Combined Application of Coffee Husk Compost and Inorganic Fertilizer to Improve the Soil Ecological Environment and Photosynthetic Characteristics of Arabica Coffee
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Experimental Method
2.3. Sampling and Measurements
2.3.1. Soil Sample Collection and Analysis
2.3.2. Photosynthetic Characterization
2.4. Determination of Weights and Evaluation Indicators
2.4.1. Determine Metric Weights
2.4.2. TOPSIS Comprehensive Evaluation
2.5. Statistical Analysis
3. Results
3.1. Effects of Inorganic Fertilizer Level and Coffee Husk Returning Methods on Soil Fertility
3.2. Effects of Inorganic Fertilizer Level and Coffee Husk Returning Methods on Soil Enzyme Activity
3.3. Effects of Inorganic Fertilizer Level and Coffee Husk Returning Methods on Soil Microorganisms
3.4. Effects of Inorganic Fertilizer Level and Coffee Husk Returning Methods on Photosynthetic Characteristics of Arabica Coffee
3.5. Correlation Analysis of Soil Ecological Environment and Coffee Photosynthetic Characteristics
3.6. Principal Component Analysis of Different Inorganic Fertilizer Levels and Coffee Husk Returning Methods
3.7. Comprehensive Evaluation of Inorganic Fertilizer Level and Coffee Husk Returning Methods Based on the Entropy Weight Method—TOPSIS Method
4. Discussion
4.1. Effects of Inorganic Fertilizer Level and Coffee Husk Returning Methods on Soil Fertility
4.2. Effects of Inorganic Fertilizer Level and Coffee Husk Returning Methods on Soil Microbial Activity
4.3. Effects of Inorganic Fertilizer Level and Coffee Husk Returning Methods on Soil Enzyme Activity
4.4. Effects of Inorganic Fertilizer Level and Coffee Husk Returning Methods on Photosynthetic Characteristics of Coffee Trees
4.5. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, Z.; Liao, W.; Gao, R. Research on the development of coffee industry in Yunnan Province under the background of rural revitalization. China Circ. Econ. 2022, 21, 127–130. [Google Scholar]
- Zhao, Q.; Xing, Y.; Lin, X.; Sun, Y.; Zhu, F.; Long, Y.; Dong, Y. Effects of coffee fruit peel application on coffee seedlings growth and soil physiochemica characteristics. Chin. J. Trop. Crops 2017, 37, 54–59. [Google Scholar]
- Zhao, Q.Y.; Pu, H.; Wang, Q.; Dong, Y.; Lin, X.J.; Sun, Y. Nutrient Content of Coffee Peel with Different Composting Treatments and Its Effects on Coffee Plant Growth. Chin. J. Trop. Crops 2020, 41, 633–639. [Google Scholar]
- Khasawneh, A.E.-R.; Alsmairat, N.; Othman, Y.A.; Ayad, J.Y.; Al-Hajaj, H.; Qrunfleh, I.M. Controlled-release nitrogen fertilizers for improving yield and fruit quality of young apricot trees. Sci. Sci. Hortic. 2022, 303, 111233. [Google Scholar] [CrossRef]
- Yahaya, S.M.; Mahmud, A.A.; Abdullahi, M.; Haruna, A. Recent advances in the chemistry of N; P; K as fertilizer in soil–A review. Pedosphere 2022, 23, 1–37. [Google Scholar] [CrossRef]
