The Influence of Municipal Solid Waste Compost on the Tranformations of Phosphorus Forms in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composting Material and Pot Experiment
2.2. Phosphorus Extraction Procedures
2.3. Indicators Related to the P Forms
2.4. Statistics
3. Results and Discussion
3.1. Basic Compost Properties
3.2. Dynamics of P Forms in Compost at Different Maturity Stages
3.3. Dynamics of P Forms in Compost-Amended Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horta, C. Bioavailability of Phosphorus from Composts and Struvite in Acid Soils | Biodisponibilidade Do Fósforo Em Compostos e Struvite Aplicados Em Solos Ácidos. Rev. Bras. Eng. Agric. Ambient. 2017, 21, 459–464. [Google Scholar] [CrossRef]
- Vanden Nest, T.; Amery, F.; Fryda, L.; Boogaerts, C.; Bilbao, J.; Vandecasteele, B. Renewable P Sources: P Use Efficiency of Digestate, Processed Animal Manure, Compost, Biochar and Struvite. Sci. Total Environ. 2021, 750, 141699. [Google Scholar] [CrossRef] [PubMed]
- Regelink, I.C.; Egene, C.E.; Tack, F.M.G.; Meers, E. Speciation of P in Solid Organic Fertilisers from Digestate and Biowaste. Agronomy 2021, 11, 2233. [Google Scholar] [CrossRef]
- Desmidt, E.; Ghyselbrecht, K.; Zhang, Y.; Pinoy, L.; Van Der Bruggen, B.; Verstraete, W.; Rabaey, K.; Meesschaert, B. Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 336–384. [Google Scholar] [CrossRef]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An Overview of Natural Soil Amendments in Agriculture. Soil Tillage Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- Jamroz, E.; Bekier, J.; Medynska-Juraszek, A.; Kaluza-Haladyn, A.; Cwielag-Piasecka, I.; Bednik, M. The Contribution of Water Extractable Forms of Plant Nutrients to Evaluate MSW Compost Maturity: A Case Study. Sci. Rep. 2020, 10, 12842. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. Composting from Organic Municipal Solid Waste: A Sustainable Tool for the Environment and to Improve Grape Quality. J. Agric. Sci. 2022, 160, 502–515. [Google Scholar] [CrossRef]
- Grigatti, M.; Boanini, E.; Bolzonella, D.; Sciubba, L.; Mancarella, S.; Ciavatta, C.; Marzadori, C. Organic Wastes as Alternative Sources of Phosphorus for Plant Nutrition in a Calcareous Soil. Waste Manag. 2019, 93, 34–46. [Google Scholar] [CrossRef]
- Eden, M.; Gerke, H.H.; Houot, S. Organic Waste Recycling in Agriculture and Related Effects on Soil Water Retention and Plant Available Water: A Review. Agron. Sustain. Dev. 2017, 37, 11. [Google Scholar] [CrossRef]
- Hadas, A.; Agassi, M.; Zhevelev, H.; Kautsky, L.; Levy, G.J.; Fizik, E.; Gotessman, M. Mulching with Composted Municipal Solid Wastes in the Central Negev, Israel: II. Effect on Available Nitrogen and Phosphorus and on Organic Matter in Soil. Soil Tillage Res. 2004, 78, 115–128. [Google Scholar] [CrossRef]
