Assay for the Detection of Pseudomonas syringae Pathovars pisi and syringae. Agriculture 2021, 11, 875. [Google Scholar] [CrossRef]
- Chai, A.L.; Ben, H.Y.; Guo, W.T.; Shi, Y.X.; Xie, X.W.; Li, L.; Li, B.J. Quantification of Viable Cells of Pseudomonas syringae pv. tomato in Tomato Seed Using Propidium Monoazide and a Real-Time PCR Assay. Plant Dis. 2020, 104, 2225–2232. [Google Scholar] [CrossRef]
- Gazdik, F.; Penazova, E.; Cechova, J.; Baranek, M.; Eichmeier, A. Quantitative real-time PCR assay for rapid detection of Pseudomonas amygdali pv. lachrymans in cucumber leaf rinse. J. Plant Dis. Prot. 2019, 126, 517–528. [Google Scholar] [CrossRef]
- Li, H.W.; Zhang, H.; Liu, Z.H.; Lin, Z.J.; Qiu, Y.X.; Tang, H.; Qiu, S.X. Rapid diagnosis ofRalstonia solanacearuminfection sweet potato in China by loop-mediated isothermal amplification. Arch. Microbiol. 2021, 203, 777–785. [Google Scholar] [CrossRef]
- Horita, M.; Sakai, Y.K. Specific detection and quantification ofRalstonia pseudosolanacearumrace 4 strains from Zingiberaceae plant cultivation soil by MPN-PCR. J. Gen. Plant Pathol. 2020, 86, 393–400. [Google Scholar] [CrossRef]
- Zehra, R.; Moin, S.; Enamullah, S.M.; Ehteshamul-Haque, S. Detection and identification of quarantine bacteria and fungi associated with imported and local potato seed tubers. Pak. J. Bot. 2022, 54, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- de Paiva, B.A.R.; Wendland, A.; Teixeira, N.C.; Ferreira, M. Rapid Detection of Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli in Common Bean by Loop-Mediated Isothermal Amplification. Plant Dis. 2020, 104, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Afrin, K.S.; Rahim, M.A.; Rubel, M.H.; Park, J.I.; Jung, H.J.; Kim, H.T.; Nou, I.S. Development of PCR-Based Molecular Marker for Detection of Xanthomonas campestris pv. campestris Race 6, the Causative Agent of Black Rot of Brassicas. Plant Pathol. J. 2020, 36, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, D.; Peruzy, M.F.; Aponte, M.; Mancusi, A.; Proroga, Y.T.R.; Capuano, F.; Murru, N. Comparison of droplet digital PCR vs real-time PCR for Yersinia enterocolitica detection in vegetables. Int. J. Food Microbiol. 2021, 354, 109321. [Google Scholar] [CrossRef]
- Chaloner, T.M.; Gurr, S.J.; Bebber, D.P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Chang. 2021, 11, 710–715. [Google Scholar] [CrossRef]
- Ventura-Aguilar, R.I.; Bautista-Banos, S.; Hernandez-Lopez, M.; Llamas-Lara, A. Detection of Alternaria alternata in tomato juice and fresh fruit by the production of its biomass, respiration, and volatile compounds. Int. J. Food Microbiol. 2021, 342, 109092. [Google Scholar] [CrossRef]
- Kiran, R.; Kumar, P.; Akhtar, J.; Nair, K.; Dubey, S.C. Development of multiplex PCR assay for detection of Alternaria brassicae, A. brassicicola and Xanthomonas campestris pv. campestris in crucifers. Arch. Microbiol. 2022, 204, 224. [Google Scholar] [CrossRef]
- Singh, P.; Ahmad, F.; Bisht, V.; Thakkar, N.; Sajjad, S. Early detection of onion neck rot disease in Manitoba. Can. J. Plant Sci. 2021, 101, 919–932. [Google Scholar] [CrossRef]
- Fujiwara, K.; Inoue, H.; Sonoda, R.; Iwamoto, Y.; Kusaba, M.; Tashiro, N.; Miyasaka, A. Real-Time PCR Detection of the Onion Downy Mildew Pathogen Peronospora destructor From Symptomless Onion Seedlings and Soils. Plant Dis. 2021, 105, 643–649. [Google Scholar] [CrossRef]