- Wang, D.; Lin, J.Y.; Sayre, J.M.; Schmidt, R.; Fonte, S.J.; Rodrigues, J.M.; Scow, K.M. Compost amendment maintains soil structure and carbon storage by increasing available carbon and microbial biomass in agricultural soil–A six-year field study. Geoderma 2022, 427, 116117. [Google Scholar] [CrossRef]
- Lu, H.; Lashari, M.S.; Liu, X.; Ji, H.; Li, L.; Zheng, J.; Kibue, G.W.; Joseph, S.; Pan, G. Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from Central China. Eur. J. Soil Biol. 2015, 70, 67–76. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, R.; Yu, Y.; Wang, S. Role of microbial assimilation of soil NO3- in reducing soil NO3- concentration. Acta Pedol. Sin. 2017, 54, 1327–1331. [Google Scholar]
- Cao, X.; Yang, P.; Li, P. Effects of drip fertigation beneath mulched film on cherry yield.quality and soil fertility in cherry orchard. J. China Agric. Univ. 2018, 23, 133–141. [Google Scholar]
- Chen, H.; Zhang, D.F.; Zhang, B.; Li, G. Environmental impacts and returning effects of garden wastes under different disposal methods. Trans. Chin. Soc. Agric. Eng. 2018, 34, 239–244. [Google Scholar]
- Chen, L.; Li, X.; Peng, Y.; Xiang, P.; Zhou, Y.; Yao, B.; Zhou, Y.; Sun, C. Co-application of biochar and organic fertilizer promotes the yield and quality of red pitaya (Hylocereus polyrhizus) by improving soil properties. Chemosphere 2022, 294, 133619. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Park, R.D.; Kim, Y.W.; Shim, J.H.; Chao, D.H.; Rim, Y.S.; Sohn, B.K.; Kim, T.H.; Kim, K.Y. Effect of food waste compost on microbial population; soil enzyme activity and lettuce growth. Bioresour. Technol. May 2004, 93, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yan, X.; Wang, M.; Cai, Y.; Weng, X.; Su, D.; Guo, J.; Wang, W.; Hou, Y.; Ye, D.; et al. Long-term excessive phosphorus fertilization alters soil phosphorus fractions in the acidic soil of pomelo orchards. Soil Tillage Res. 2022, 215, 105214. [Google Scholar] [CrossRef]
- Ashwood, F.; Butt, K.R.; Doick, K.J.; Vanguelova, E.I. Effects of composted green waste on soil quality and tree growth on a reclaimed landfill site. Eur. J. Soil Biol. 2018, 87, 46–52. [Google Scholar] [CrossRef]
- Polzella, A.; De, Z.E.; Arena, S.; Scippa, G.S.; Scaloni, A.; Montagnoli, A.; Chiatante, D.; Trupiano, D. Toward an understanding of mechanisms regulating plant response to biochar application. Plant. Biosyst. 2018, 153, 163–172. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance, A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Gao, Y.; Shao, G.; Yang, Z.; Zhang, K.; Lu, J.; Wang, Z.; Wu, S.; Xu, D. Influences of soil and biochar properties and amount of biochar and fertilizer on the performance of biochar in improving plant photosynthetic rate, A meta-analysis. Eur. J. Agron. 2021, 130, 126345. [Google Scholar] [CrossRef]