- Bekier, J.; Jamroz, E.; Sowiński, J.; Adamczewska-Sowińska, K.; Kałuża-Haładyn, A. Effect of Differently Matured Composts from Willow on Growth and Development of Lettuce. Agronomy 2022, 12, 175. [Google Scholar] [CrossRef]
- Kałuza-Haładyn, A.; Jamroz, E.; Bekier, J. Humic Substances of Differently Matured Composts Produced from Municipal Solid Wastes and Biomass of Energetic Plants. Soil Sci. Annu. 2019, 70, 292–297. [Google Scholar] [CrossRef]
- Atoloye, I.A.; Jacobson, A.R.; Creech, J.E.; Reeve, J.R. Soil Organic Carbon Pools and Soil Quality Indicators 3 and 24 Years after a One-Time Compost Application in Organic Dryland Wheat Systems. Soil Tillage Res. 2022, 224, 105503. [Google Scholar] [CrossRef]
- Abdala, D.B.; da Silva, I.R.; Vergütz, L.; Sparks, D.L. Long-Term Manure Application Effects on Phosphorus Speciation, Kinetics and Distribution in Highly Weathered Agricultural Soils. Chemosphere 2015, 119, 504–514. [Google Scholar] [CrossRef]
- Komiyama, T.; Niizuma, S.; Fujisawa, E.; Morikuni, H. Phosphorus Compounds and Their Solubility in Swine Manure Compost. Soil Sci. Plant Nutr. 2013, 59, 419–426. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Janda, J.; Vanrolleghem, P.A.; Tack, F.M.G.; Meers, E. Phosphorus Use Efficiency of Bio-Based Fertilizers: Bioavailability and Fractionation. Pedosphere 2016, 26, 310–325. [Google Scholar] [CrossRef]
- Christel, W.; Bruun, S.; Magid, J.; Jensen, L.S. Phosphorus Availability from the Solid Fraction of Pig Slurry Is Altered by Composting or Thermal Treatment. Bioresour. Technol. 2014, 169, 543–551. [Google Scholar] [CrossRef]
- Hunt, J.F.; Ohno, T.; He, Z.; Honeycutt, C.W.; Dail, D.B. Inhibition of Phosphorus Sorption to Goethite, Gibbsite, and Kaolin by Fresh and Decomposed Organic Matter. Biol. Fertil. Soils 2007, 44, 277–288. [Google Scholar] [CrossRef]
- Chase, A.J.; Erich, M.S.; Ohno, T. Bioavailability of Phosphorus on Iron (Oxy)Hydroxide Not Affected by Soil Amendment–Derived Organic Matter. Agric. Environ. Lett. 2018, 3, 170042. [Google Scholar] [CrossRef]
- Ohno, T.; Griffin, T.S.; Liebman, M.; Porter, G.A. Chemical Characterization of Soil Phosphorus and Organic Matter in Different Cropping Systems in Maine, U.S.A. Agric. Ecosyst. Environ. 2005, 105, 625–634. [Google Scholar] [CrossRef]
- Jindo, K.; Audette, Y.; Olivares, F.L.; Canellas, L.P.; Smith, D.S.; Voroney, R.P. Biotic and Abiotic Effects of Soil Organic Matter on the Phytoavailable Phosphorus in Soils: A Review. Chem. Biol. Technol. Agric. 2023, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Gichangi EM Effects of Organic Amendments on the Transformations and Bioavailability of Phosphorus in Soils: A Review. Discov. Agric. 2019, 5, 41–50.