- Dhar, N.; Mamo, B.E.; Subbarao, K.V.; Koike, S.T.; Fox, A.; Anchieta, A.; Klosterman, S.J. Measurements of Aerial Spore Load by qPCR Facilitates Lettuce Downy Mildew Risk Advisement. Plant Dis. 2020, 104, 82–93. [Google Scholar] [CrossRef]
- Kluchevych, M.M.; Stoliar, S.H.; Chumak, P.Y.; Retman, S.V.; Strygun, O.O.; Tkalenko, H.M.; Vigera, S.M. Most recent detection of invasive species Erysiphe palczewskii (Jacz.) U Braun et S Takam on Robinia pseudoacacia L. in Ukraine. Mod. Phytomorphology 2020, 14, 85–92. [Google Scholar]
- Tejaswini, G.S.; Mahadevakumar, S.; Sowmya, R.; Deepika, Y.S.; Meghavarshinigowda, B.R.; Nuthan, B.R.; Sharvani, K.A.; Amruthesh, K.N.; Sridhar, K.R. Molecular detection and pathological investigations on southern blight disease caused by Sclerotium rolfsii on cabbage (Brassica oleracea var. capitata): A new record in India. J. Phytopathol. 2022, 170, 363–372. [Google Scholar] [CrossRef]
- Jassim, S.J.; Al-Salami, I.; Al-Shujairi, K.A.; Al-Abedy, A.N. Molecular diagnosis of some isolates of fusarium solani isolated from potato tubers (Solanum tuberosum L.). Int. J. Agric. Stat. Sci. 2021, 17, 171–175. [Google Scholar]
- Mandal, S.; Cramer, C.S. Comparing Visual and Image Analysis Techniques to Quantify Fusarium Basal Rot Severity in Mature Onion Bulbs. Horticulturae 2021, 7, 156. [Google Scholar] [CrossRef]
- Sharma, K.D.; Hemlata; Rathour, R.; Kapila, R.K.; Paul, Y.S. Detection of pea wilt pathogen Fusarium oxysporum f. sp pisi using DNA-based markers. J. Plant Biochem. Biotechnol. 2018, 27, 342–350. [Google Scholar] [CrossRef]
- de la Lastra, E.; Marin-Guirao, J.I.; Lopez-Moreno, F.J.; Soriano, T.; Cara-Garcia, M.; Capote, N. Potential inoculum sources of Fusarium species involved in asparagus decline syndrome and evaluation of soil disinfestation methods by qPCR protocols. Pest Manag. Sci. 2021, 77, 4749–4757. [Google Scholar] [CrossRef]
- Cabral, C.S.; Goncalves, A.M.; Fonseca, M.E.N.; Urben, A.F.; Costa, H.; Lourenco, V.; Boiteux, L.S.; Reis, A. First detection ofFusarium oxysporumf. sp.radicis-lycopersiciacross major tomato-producing regions in Brazil. Phytoparasitica 2020, 48, 545–553. [Google Scholar] [CrossRef]
- Latvala, S.; Haapalainen, M.; Kivijarvi, P.; Suojala-Ahlfors, T.; Iivonen, S.; Hannukkala, A. Sampling and PCR method for detecting pathogenic Fusarium oxysporum strains in onion harvest. Lett. Appl. Microbiol. 2020, 70, 210–220. [Google Scholar] [CrossRef]
- Hami, A.; Rasool, R.S.; Khan, N.A.; Mansoor, S.; Mir, M.A.; Ahmed, N.; Masoodi, K.Z. Morpho-molecular identification and first report of Fusarium equiseti in causing chilli wilt from Kashmir (Northern Himalayas). Sci. Rep. 2021, 11, 3610. [Google Scholar] [CrossRef]
- Campos, M.D.; Felix, M.D.; Patanita, M.; Materatski, P.; Varanda, C. High throughput sequencing unravels tomato-pathogen interactions towards a sustainable plant breeding. Hortic. Res. 2021, 8, 171. [Google Scholar] [CrossRef]
- Hua, S.; Xu, M.J.; Xu, Z.F.; Ye, H.B.; Zhou, C.Q. Multi-feature decision fusion algorithm for disease detection on crop surface based on machine vision. Neural Comput. Appl. 2022, 34, 9471–9484. [Google Scholar] [CrossRef]