- Cruz, S.; Marques, D.S.; Cordovil, C.S. Espresso coffee residues as a nitrogen amendment for small-scale vegetable production. J. Sci. Food Agric. 2015, 95, 3059–3066. [Google Scholar] [CrossRef]
- Siahaan, W.; Suntari, R. The Effect of Application of Coffee Waste Compost on Chemical Properties of Andisol Ngabab; Malang Regengy. J. Tanah Sumberd. Lahan. 2019, 6, 1123–1132. [Google Scholar] [CrossRef]
- Kasongo, R.K.; Verdoodt, A.; Kanyankogote, P.; Baert, G.; Van Ranst, E. Response of Italian ryegrass (Lolium multiflorum Lam.) to coffee waste application on a humid tropical sandy soil. Soil Use Manag. 2013, 29, 22–29. [Google Scholar] [CrossRef]
- Gebreeyessus, G.D. Towards the sustainable and circular bioeconomy, Insights on spent coffee grounds valorization. Sci. Total Environ. 2022, 833, 155113. [Google Scholar] [CrossRef] [PubMed]
- Chali, G.; Abera, T.; Wakgari, T. Effect of coffee husk compost and NPS fertilizer rates on growth and yield of coffee (Coffea arabica.) at Haru Research Sub-canter, Western Ethiopia. Am. J. Biosci. Bioeng. 2021, 9, 81–87. [Google Scholar] [CrossRef]
- Alhammad, B.A.; Seleiman, M.F. Improving Plant Growth; Seed Yield; and Quality of Faba Bean by Integration of Bio-Fertilizers with Biogas Digestate. Agronomy 2023, 13, 744. [Google Scholar] [CrossRef]
- Liu, G.M.; Zhang, X.C.; Wang, X.P.; Shao, H.B.; Yang, J.S.; Wang, X.P. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric. Ecosyst. Environ. 2017, 237, 274–279. [Google Scholar]
- Li, J.L.; Liang, Y.Y.; Liu, W.J.; Yang, Q.; Xu, W.X.; Tang, S.R.; Wang, J.J. Effects of manure substituting chemical nitrogen fertilizer on rubber seedling growth and soil environment. Chin. J. Appl. Ecol. 2022, 33, 431–438. [Google Scholar]
- Filipović, V.; Ugrenović, V.; Popović, V.; Dimitrijević, S.; Popović, S.; Aćimović, M.; Dragumilo, A.; Pezo, L. Productivity and flower quality of different pot marigold (Calendula officinalis L.) varieties on the compost produced from medicinal plant waste. Ind. Crops Prod. 2023, 192, 116093. [Google Scholar] [CrossRef]
- Zhu, Q.; Kong, L.; Shan, Y.Z.; Yao, X.D.; Zhang, H.J.; Xie, F.T.; Ao, X. Effect of biochar on grain yield and leaf photosynthetic physiology of soybean cultivars with different phosphorus efficiencies. J. Integr. Agric. 2019, 18, 2242–2254. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Xi, D.B.; Pan, X.F. Effects of plant ash fertilizer and combined application of fertilizer on the aqronomic traits and yield of maize. J. Anhui Agric. Sci. 2016, 44, 41–43. [Google Scholar]
- Zhang, L.; Yang, W. Risk assessment of agricultural flood disaster based on wga operator-entropy weight method. Chin. J. Agric. Resour. Reg. Plan. 2022, 43, 180–188. [Google Scholar]
- Wen, M.X.; Xi, X.H.; Shao, H.; Li, N.; Chen, X.J. Effects of drip fertigation on production effect of mountain citrus orchard. J. Zhejiang Univ. Agric. Life Sci. 2022, 48, 566–572. [Google Scholar]