- Guppy, C.N.; Menzies, N.W.; Moody, P.W.; Blamey, F.P.C. Competitive Sorption Reactions between Phosphorus and Organic Matter in Soil: A Review. Aust. J. Soil Res. 2005, 43, 189–202. [Google Scholar] [CrossRef]
- Debicka, M.; Kocowicz, A.; Weber, J.; Jamroz, E. Organic Matter Effects on Phosphorus Sorption in Sandy Soils. Arch. Agron. Soil Sci. 2015, 62, 840–855. [Google Scholar] [CrossRef]
- Audette, Y.; Smith, D.S.; Parsons, C.T.; Chen, W.; Rezanezhad, F.; Van Cappellen, P. Phosphorus Binding to Soil Organic Matter via Ternary Complexes with Calcium. Chemosphere 2020, 260, 127624. [Google Scholar] [CrossRef]
- Weber, J.; Kocowicz, A.; Bekier, J.; Jamroz, E.; Tyszka, R.; Debicka, M.; Parylak, D.; Kordas, L. The Effect of a Sandy Soil Amendment with Municipal Solid Waste (MSW) Compost on Nitrogen Uptake Efficiency by Plants. Eur. J. Agron. 2014, 54, 54–60. [Google Scholar] [CrossRef]
- Kałuża-Haładyn, A.; Jamroz, E.; Bekier, J.; Kałuża-Haładyn, A.; Jamroz, E.; Bekier, J. The Dynamics of Some Physical and Physico-Chemical Properties during Composting of Municipal Solid Wastes and Biomass of Energetic Plants. Soil Sci. Ann. 2018, 69, 155–159. [Google Scholar] [CrossRef]
- Chefetz, B.; Hatcher, P.G.; Hadar, Y.; Chen, Y. Chemical and Biological Characterization of Organic Matter during Composting of Municipal Solid Waste. J. Environ. Qual. 1996, 25, 776–785. [Google Scholar] [CrossRef]
- López, R.; Antelo, J.; Silva, A.C.; Bento, F.; Fiol, S. Factors That Affect Physicochemical and Acid-Base Properties of Compost and Vermicompost and Its Potential Use as a Soil Amendment. J. Environ. Manag. 2021, 300, 113702. [Google Scholar] [CrossRef]
- Razza, F.; Avino, L.D.; Abate, G.L.; Lazzeri, L. The Role of Compost in Bio-Waste Management and Circular Economy. In Designing Sustainable Technologies, Products and Policies: From Science to Innovation; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 133–143. ISBN 9783319669816. [Google Scholar]
- Oliveira, J.F.; de Oliveira, J.C.S.; Ruiz, D.B.; de Cesare Barbosa, G.M.; Filho, J.T. Changes in Carbon and Phosphorus Storages and Humic Substances in a Ferralsol, after Tillage and Animal Manures Applications. Soil Tillage Res. 2022, 220, 105358. [Google Scholar] [CrossRef]
- Gagnon, B.; Demers, I.; Ziadi, N.; Chantigny, M.H.; Parent, L.É.; Forge, T.A.; Larney, F.J.; Buckley, K.E. Forms of Phosphorus in Composts and in Compostamended Soils Following Incubation. Can. J. Soil Sci. 2012, 92, 711–721. [Google Scholar] [CrossRef]
- Prüter, J.; Strauch, S.M.; Wenzel, L.C.; Klysubun, W.; Palm, H.W.; Leinweber, P. Organic Matter Composition and Phosphorus Speciation of Solid Waste from an African Catfish Recirculating Aquaculture System. Agriculture 2020, 10, 466. [Google Scholar] [CrossRef]
- Lemming, C.; Oberson, A.; Magid, J.; Bruun, S.; Scheutz, C.; Frossard, E.; Jensen, L.S. Residual Phosphorus Availability after Long-Term Soil Application of Organic Waste. Agric. Ecosyst. Environ. 2019, 270–271, 65–75. [Google Scholar] [CrossRef]
- Sharpley, A.; Moyer, B. Phosphorus Forms in Manure and Compost and Their Release during Simulated Rainfall. J. Environ. Qual. 2000, 29, 1462–1469. [Google Scholar] [CrossRef]
- Gotaas, H.B. Composting: Sanitary Disposal and Reclamation of Organic Wastes; Monograph Series 31; World Health Organization: Geneva, Switzerland, 1956; pp. 1–205. [Google Scholar]
- McKeague, J.A.; Day, J.H. Dithionite and Oxalate Fe and Al as Aids in Differentiating Various Classes of Soils. Can. J. Soil Sci. 1966, 46, 13–22. [Google Scholar] [CrossRef]
- van Reeuwijk, L.P. (Ed.) Procedures for Soil Analysis, 6th ed.; International Soil Reference and Information Centre, Food and Agriculture Organization of the United Nations: Wageningen, The Netherlands, 2002; ISBN 90-6672-044-1. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; Volume 4, ISBN 9798986245119. [Google Scholar]