- Rosete, Y.A.; To, H.; Evans, M.; White, K.; Saleh, M.; Trueman, C.; Tomecek, J.; Van Dyk, D.; Summerbell, R.C.; Scott, J.A. Assessing the Use of DNA Detection Platforms Combined with Passive Wind-Powered Spore Traps for Early Surveillance of Potato and Tomato Late Blight in Canada. Plant Dis. 2021, 105, 3610–3622. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Alqahtani, A.; Khan, A.; Alsubai, S.; Binbusayyis, A.; Ch, M.M.I.; Yong, H.S.; Cha, J. Cucumber Leaf Diseases Recognition Using Multi Level Deep Entropy-ELM Feature Selection. Appl. Sci. 2022, 12, 593. [Google Scholar] [CrossRef]
- Trecene, J.K.D. Brassicaceae Leaf Disease Detection using Image Segmentation Technique. In Proceedings of the 19th International Conference on Smart Technologies (IEEE EUROCON), Lviv, Ukraine, 6–8 July 2021; pp. 30–34. [Google Scholar]
- Abed, S.H.; Al-Waisy, A.S.; Mohammed, H.J.; Al-Fahdawi, S. A modern deep learning framework in robot vision for automated bean leaves diseases detection. Int. J. Intell. Robot. Appl. 2021, 5, 235–251. [Google Scholar] [CrossRef]
- Mukuma, C.; Godoy-Lutz, G.; Eskridge, K.; Steadman, J.; Urrea, C.; Muimui, K. Use of culture and molecular methods for identification and characterization of dry bean fungal root rot pathogens in Zambia. Trop. Plant Pathol. 2020, 45, 385–396. [Google Scholar] [CrossRef]
- Orina, A.S.; Gavrilova, O.P.; Gagkaeva, T.Y.; Burkin, A.A.; Kononenko, G.P. The contamination of Fabaceae plants with fungi and mycotoxins. Agric. Food Sci. 2020, 29, 265–275. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, Y.Y.; Ai, G.; Xu, H.; Dou, D.L.; Shen, D.Y. Development of multiplex PCR assay for simultaneous detection of five cucumber pathogens based on comparative genomics. Australas. Plant Pathol. 2019, 48, 369–372. [Google Scholar] [CrossRef]
- Ye, Q.J.; Wang, R.Q.; Ruan, M.Y.; Yao, Z.P.; Cheng, Y.; Wan, H.J.; Li, Z.M.; Yang, Y.J.; Zhou, G.Z. Genetic Diversity and Identification of Wilt and Root Rot Pathogens of Tomato in China. Plant Dis. 2020, 104, 1715–1724. [Google Scholar] [CrossRef]
- Carmo, G.J.D.; Castoldi, R.; Martins, G.D.; Jacinto, A.C.P.; Tebaldi, N.D.; Charlo, H.C.D.; Zampiroli, R. Detection of Lesions in Lettuce Caused by Pectobacterium carotovorum Subsp. carotovorum by Supervised Classification Using Multispectral Images. Can. J. Remote Sens. 2022, 48, 144–157. [Google Scholar] [CrossRef]
- Holtz, M.D.; Hwang, S.F.; Manolii, V.P.; Strelkov, I.S.; Strelkov, S.E. Development of molecular markers to identify distinct populations of Plasmodiophora brassicae. Eur. J. Plant Pathol. 2021, 159, 637–654. [Google Scholar] [CrossRef]
- Tso, H.H.; Galindo-Gonzalez, L.; Locke, T.; Strelkov, S.E. Protocol: rhPCR and SNaPshot assays to distinguish Plasmodiophora brassicae pathotype clusters. Plant Methods 2022, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Dubey, S.C.; Tripathi, A.; Upadhyay, B.K.; Kumar, A. Development of conventional and real time PCR assay for detection and quantification of Rhizoctonia solani infecting pulse crops. Biologia 2016, 71, 133–138. [Google Scholar] [CrossRef]
- Bandamaravuri, K.B.; Nayak, A.K.; Bandamaravuri, A.S.; Samad, A. Simultaneous detection of downy mildew and powdery mildew pathogens on Cucumis sativus and other cucurbits using duplex-qPCR and HRM analysis. AMB Express 2020, 10, 135. [Google Scholar] [CrossRef] [PubMed]
- Bello, J.C.; Sakalidis, M.L.; Perla, D.E.; Hausbeck, M.K. Detection of Airborne Sporangia of Pseudoperonospora cubensis and P. humuli in Michigan Using Burkard Spore Traps Coupled to Quantitative PCR. Plant Dis. 2021, 105, 1373–1381. [Google Scholar] [CrossRef]