- Oldfield, T.L.; Sikirica, N.; Mondini, C.; López, G.; Kuikman, P.J.; Holden, N.M. Biochar; compost and biochar-compost blend as options to recover nutrients and sequester carbon. J. Environ. Manag. 2018, 218, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Siedt, M.; Schaffer, A.; Smith, K.E.C.; Nabel, M.; Ross-Nickoll, M.; van-Dongen, J.T. Comparing straw; compost; and biochar regarding their suitability as agricultural soil amendments to affect soil structure; nutrient leaching; microbial communities; and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Abideen, Z.; Koyro, H.W.; Huchzermeyer, B.; Gul, B.; Khan, M.A. Impact of a biochar or a biochar-compost mixture on water relation; nutrient uptake and photosynthesis of Phragmites karka. Pedosphere 2020, 30, 466–477. [Google Scholar] [CrossRef]
- Pham, V.H.; Kim, J. Cultivation of unculturable soil bacteria. Trends Biotechnol. 2012, 30, 475–484. [Google Scholar] [CrossRef]
- Guan, Z.; Lin, D.; Chen, D.; Guo, Y.; Lu, Y.; Han, Q.; Li, N.; Su, Y.; Li, J.; Wang, J.; et al. Soil microbial communities response to different fertilization regimes in young Catalpa bungei plantation. Front. Microbiol. 2022, 13, 948875. [Google Scholar] [CrossRef]
- Devries, F.T.; Hoffland, E.; Vaneekeren, N.; Brussaard, L.; Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 2006, 38, 2092–2103. [Google Scholar] [CrossRef]
- Shu, X.; He, J.; Zhou, Z.; Xia, L.; Hu, Y.; Zhang, Y.; Zhang, Y.; Luo, Y.; Chu, H.; Liu, W.; et al. Organic amendments enhance soil microbial diversity; microbial functionality and crop yields, A meta-analysis. Sci. Total Environ. 2022, 829, 154627. [Google Scholar] [CrossRef]
- Nayak, D.R.; Babu, Y.J.; Adhya, T.K. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition. Soil Biol. Biochem. 2007, 39, 1897–1906. [Google Scholar] [CrossRef]
- Calleja-Cervantes, M.E.; Fernández-González, A.J.; Irigoyen, I.; Fernández-López, M.; Aparicio-Tejo, P.M.; Menéndez, S. Thirteen years of continued application of composted organic wastes in a vineyard modify soil quality characteristics. Soil Biol. Biochem. 2015, 90, 241–254. [Google Scholar] [CrossRef]
- Li, B.W.; Liu, Y.; Li, Z.L.; Qi, J.M.; Tan, C.; He, Y.; Qiu, H. Research progress on the mechanism of biochar’s impact on soil enzyme. Mater. Rep. 2022, 36, 163–168. [Google Scholar]
- Zhang, M.; Sun, D.; Niu, Z.; Yan, J.; Zhou, X.; Kang, X. Effects of combined organic/inorganic fertilizer application on growth; photosynthetic characteristics; yield and fruit quality of Actinidia chinesis cv ‘Hongyang’. Glob. Ecol Conserv. 2020, 22, e00997. [Google Scholar] [CrossRef]
- Liu, X.G.; Sun, G.Z.; Peng, Y.L.; Yang, Q.L.; He, H.Y. Effect of water-fertilizer coupling on photosynthetic characteristics; fruit yield; water and fertilizer use of mango. Trans. Chin. Soc. Agric. Eng. 2019, 35, 125–133. [Google Scholar]