- Jamroz, E. The Use of Composted Urban Waste as Horticultural Substrate Components (in Polish with English Summary). Zesz. Nauk. AR Wrocław Rol. LXXVII 2000, 396, 9–27. [Google Scholar]
- Sommers, L.E.; Nelson, D.W. Determination of Total Phosphorus in Soils: A Rapid Perchloric Acid Digestion Procedure. Soil Sci. Soc. Am. J. 1972, 36, 902–904. [Google Scholar] [CrossRef]
- Yu, I.F.; Ho, S. Bin Comparison of the Ignition Method and the Perchloric Acid Digestion Method for the Determination of Total Phosphorus in Agricultural Soils of Taiwan. Commun. Soil Sci. Plant Anal. 2009, 40, 1953–1963. [Google Scholar] [CrossRef]
- Shah, R.; Syers, J.K.; Williams, J.D.H.; Walker, T.W. The Forms of Inorganic Phosphorus Extracted from Soils by n Sulphuric Acid. N. Z. J. Agric. Res. 1968, 11, 184–192. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Kovar, J.L.; Pierzynski, G.M. Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters. South. Coop. Ser. Bull. 2009, 408, 131. [Google Scholar]
- Houba, V.J.G.; Temminghoff, E.J.M.; Gaikhorst, G.A.; van Vark, W. Soil Analysis Procedures Using 0.01 M Calcium Chloride as Extraction Reagent. Commun. Soil Sci. Plant Anal. 2000, 31, 1299–1396. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Zhu, P.; Huang, S.; Wang, B.; Zhao, L.P.; Xu, M. Characterizing Differences in the Phosphorus Activation Coefficient of Three Typical Cropland Soils and the Influencing Factors under Longterm Fertilization. PLoS ONE 2017, 12, 1–15. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Yang, X. Effect of Organic Matter on Phosphorus Adsorption and Desorption in a Black Soil from Northeast China. Soil Tillage Res. 2019, 187, 85–91. [Google Scholar] [CrossRef]
- van der Zee, S.E.A.T.M.; Fokkink, L.G.J.; van Riemsdijk, W.H. A New Technique for Assessment of Reversibly Adsorbed Phosphate. Soil Sci. Soc. Am. J. 1987, 51, 599–604. [Google Scholar] [CrossRef]
- van der Zee, S.E.A.T.M.; van Riemsdijk, W.H. Model for Long-Term Phosphate Reaction Kinetics in Soil. J. Environ. Qual. 1988, 17, 35–41. [Google Scholar] [CrossRef]
- Freese, D.; van der Zee, S.E.A.T.M.; van Riemsdijk, W.H. Comparison of Different Models for Phosphate Sorption as a Function of the Iron and Aluminium Oxides of Soils. J. Soil Sci. 1992, 43, 729–738. [Google Scholar] [CrossRef]
- Zhang, H.; Schroder, J.L.; Fuhrman, J.K.; Basta, N.T.; Storm, D.E.; Payton, M.E. Path and Multiple Regression Analyses of Phosphorus Sorption Capacity. Soil Sci. Soc. Am. J. 2005, 69, 96. [Google Scholar] [CrossRef]
- Nair, V.D.; Portier, K.M.; Graetz, D.A.; Walker, M.L. An Environmental Threshold for Degree of Phosphorus Saturation in Sandy Soils. J. Environ. Qual. 2004, 33, 107. [Google Scholar] [CrossRef]
- Nair, V.D. Soil Phosphorus Saturation Ratio for Risk Assessment in Land Use Systems. Front. Environ. Sci. 2014, 2, 6. [Google Scholar] [CrossRef]
- Breeuwsma, A.J.; da Silva, S.R.V. Phosphorus Fertilisation and Environmental Effects in The Netherlands and the Po Region (Italy); DLO The Winand Staring Centre: Wageningen, The Netherlands, 2015. [Google Scholar]
- Nair, V.D.; Harris, W.G. A Capacity Factor as an Alternative to Soil Test Phosphorus in Phosphorus Risk Assessment. New Zeal. J. Agric. Res. 2004, 47, 491–497. [Google Scholar] [CrossRef]
- Nair, V.D.; Harris, W.G. Soil Phosphorus Storage Capacity for Environmental Risk Assessment. Adv. Agric. 2014, 2014, 723064. [Google Scholar] [CrossRef]
- TIBCO Software Inc. Statistica (Data Analysis Software System), 2017, Version 13. Available online: http://Statistica.Io (accessed on 29 September 2021).