- Wallon, T.; Sauvageau, A.; Van der Heyden, H. Detection and Quantification of Rhizoctonia solani and Rhizoctonia solani AG1-IB Causing the Bottom Rot of Lettuce in Tissues and Soils by Multiplex qPCR. Plants 2021, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.M.; Liu, G.; Liu, Y.; Lin, H.J.; Ou, Q.H.; An, R.; Shi, Y.M. Detection Method for Crop Rust by Fourier Transform Infrared Spectroscopy. Spectrosc. Spectr. Anal. 2019, 39, 435–442. [Google Scholar]
- Leyronas, C.; Troulet, C.; Duffaud, M.; Villeneuve, F.; Benigni, M.; Leignez, S.; Nicot, P.C. First report of Sclerotinia subarctica in France detected with a rapid PCR-based test. Can. J. Plant Pathol. 2018, 40, 248–253. [Google Scholar] [CrossRef]
- Salamone, A.L.; Okubara, P.A. Real-time PCR quantification of Rhizoctonia solani AG-3 from soil samples. J. Microbiol. Methods 2020, 172, 105914. [Google Scholar] [CrossRef]
- Jones, S.J.; Pilkington, S.J.; Gent, D.H.; Hay, F.S.; Pethybridge, S.J. A polymerase chain reaction assay for ascosporic inoculum of Sclerotinia species. N. Z. J. Crop Hortic. Sci. 2015, 43, 233–240. [Google Scholar] [CrossRef]
- Licona-Juarez, K.C.; Acosta-Garcia, G.; Ramirez-Medina, H.; Huanca-Mamani, W.; Guevara-Olvera, L. Rapid and accurate pcr-based and boiling dna isolation methodology for specific detection of sclerotium cepivorum in garlic (Allium sativum) cloves. Interciencia 2019, 44, 71–74. [Google Scholar]
- Sun, S.L.; Sun, F.F.; Deng, D.; Zhu, X.; Duan, C.X.; Zhu, Z.D. First report of southern blight of mung bean caused by Sclerotium rolfsii in China. Crop Prot. 2020, 130, 105055. [Google Scholar] [CrossRef]
- Iwasaki, S.; Okada, N.; Kimura, Y.; Takikawa, Y.; Suzuki, T.; Kakutani, K.; Matsuda, Y.; Bai, Y.L.; Nonomura, T. Simultaneous Detection of Plant- and Fungus-Derived Genes Constitutively Expressed in Single Pseudoidium neolycopersici-Inoculated Type I Trichome Cells of Tomato Leaves via Multiplex RT-PCR and Nested PCR. Agriculture 2022, 12, 254. [Google Scholar] [CrossRef]
- Vojvodic, M.; Tanovic, B.; Mitrovic, P.; Vico, I.; Bulajic, A. Waitea circinata var. zeae Causing Root Rot of Cabbage and Oilseed Rape. Plant Dis. 2021, 105, 787–796. [Google Scholar] [CrossRef] [PubMed]
- White, R.; Marzano, M.; Fesenko, E.; Inman, A.; Jones, G.; Agstner, B.; Mumford, R. Technology development for the early detection of plant pests: A framework for assessing Technology Readiness Levels (TRLs) in environmental science. J. Plant Dis. Prot. 2022, 129, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, S.; Birch, A.N.E.; Chesson, A.; du Jardin, P.; Gathmann, A.; Gropp, J.; Herman, L.; Hoen-Sorteberg, H.G.; Jones, H.; Kiss, J.; et al. Scientific Opinion on the use of existing environmental surveillance networks to support the post-market environmental monitoring of genetically modified plants EFSA Panel on Genetically Modified Organisms (GMOs). EFSA J. 2014, 12, 3883. [Google Scholar] [CrossRef]
- Farber, C.; Mahnke, M.; Sanchez, L.; Kurouski, D. Advanced spectroscopic techniques for plant disease diagnostics. A review. TrAC Trends Anal. Chem. 2019, 118, 43–49. [Google Scholar] [CrossRef]
- Ali, Q.; Zheng, H.X.; Rao, M.J.; Ali, M.; Hussain, A.; Saleem, M.H.; Nehela, Y.; Sohail, M.A.; Ahmed, A.M.; Kubar, K.A.; et al. Advances, limitations, and prospects of biosensing technology for detecting phytopathogenic bacteria. Chemosphere 2022, 296, 133773. [Google Scholar] [CrossRef]