- Guo, X.X.; Liu, H.T.; Wu, S.B. Humic substances developed during organic waste composting, Formation mechanisms; structural properties; and agronomic functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Y.; Zhao, Z.; Li, J.; Li, H.; Yang, P.; Tian, S.; Ryder, M.; Toh, R.; Yang, H.; et al. Microbial communities along the soil-root continuum are determined by root anatomical boundaries; soil properties; and root exudation. Soil Biol. Biochem. 2022, 171, 108721. [Google Scholar]
- Sorrenti, G.; Muzzi, E.; Toselli, M. Root growth dynamic and plant performance of nectarine trees amended with biochar and compost. Sci. Hortic. 2019, 257, 108710. [Google Scholar]
- Busato, J.G.; Decarvalho, C.M.; Zandonadi, D.B.; Sodré, F.F.; Mol, A.R.; Deoliveira, A.L.; Navarro, R.D. Recycling of wastes from fish beneficiation by composting, chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce. Environ. Sci. Pollut. Res. 2018, 25, 35811–35820. [Google Scholar] [CrossRef]
- Munirwan, R.P.; Mohd Taib, A.; Taha, M.R.; Abd Rahman, N.; Munirwansyah, M. Utilization of coffee husk ash for soil stabilization: A systematic review. Phys. Chem. Earth 2022, 128, 103252. [Google Scholar] [CrossRef]
- Santos, É.M.; Macedo, L.M.; Tundisi, L.L.; Ataide, J.A.; Camargo, G.A.; Alves, R.C.; Oliveira, M.B.P.P.; Mazzola, P.G. Coffee by-products in topical formulations: A review. Trends Food Sci. Technol. 2021, 111, 280–291. [Google Scholar] [CrossRef]
Fertilization Level | Coffee Husk Returning Method | Sampling Time | Average | |||
---|---|---|---|---|---|---|
3 June 2020 | 13 September 2020 | 5 June 2021 | 17 September 2021 | |||
FL | CB | 9.51 ± 2.35 de | 11.97 ± 1.04 a | 12.23 ± 1.68 bc | 15.97 ± 2.2 bc | 12.42 ± 1.82 bcd |
CC | 13.89 ± 0.41 abc | 9.55 ± 0.10 b | 13.20 ± 0.25 b | 17.23 ± 0.33 b | 13.47 ± 0.208 b | |
CA | 8.94 ± 3.67 def | 5.86 ± 0.31 e | 8.93 ± 0.16 efg | 11.61 ± 0.88 efg | 8.84 ± 1.16 fg | |
FM | CB | 10.21 ± 1.23 de | 9.18 ± 1.65 bc | 11.18 ± 0.30 cd | 14.61 ± 0.19 cd | 11.30 ± 0.54 cde |
CC | 16.73 ± 1.28 ab | 12.58 ± 4.11 a | 16.11 ± 1.86 a | 21.05 ± 2.45 a | 16.62 ± 2.001 a | |
CA | 10.68 ± 2.56 cde | 6.77 ± 0.01 de | 10.23 ± 0.43 de | 13.34 ± 0.65 de | 10.25 ± 0.69 ef | |
FH | CB | 8.29 ± 0.49 efg | 4.97 ± 0.15 e | 8.16 ± 0.30 gh | 10.61 ± 0.40 g | 8.01 ± 0.33 gh |
CC | 12.23 ± 2.41 bcd | 6.71 ± 0.26 de | 10.97 ± 0.29 cd | 14.30 ± 0.32 cd | 11.06 ± 0.65 de | |
CA | 7.32 ± 1.73 efg | 6.74 ± 0.31 de | 8.56 ± 0.88 fg | 11.14 ± 1.15 fg | 8.44 ± 0.95 fg | |
Significance test | ||||||
F | ** | ** | ** | ** | ** | |
C | ** | ** | ** | ** | ** | |
F*C | ** | ** | ** | ** | ** |
Fertilization Level | Coffee Husk Returning Method | Sampling Time | Average | |||
---|---|---|---|---|---|---|
3 June 2020 | 13 September 2020 | 5 June 2021 | 17 September 2021 | |||
FL | CB | 4.25 ± 0.34 cde | 2.48 ± 0.01 def | 4.01 ± 0.34 cd | 6.83 ± 0.92 bc | 4.39 ± 0.40 cd |
CC | 4.57 ± 0.09 c | 3.23 ± 0.03 c | 4.27 ± 0.09 c | 6.22 ± 0.23 cd | 4.57 ± 0.10 c | |