- Karczewska, A.; Weber, J.; Jamroz, E.; Drozd, J. Zawartość Metali Ciężkich w Pszenżycie Uprawianym Na Glebie Lekkiej Nawożonej Różnymi Dawkami Kompostowanych Odpadów Miejskich. Zesz. Probl. Postępów Nauk Rol. 2000, 471, 989–996. [Google Scholar]
- Guo, F.; Yost, R.S. Quantifying the Available Soil Phosphorus Pool with the Acid Ammonium Oxalate Method. Soil Sci. Soc. Am. J. 1999, 63, 651–656. [Google Scholar] [CrossRef]
- Maguire, R.O.; Sims, J.T.; Coale, F.J. Phosphorus Solubility in Biosolids-Amended Farm Soils in the Mid-Atlantic Region of the USA. J. Environ. Qual. 2000, 29, 1225–1233. [Google Scholar] [CrossRef]
- Gasparatos, D.; Haidouti, C.; Haroulis, A.; Tsaousidou, P. Estimation of Phosphorus Status of Soil Fe-Enriched Concretions with the Acid Ammonium Oxalate Method. Commun. Soil Sci. Plant Anal. 2006, 37, 2375–2387. [Google Scholar] [CrossRef]
- Wilfert, P.; Kumar, P.S.; Korving, L.; Witkamp, G.J.; Van Loosdrecht, M.C.M. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review. Environ. Sci. Technol. 2015, 49, 9400–9414. [Google Scholar] [CrossRef]
- Dormaar, J.F. Evaluation of Methods for Determination of Total Organic Phosphorus in Chernozemic Soils of Southern Alberta. Can. J. Soil Sci. 1964, 44, 265–271. [Google Scholar] [CrossRef]
- Williams, J.D.H.; Syers, J.K.; Walker, T.W.; Rex, R.W. A Comparison of Methods for the Determination of Soil Organic Phosphorus. Soil Sci. 1970, 110, 13–18. [Google Scholar] [CrossRef]
- García-Albacete, M.; Martín, A.; Cartagena, M.C. Fractionation of Phosphorus Biowastes: Characterisation and Environmental Risk. Waste Manag. 2012, 32, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- McDowell, R.W.; Sharpley, A.N. Approximating Phosphorus Release from Soils to Surface Runoff and Subsurface Drainage. J. Environ. Qual. 2001, 30, 508–520. [Google Scholar] [CrossRef]
- McDowell, R.W.; Condron, L.M.; Stewart, I. Variation in Environmentally- and Agronomically-Significant Soil Phosphorus Concentrations with Time since Stopping the Application of Phosphorus Fertilisers. Geoderma 2016, 280, 67–72. [Google Scholar] [CrossRef]
- Kulhánek, M.; Balík, J.; Černý, J.; Vaněk, V. Evaluation of Phosphorus Mobility in Soil Using Different Extraction Methods. Plant, Soil Environ. 2009, 55, 267–272. [Google Scholar] [CrossRef]
- Pote, D.H.; Daniel, T.C.; Nichols, D.J.; Moore, P.A.; Miller, D.M.; Edwards, D.R. Seasonal and Soil Drying Effects on Runoff Phosphorus Relationships to Soil Phosphorus. Soil Sci. Soc. Am. J. 1999, 63, 1006–1012. [Google Scholar] [CrossRef]