- Cesewski, E.; Johnson, B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef]
- Li, S.; Horikawa, S.; Shen, W.; Cheng, Z.Y.; Chin, B. Direct Detection of Salmonella on Fresh Vegetables Using Multiple Magnetoelastic Biosensors. Proc. IEEE Sens. 2010, 1066–1070. [Google Scholar] [CrossRef]
- El-Moghazy, A.Y.; Wisuthiphaet, N.; Yang, X.; Sun, G.; Nitin, N. Electrochemical biosensor based on genetically engineered bacteriophage T7 for rapid detection of Escherichia coli on fresh produce. Food Control 2022, 135, 108811. [Google Scholar] [CrossRef]
- Man, Y.; Ban, M.; Li, A.; Jin, X.; Du, Y.; Pan, L. A microfluidic colorimetric biosensor for in-field detection of Salmonella in fresh-cut vegetables using thiolated polystyrene microspheres, hose-based microvalve and smartphone imaging APP. Food Chem. 2021, 354, 129578. [Google Scholar] [CrossRef] [PubMed]
- Osman Abdelrazig, A.; Tran, B.; Rijiravanich, P.; Surareungchai, W. A New and high-performance microfluidic analytical device based on Fusion 5 paper for the detection of chili pepper anthracnose pathogen Colletotrichum truncatum. Anal. Methods 2021, 13, 3764–3771. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Mandal, B.; Ramgopal Rao, V.; Kundu, T. Detection of tomato leaf curl New Delhi virus DNA using U-bent optical fiber-based LSPR probes. Opt. Fiber Technol. 2022, 74, 103108. [Google Scholar] [CrossRef]
- Patel, P. A review on plant disease diagnosis through biosensor. Int. J. Biosens. Bioelectron. 2021, 7, 50–52. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.L.; Xu, J.G.; Qu, W.; Yao, L.; Yao, B.B.; Yan, C.; Chen, W. Filtration assisted pretreatment for rapid enrichment and accurate detection of Salmonella in vegetables. Food Sci. Hum. Wellness 2023, 12, 1167–1173. [Google Scholar] [CrossRef]
- Nassarawa, S.S.; Luo, Z.S.; Lu, Y.T. Conventional and Emerging Techniques for Detection of Foodborne Pathogens in Horticulture Crops: A Leap to Food Safety. Food Bioprocess Technol. 2022, 15, 1248–1267. [Google Scholar] [CrossRef]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23. [Google Scholar] [CrossRef]
- Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 2017, 98, 437–448. [Google Scholar] [CrossRef]
- Meng, Z.; Stolz, R.M.; Mendecki, L.; Mirica, K.A. Electrically-Transduced Chemical Sensors Based on Two Dimensional Nanomaterials. Chem. Rev. 2019, 119, 478–598. [Google Scholar] [CrossRef]
- Tan, J.; Xu, J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Pei, Y.Y.; Zhang, X.L.; Hui, Z.Y.; Zhou, J.Y.; Huang, X.; Sun, G.Z.; Huang, W. Ti3C2TX MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives. Acs Nano 2021, 15, 3996–4017. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, W.G.; Hu, W.P. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection. Prog. Chem. 2023, 35, 119–134. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, H.; Wang, X.; Zheng, H.; Chen, Z.; Meng, C. Development of Electronic Nose for Qualitative and Quantitative Monitoring of Volatile Flammable Liquids. Sensors 2020, 20, 1817. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.Q.; Chen, J.; Wang, T.H.; Gao, C.S.; Li, Z.M.; Guo, L.T.; Xu, J.P.; Cheng, Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Front. Plant Sci. 2021, 12, 621276. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Singh, U.B.; Khan, M.S. Metabolomics-Based Mechanistic Insights into Revealing the Adverse Effects of Pesticides on Plants: An Interactive Review. Metabolites 2023, 13, 246. [Google Scholar] [CrossRef]