CA | 3.85 ± 0.62 de | 2.34 ± 0.05 def | 3.63 ± 0.61 de | 6.01 ± 1.63 cde | 3.96 ± 0.72 def | |
FM | CB | 4.28 ± 0.04 cd | 2.84 ± 0.04 cd | 4.01 ± 0.04 cd | 6.20 ± 0.18 cd | 4.33 ± 0.06 cd |
CC | 5.86 ± 1.01 b | 4.58 ± 1.26 b | 5.43 ± 0.89 b | 7.11 ± 0.28 b | 5.74 ± 0.86 b | |
CA | 4.14 ± 0.13 cde | 3.09 ± 0.11 c | 3.86 ± 0.13 cde | 5.33 ± 0.14 def | 4.10 ± 0.13 cde | |
FH | CB | 3.67 ± 0.02 ef | 2.69 ± 0.02 cde | 3.42 ± 0.01 ef | 4.81 ± 0.01 fg | 3.65 ± 0.01 efg |
CC | 7.15 ± 0.25 a | 5.48 ± 0.20 a | 6.64 ± 0.23 a | 8.91 ± 0.28 a | 7.04 ± 0.24 a | |
CA | 4.12 ± 0.02 cde | 2.71 ± 0.03 cde | 3.86 ± 0.02 cde | 6.02 ± 0.05 cde | 4.18 ± 0.02 cde | |
Significance test | ||||||
F | ** | ** | ** | ** | ** | |
C | ** | ** | ** | ** | ** | |
F*C | ** | ** | ** | ** | ** |
Fertilization Level | Coffee Husk Returning Method | Sampling Time | Average | |||
---|---|---|---|---|---|---|
3 June 2020 | 13 September 2020 | 5 June 2021 | 17 September 2021 | |||
FL | CB | 3.01 ± 0.47 bcd | 2.11 ± 0.44 fg | 4.17 ± 0.67 def | 4.17 ± 0.74 def | 3.36 ± 0.58 defg |
CC | 4.37 ± 0.23 ab | 1.79 ± 1.42 gh | 4.70 ± 1.13 de | 4.73 ± 1.27 de | 3.90 ± 0.90 de | |
CA | 2.09 ± 0.25 de | 3.08 ± 0.82 ef | 4.47 ± 0.83 de | 4.53 ± 0.92 de | 3.54 ± 0.69 def | |
FM | CB | 3.39 ± 0.20 bcd | 4.25 ± 0.51 c | 6.33 ± 0.49 bc | 6.55 ± 0.54 bc | 5.13 ± 0.40 bc |
CC | 5.68 ± 0.29 a | 7.09 ± 0.27 a | 10.27 ± 0.30 a | 10.88 ± 0.33 a | 8.48 ± 0.26 a | |
CA | 2.93 ± 0.80 bcd | 5.53 ± 0.63 b | 7.20 ± 0.97 b | 7.54 ± 1.06 b | 5.80 ± 0.84 b | |
FH | CB | 2.21 ± 0.92 cde | 1.46 ± 0.19 gh | 3.10 ± 0.70 fgh | 2.99 ± 0.76 fgh | 2.44 ± 0.63 fgh |
CC | 3.82 ± 0.97 bc | 2.90 ± 0.64 ef | 5.37 ± 0.02 cd | 5.48 ± 0.01 cd | 4.39 ± 0.09 cd | |
CA | 2.55 ± 2.88 cde | 2.83 ± 0.39 ef | 4.53 ± 1.71 de | 4.59 ± 1.81 de | 3.62 ± 1.58 de | |
Significance test | ||||||
F | ** | ** | ** | ** | ** | |
C | ** | ** | ** | ** | ** | |
F*C | ns | ** | ** | ** | ** |
Sampling Time | Photosynthetic Indicators | Sampling Time | Significance Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FLCB | FLCC | FLCA | FMCB | FMCC | FMCA | FHCB | FHCC | FHCA | F | C | F*C | ||
12 June 2020 | Pn (μmol m−2 s−1) | 9.36 ± 0.47 bcd | 10.15 ± 0.60 ab | 9.11 ± 0.23 cd | 9.79 ± 0.29 abc | 10.55 ± 0.43 a | 9.67 ± 0.64 abc | 8.55 ± 0.65 d | 9.22 ± 0.43 cd | 8.57 ± 0.45 d | ** | ** | ns |
Tr (mmol m−2 s−1) | 3.68 ± 0.06 d | 4.25 ± 0.01 a | 3.79 ± 0.05 cd | 3.25 ± 0.03 e | 4.25 ± 0.06 a | 3.86 ± 0.16 c | 3.85 ± 0.14 c | 4.34 ± 0.01 a | 4.08 ± 0.05 b | ** | ** | ** | |
LWUE (μmol mmol−1) | 2.54 ± 0.13 cd | 2.39 ± 0.14 bc | 2.40 ± 0.03 bc | 3.01 ± 0.09 a | 2.48 ± 0.12 b | 2.51 ± 0.25 b | 2.22 ± 0.09 b | 2.12 ± 0.10 d | 2.10 ± 0.13 d | ** | ** | ns | |
Gs (mol m−2 s−1) | 0.08 ± 0.01 b | 0.12 ± 0.01 a | 0.12 ± 0.01 a | 0.09 ± 0.02 b | 0.13 ± 0.01 a | 0.13 ± 0.01 a | 0.06 ± 0.01 c | 0.09 ± 0.01 b | 0.10 ± 0.01 b | ** | ** | ns | |