- McDowell, R.W.; Sharpley, A.N. Phosphorus Losses in Subsurface Flow before and after Manure Application to Intensively Farmed Land. Sci. Total Environ. 2001, 278, 113–125. [Google Scholar] [CrossRef]
- Blombäck, K.; Bolster, C.H.; Lindsjö, A.; Hesse, K.; Linefur, H.; Parvage, M.M. Comparing Measures for Determination of Phosphorus Saturation as a Method to Estimate Dissolved P in Soil Solution. Geoderma 2021, 383, 114708. [Google Scholar] [CrossRef]
- Eriksson, A.K.; Ulén, B.; Berzina, L.; Iital, A.; Jansons, V.; Sileika, A.S.; Toomsoo, A. Phosphorus in Agricultural Soils around the Baltic Sea-Comparison of Laboratory Methods as Indices for Phosphorus Leaching to Waters. Soil Use Manag. 2013, 29, 5–14. [Google Scholar] [CrossRef]
- Sánchez-Alcalá, I.; del Campillo, M.C.; Torrent, J. Extraction with 0.01 m CaCl2 Underestimates the Concentration of Phosphorus in the Soil Solution. Soil Use Manag. 2014, 30, 297–302. [Google Scholar] [CrossRef]
- Barrow, N.J.; Shaw, T.C. Effects of Solution:Soil Ratio and Vigour of Shaking on the Rate of Phosphate Adsorption by Soil. J. Soil Sci. 1979, 30, 67–76. [Google Scholar] [CrossRef]
- Evans, R.L.; Sorensen, R.C. The Influence of Ionic Strength and Monovalent Cation Source in a Leaching Solution of Phosphorus Ex Coarsetractability in A-Textured Soil. Soil Sci. 1986, 141, 38–42. [Google Scholar] [CrossRef]
- Kang, J.; Hesterberg, D.; Osmond, D.L. Soil Organic Matter Effects on Phosphorus Sorption: A Path Analysis. Soil Sci. Soc. Am. J. 2009, 73, 360–366. [Google Scholar] [CrossRef]
- Riddle, M.; Bergström, L.; Schmieder, F.; Kirchmann, H.; Condron, L.; Aronsson, H. Phosphorus Leaching from an Organic and a Mineral Arable Soil in a Rainfall Simulation Study. J. Environ. Qual. 2018, 47, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Renneson, M.; Barbieux, S.; Colinet, G. Indicators of Phosphorus Status in Soils: Significance and Relevance for Crop Soils in Southern Belgium. A Review. Biotechnol. Agron. Soc. Environ. 2016, 20, 257–272. [Google Scholar] [CrossRef]
- Fischer, P.; Pöthig, R.; Venohr, M. The Degree of Phosphorus Saturation of Agricultural Soils in Germany: Current and Future Risk of Diffuse P Loss and Implications for Soil P Management in Europe. Sci. Total Environ. 2017, 599–600, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Breeuwsma, A.; Reijerink, J.G.A.; Schoumans, O.F. Impact of Manure on Accumulation and Leaching of Phosphate in Areas of Intensive Livestock Farming | Semantic Scholar. In Animal Waste and the Land-Water Interface; Steele, K., Ed.; CRC-Press: Boca Raton, FL, USA, 1995; pp. 239–251. [Google Scholar]