- Alseekh, S.; Fernie, A.R. Expanding our coverage: Strategies to detect a greater range of metabolites. Curr. Opin. Plant Biol. 2023, 73. [Google Scholar] [CrossRef]
- Patel, M.K.; Pandey, S.; Kumar, M.; Haque, M.I.; Pal, S.; Yadav, N.S. Plants Metabolome Study: Emerging Tools and Techniques. Plants 2021, 10, 2409. [Google Scholar] [CrossRef]
- Neumann, S.; Böcker, S. Computational mass spectrometry for metabolomics: Identification of metabolites and small molecules. Anal. Bioanal. Chem. 2010, 398, 2779–2788. [Google Scholar] [CrossRef]
- Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Yuxuan, Z.; Ogiwara, A.; Meissen, J.; Showalter, M.; Takeuchi, K.; et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 2018, 15, 53–56. [Google Scholar] [CrossRef]
- Oates, M.J.; Abu-Khalaf, N.; Molina-Cabrera, C.; Ruiz-Canales, A.; Ramos, J.; Bander, B.W. Detection of Lethal Bronzing Disease in Cabbage Palms (Sabal palmetto) Using a Low-Cost Electronic Nose. Biosensors 2020, 10, 188. [Google Scholar] [CrossRef]
- Griffith, M.P.; Meyer, A.; Grinage, A. Global ex situ Conservation of Palms: Living Treasures for Research and Education. Front. For. Glob. Chang. 2021, 4, 711414. [Google Scholar] [CrossRef]
- Borowik, P.; Adamowicz, L.; Tarakowski, R.; Waclawik, P.; Oszako, T.; Slusarski, S.; Tkaczyk, M. Development of a Low-Cost Electronic Nose for Detection of Pathogenic Fungi and Applying It to Fusarium oxysporum and Rhizoctonia solani. Sensors 2021, 21, 5868. [Google Scholar] [CrossRef]
- Borowik, P.; Grzywacz, T.; Tarakowski, R.; Tkaczyk, M.; Slusarski, S.; Dyshko, V.; Oszako, T. Development of a Low-Cost Electronic Nose with an Open Sensor Chamber: Application to Detection of Ciboria batschiana. Sensors 2023, 23, 627. [Google Scholar] [CrossRef]
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic Nose and Its Applications: A Survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef]
- Mohammad-Razdari, A.; Rousseau, D.; Bakhshipour, A.; Taylor, S.; Poveda, J.; Kiani, H. Recent advances in E-monitoring of plant diseases. Biosens. Bioelectron. 2022, 201, 113953. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ovesná, J.; Kaminiaris, M.D.; Tsiropoulos, Z.; Collier, R.; Kelly, A.; De Mey, J.; Pollet, S. Applicability of Smart Tools in Vegetable Disease Diagnostics. Agronomy 2023, 13, 1211. https://doi.org/10.3390/agronomy13051211
Ovesná J, Kaminiaris MD, Tsiropoulos Z, Collier R, Kelly A, De Mey J, Pollet S. Applicability of Smart Tools in Vegetable Disease Diagnostics. Agronomy. 2023; 13(5):1211. https://doi.org/10.3390/agronomy13051211
Chicago/Turabian StyleOvesná, Jaroslava, Michail D. Kaminiaris, Zisis Tsiropoulos, Rosemary Collier, Alex Kelly, Jonathan De Mey, and Sabien Pollet. 2023. "Applicability of Smart Tools in Vegetable Disease Diagnostics" Agronomy 13, no. 5: 1211. https://doi.org/10.3390/agronomy13051211
APA StyleOvesná, J., Kaminiaris, M. D., Tsiropoulos, Z., Collier, R., Kelly, A., De Mey, J., & Pollet, S. (2023). Applicability of Smart Tools in Vegetable Disease Diagnostics. Agronomy, 13(5), 1211. https://doi.org/10.3390/agronomy13051211