Ci (μmol·mol−1) | 95.04 ± 9.15 cd | 82.39 ± 10.27 d | 116.14 ± 3.5 bc | 126.2 ± 12.01 ab | 116.11 ± 7.48 bc | 136.65 ± 25.35 ab | 125.5 ± 16.84 ab | 117.78 ± 12.59 bc | 144.48 ± 4.85 a | ** | ** | ns | |
15 September 2020 | Pn (μmol m−2 s−1) | 6.9 ± 0.55 abc | 7.84 ± 0.49 ab | 6.79 ± 1.04 abc | 7.34 ± 0.54 abc | 8.12 ± 0.57 a | 6.73 ± 0.81 bc | 6.24 ± 0.64 c | 6.86 ± 0.46 abc | 6.01 ± 1.01 c | * | ** | ns |
Tr (mmol m−2 s−1) | 1.97 ± 0.10 d | 2.88 ± 0.24 bd | 2.43 ± 0.41 bcd | 1.92 ± 0.05 d | 2.74 ± 0.13 bc | 2.35 ± 0.37 bcd | 2.19 ± 0.27 cd | 3.46 ± 0.35 a | 2.57 ± 0.54 bc | * | * | ns | |
LWUE (μmol mmol−1) | 3.50 ± 0.20 b | 2.73 ± 0.12 c | 2.79 ± 0.05 c | 3.82 ± 0.26 a | 2.96 ± 0.21 c | 2.88 ± 0.23 c | 2.85 ± 0.07 c | 1.99 ± 0.14 e | 2.35 ± 0.10 d | ** | ** | ns | |
Gs (mol m−2 s−1) | 0.05 ± 0.01 d | 0.16 ± 0.02 a | 0.13 ± 0.01 bc | 0.06 ± 0.01 d | 0.15 ± 0.01 ab | 0.13 ± 0.02 bc | 0.05 ± 0.02 d | 0.13 ± 0.03 bc | 0.11 ± 0.02 c | * | ** | ns | |
Ci (μmol·mol−1) | 238.82 ± 7.22 b | 173.66 ± 13.36 d | 266.88 ± 11.39 a | 220.76 ± 11.65 bc | 200.87 ± 30.82 c | 267.41 ± 11.22 a | 247.16 ± 12.5 ab | 234.33 ± 4.65 b | 269.21 ± 11.97 a | ** | ** | * | |
9 June 2021 | Pn (μmol m−2 s−1) | 4.98 ± 0.31 de | 7.51 ± 0.64 a | 5.84 ± 0.37 bcd | 5.16 ± 0.75 de | 8.33 ± 0.47 a | 6.51 ± 0.50 b | 4.82 ± 0.26 e | 6.32 ± 0.53 bc | 5.54 ± 0.39 cde | ** | ** | ns |
Tr (mmol m−2 s−1) | 2.52 ± 0.09 d | 3.71 ± 0.15 a | 2.67 ± 0.18 cd | 2.67 ± 0.33 cd | 4.01 ± 0.26 a | 3.02 ± 0.22 bc | 2.88 ± 0.15 bcd | 3.74 ± 0.23 a | 3.14 ± 0.09 b | ** | ** | ns | |
LWUE (μmol mmol−1) | 1.98 ± 0.17 bc | 2.02 ± 0.21 abc | 2.19 ± 0.06 a | 1.92 ± 0.08 cd | 2.08 ± 0.13 abc | 2.15 ± 0.02 ab | 1.68 ± 0.04 e | 1.69 ± 0.04 e | 1.76 ± 0.08 de | ** | * | ns | |
Gs (mol m−2 s−1) | 0.03 ± 0.01 f | 0.09 ± 0.02 cd | 0.08 ± 0.02 e | 0.06 ± 0.01 e | 0.12 ± 0.01 b | 0.11 ± 0.02 bc | 0.09 ± 0.01 cd | 0.17 ± 0.02 a | 0.13 ± 0.02 b | ** | ** | ns | |
Ci (μmol·mol−1) | 151.42 ± 9.66 d | 127.17 ± 5.54 e | 173.14 ± 3.27 c | 185.93 ± 10.46 c | 180.83 ± 7.84 c | 190.68 ± 3.43 c | 212.19 ± 16.34 b | 180.51 ± 14.97 c | 245.86 ± 7.52 a | ** | ** | ** | |
13 September 2021 | Pn (μmol m−2 s−1) | 4.67 ± 0.2d c | 5.03 ± 0.29 c | 4.85 ± 0.63 c | 5.23 ± 0.26 bc | 5.85 ± 0.10 a | 5.73 ± 0.42 ab | 4.23 ± 0.21 d | 5.04 ± 0.31 c | 5.03 ± 0.09 c | ** | ** | ns |
Tr (mmol m−2 s−1) | 2.05 ± 0.10 b | 2.26 ± 0.24 b | 2.08 ± 0.22 b | 2.19 ± 0.20 b | 2.13 ± 0.09 b | 2.06 ± 0.14 b | 2.32 ± 0.09 b | 2.84 ± 0.25 a | 2.72 ± 0.10 a | ** | ** | ns | |
LWUE (μmol mmol−1) | 2.29 ± 0.12 b | 2.24 ± 0.13 b | 2.34 ± 0.07 b | 2.40 ± 0.11 b | 2.75 ± 0.07 a | 2.79 ± 0.11 a | 1.83 ± 0.02 c | 1.78 ± 0.06 c | 1.85 ± 0.04 c | ** | ** | ** | |
Gs (mol m−2 s−1) | 0.02 ± 0.01 c | 0.06 ± 0.02 ab | 0.08 ± 0.02 a | 0.06 ± 0.02 ab | 0.07 ± 0.02 a | 0.07 ± 0.01 a | 0.03 ± 0.01 c | 0.06 ± 0.01 ab | 0.04 ± 0.01 bc | ** | ** | ns | |