- Maguire, R.O.; Sims, J.T. Soil Testing to Predict Phosphorus Leaching. J. Environ. Qual. 2002, 31, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Pöthig, R.; Behrendt, H.; Opitz, D.; Furrer, G. A Universal Method to Assess the Potential of Phosphorus Loss from Soil to Aquatic Ecosystems. Environ. Sci. Pollut. Res. 2010, 17, 497–504. [Google Scholar] [CrossRef]
Dose of Compost (t ha−1) | Compost (CPT) Maturity in Months: | ||
---|---|---|---|
1 (MSWC-1) | 3 (MSWC-3) | 9 (MSWC-9) | |
0 | LS | LS | LS |
100 | LS + 100 CPT | LS + 100 CPT | LS + 100 CPT |
400 | LS + 400 CPT | LS + 400 CPT | LS + 400 CPT |
Compost Maturity Stage. | TOC 1 g kg−1 | TN g kg−1 | C/N | pH | Ash g kg−1 | Feox g kg−1 | Alox g kg−1 |
---|---|---|---|---|---|---|---|
CPT-1 | 177.3 | 11.5 | 15.4 | 7.5 | 572.5 | 5.4 | 3.5 |
CPT-3 | 158.3 | 12.5 | 12.7 | 7.8 | 603.2 | 8.8 | 5.5 |
CPT-6 | 146.7 | 13.0 | 11.3 | 7.7 | 613.1 | 8.9 | 5.4 |
CPT-9 | 144.3 | 12.9 | 11.2 | 8.1 | 637.2 | 7.1 | 5.5 |
Compost Maturity Stage | Pt (HClO4) | Pt (H2SO4) | Pmin | Pox | Porg | PM3 | PCaCl2 | Pw |
---|---|---|---|---|---|---|---|---|
mg kg−1 | ||||||||
CPT-1 | 2571.2 | 2355.1 | 1909.4 | 1107.0 | 445.7 | 156.3 | 31.6 | 50.9 |
CPT-3 | 3328.2 | 3158.6 | 2888.4 | 2180.8 | 270.2 | 163.4 | 12.1 | 24.0 |
CPT-6 | 3340.1 | 3492.3 | 3272.4 | 2118.4 | 219.9 | 185.1 | 8.9 | 24.6 |
CPT-9 | 2928.4 | 3276.7 | 3071.6 | 1949.8 | 205.0 | 185.3 | 14.6 | 25.6 |
Compost Maturity Stage | PSC * (mmol kg−1) | DPS (%) | PSR | SPSC (mmol kg−1) | PAC (%) | ICaCl2 (%) | Iw (%) |
---|---|---|---|---|---|---|---|
CPT-1 | 113.6 | 31.5 | 0.16 | −1.66 | 6.08 | 1.23 | 1.98 |
CPT-3 | 181.8 | 38.7 | 0.19 | −15.89 | 4.91 | 0.36 | 0.72 |
CPT-6 | 180.4 | 37.9 | 0.19 | −14.29 | 5.54 | 0.27 | 0.74 |
CPT-9 | 165.7 | 38.0 | 0.19 | −13.24 | 6.33 | 0.50 | 0.87 |
Soil Sample | Iw | ICaCl2 | PAC | Pox | Porg | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(in % of Pt) | |||||||||||||||
CPT-1 | CPT-3 | CPT-9 | CPT-1 | CPT-3 | CPT-9 | CPT-1 | CPT-3 | CPT-9 | CPT-1 | CPT-3 | CPT-9 | CPT-1 | CPT-3 | CPT-9 | |
LS | 4.8 | 4.3 | 4.7 | 2.1 | 2.0 | 1.8 | 37.6 | 28.7 | 29.9 | 53.1 | 51.8 | 56.0 | 46.4 | 58.8 | 62.9 |
LS + CPT (100 t/ha) | 4.9 | 3.9 | 4.7 | 2.3 | 1.8 | 2.0 | 38.7 | 37.5 | 42.7 | 51.1 | 55.0 | 58.5 | 34.9 | 47.2 | 44.7 |
LS + CPT (400 t/ha) | 3.6 | 2.8 | 2.7 | 1.7 | 1.2 | 1.1 | 35.2 | 40.8 | 32.9 | 49.1 | 53.1 | 49.0 | 44.5 | 33.3 | 30.9 |
Soil Sample | Feox (g kg−1) | Alox (g kg−1) | ||||
---|---|---|---|---|---|---|
CPT-1 | CPT-3 | CPT-9 | CPT-1 | CPT-3 | CPT-9 | |
LS | 0.97 | 0.97 | 0.92 | 0.31 | 0.29 | 0.32 |
LS + CPT (100 t/ha) | 0.93 | 1.08 | 0.97 | 0.33 | 0.34 | 0.31 |
LS + CPT (400 t/ha) | 1.05 | 1.13 | 1.11 | 0.39 | 0.40 | 0.45 |
Soil Sample | PSC (mmol kg−1) | DPS (%) | PSR | SPSC (mmol kg−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPT-1 | CPT-3 | CPT-9 | CPT-1 | CPT-3 | CPT-9 | CPT-1 | CPT-3 | CPT-9 | CPT-1 | CPT-3 | CPT-9 | |
LS | 14.43 | 14.06 | 14.22 | 31.51 | 28.70 | 28.28 | 0.16 | 0.14 | 0.14 | −0.22 | 0.18 | 0.25 |
LS + CPT (100 t/ha) | 14.38 | 15.89 | 14.44 | 38.29 | 29.46 | 32.09 | 0.19 | 0.15 | 0.16 | −1.19 | 0.09 | 0.33 |
LS + CPT (400 t/ha) | 16.51 | 17.57 | 18.32 | 36.48 | 32.74 | 28.20 | 0.18 | 0.16 | 0.14 | −1.07 | −0.48 | −0.30 |
Variable | PSC | DPS (%) | PSR | SPSC | PAC (%) | IH2O (%) | ICa (%) |
---|---|---|---|---|---|---|---|
Pw (mg kg−1) | −0.51 * | 0.80 * | 0.80 * | −0.77 * | 0.03 | 0.62 * | 0.72 * |
PCaCl2 (mg kg−1) | −0.32 | 0.87 * | 0.87 * | −0.85 * | −0.23 | 0.35 | 0.67 * |
PM3 (mg kg−1) | 0.07 | 0.36 | 0.36 | −0.35 | 0.63 * | 0.03 | −0.04 |
Porg (mg kg−1) | −0.20 | 0.18 | 0.18 | −0.22 | −0.37 | 0.06 | 0.08 |
Pmin (mg kg−1) | 0.44 | 0.78 * | 0.78 * | −0.79 * | −0.41 | −0.35 | −0.02 |
Pox (mg kg−1) | 0.63 * | 0.71 * | 0.71 * | −0.73 * | −0.46 | −0.55 * | −0.32 |
PtHClO4 (mg kg−1) | 0.66 * | 0.63 * | 0.63 * | −0.64 * | −0.64 * | −0.65 * | −0.41 |
PtH2SO4 (mg kg−1) | 0.31 | 0.79 * | 0.79 * | −0.82 * | −0.54 * | −0.29 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debicka, M.; Jamroz, E.; Bekier, J.; Ćwieląg-Piasecka, I.; Kocowicz, A. The Influence of Municipal Solid Waste Compost on the Tranformations of Phosphorus Forms in Soil. Agronomy 2023, 13, 1234. https://doi.org/10.3390/agronomy13051234
Debicka M, Jamroz E, Bekier J, Ćwieląg-Piasecka I, Kocowicz A. The Influence of Municipal Solid Waste Compost on the Tranformations of Phosphorus Forms in Soil. Agronomy. 2023; 13(5):1234. https://doi.org/10.3390/agronomy13051234
Chicago/Turabian StyleDebicka, Magdalena, Elżbieta Jamroz, Jakub Bekier, Irmina Ćwieląg-Piasecka, and Andrzej Kocowicz. 2023. "The Influence of Municipal Solid Waste Compost on the Tranformations of Phosphorus Forms in Soil" Agronomy 13, no. 5: 1234. https://doi.org/10.3390/agronomy13051234
APA StyleDebicka, M., Jamroz, E., Bekier, J., Ćwieląg-Piasecka, I., & Kocowicz, A. (2023). The Influence of Municipal Solid Waste Compost on the Tranformations of Phosphorus Forms in Soil. Agronomy, 13(5), 1234. https://doi.org/10.3390/agronomy13051234