Ci (μmol·mol−1) | 215.42 ± 6.1 d | 243.22 ± 5.83 b | 216.43 ± 6.36 d | 223.8 ± 12.16 cd | 221.08 ± 5.86 cd | 240.6 ± 5.52 b | 232.61 ± 7.81 b | 217.14 ± 5.55 d | 262.52 ± 8.65 a | ** | ** | ** | |
Average | Pn (μmol m−2 s−1) | 6.48 ± 0.06 de | 7.63 ± 0.43 b | 6.65 ± 0.37 de | 6.88 ± 0.42 cd | 8.21 ± 0.12 a | 7.16 ± 0.19 c | 5.96 ± 0.10 f | 6.86 ± 0.16 cd | 6.29 ± 0.06 ef | ** | ** | ns |
Tr (mmol m−2 s−1) | 2.56 ± 0.02 d | 3.27 ± 0.06 b | 2.74 ± 0.16 c | 2.51 ± 0.13 d | 3.28 ± 0.06 b | 2.83 ± 0.03 c | 2.81 ± 0.09 c | 3.60 ± 0.14 a | 3.13 ± 0.12 b | ** | ** | * | |
LWUE (μmol mmol−1) | 2.58 ± 0.03 b | 2.35 ± 0.07 c | 2.43 ± 0.03 c | 2.79 ± 0.07 a | 2.57 ± 0.07 b | 2.59 ± 0.02 b | 2.14 ± 0.04 e | 1.90 ± 0.05 f | 2.02 ± 0.07 d | ** | ** | ns | |
Gs (mol m−2 s−1) | 0.05 ± 0.01 e | 0.11 ± 0.01 abc | 0.10 ± 0.01 bc | 0.07 ± 0.00 d | 0.12 ± 0.01 a | 0.11 ± 0.01 a | 0.06 ± 0.01 d | 0.11 ± 0.00 ab | 0.10 ± 0.01 c | ** | ** | * | |
Ci (μmol·mol−1) | 175.17 ± 1.64 e | 156.61 ± 1.74 f | 193.15 ± 5.20 c | 189.17 ± 7.89 cd | 179.72 ± 5.77 de | 208.84 ± 8.23 b | 204.36 ± 6.47 b | 187.44 ± 4.52 cd | 230.52 ± 3.04 a | ** | ** | * |
Fertilization Level | Coffee Husk Returning Method | Euclidean Distance | Relative Coefficient | Rank | |
---|---|---|---|---|---|
Di+ | Di− | ||||
FL | CB | 0.03 | 0.02 | 0.40 | 5 |
FL | CC | 0.03 | 0.03 | 0.43 | 4 |
FL | CA | 0.04 | 0.01 | 0.22 | 9 |
FM | CB | 0.03 | 0.03 | 0.49 | 3 |
FM | CC | 0.02 | 0.05 | 0.75 | 1 |
FM | CA | 0.04 | 0.02 | 0.38 | 6 |
FH | CB | 0.05 | 0.02 | 0.27 | 7 |
FH | CC | 0.03 | 0.03 | 0.51 | 2 |
FH | CA | 0.04 | 0.01 | 0.23 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Lou, Y.; Liu, X.; Sun, W.; Wang, H.; Liang, J.; Guo, J.; Li, N.; Yang, Q. Combined Application of Coffee Husk Compost and Inorganic Fertilizer to Improve the Soil Ecological Environment and Photosynthetic Characteristics of Arabica Coffee. Agronomy 2023, 13, 1212. https://doi.org/10.3390/agronomy13051212
Jiang Z, Lou Y, Liu X, Sun W, Wang H, Liang J, Guo J, Li N, Yang Q. Combined Application of Coffee Husk Compost and Inorganic Fertilizer to Improve the Soil Ecological Environment and Photosynthetic Characteristics of Arabica Coffee. Agronomy. 2023; 13(5):1212. https://doi.org/10.3390/agronomy13051212
Chicago/Turabian StyleJiang, Zeyin, Yuqiang Lou, Xiaogang Liu, Wenyan Sun, Haidong Wang, Jiaping Liang, Jinjin Guo, Na Li, and Qiliang Yang. 2023. "Combined Application of Coffee Husk Compost and Inorganic Fertilizer to Improve the Soil Ecological Environment and Photosynthetic Characteristics of Arabica Coffee" Agronomy 13, no. 5: 1212. https://doi.org/10.3390/agronomy13051212
APA StyleJiang, Z., Lou, Y., Liu, X., Sun, W., Wang, H., Liang, J., Guo, J., Li, N., & Yang, Q. (2023). Combined Application of Coffee Husk Compost and Inorganic Fertilizer to Improve the Soil Ecological Environment and Photosynthetic Characteristics of Arabica Coffee. Agronomy, 13(5), 1212. https://doi.org/10.3390/agronomy13051212