Circular Economy Approach to Enhance Soil Fertility Based on Recovering Phosphorus from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils
2.2. Fertilizers
- 1.
- Three different types of vivianite from water purification (WP1 Vivianite, WP2 Vivianite, and WP3 Vivianite) were provided by Wetsus (European Centre of Excellence for Sustainable Water Technology) from Leeuwarden, the Netherlands. These three vivianites were selected because they were produced in different batches of water purification and had gone through different cleaning methods. In addition, the three vivianites had different levels of purity;
- 2.
- One vivianite obtained from industrial process provided by Fertiberia fertilizer company (Seville, Spain);
- 3.
- Synthetic vivianite was produced by mixing FeSO4 and (NH4)3PO4 in the laboratory according to De Santiago [34];
- 4.
- Two types of struvite obtained from Municipal Wastewater Treatment Plant and were provided by Aquaminerals (Nieuwegein, Netherlands). These two struvites (Struvite A and B) were selected because they were produced from different locations (Struvite A from Apeldoorn and Struvite B from Amsterdam West);
- 5.
- Superphosphate as reference P fertilizer: Ca(H2PO4)2 H2O.
2.3. Plant Material
2.4. Experimental Design
2.5. Experimental Setup
2.6. Collection of Soil and Plant Samples
2.7. Plant Analysis at the End of the Experiment
2.8. Soil Samples Analysis at the End of the Experiment
2.9. Statistical Analysis
3. Results
3.1. Fertilizer Properties
3.2. Effect of Fertilizers on Plant Development and Nutrition
3.3. P Fertilizer Replacement Value
3.4. Effect of Fertilizers on Soil Phosphate, Fe Availability Indexes, and Microorganisms
4. Discussion
4.1. Efficiency of Fertilizer Products as P Source for Plants
4.2. Vivianites as P Fertilizers
4.3. Effect of P Recycled Source on Soil-Quality Indicators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helin, J.; Weikard, H.P. A model for estimating phosphorus requirements of world food production. Agric. Syst. 2019, 176, 102666. [Google Scholar] [CrossRef]
- Zou, T.; Zhang, X.; Davidson, E.A. Global trends of cropland phosphorus use and sustainability challenges. Nature 2022, 611, 81–87. [Google Scholar] [CrossRef] [PubMed]
- European Union. Raw Materials. Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (accessed on 26 March 2023).
- Recena, R.; García-López, A.M.; Quintero, J.M.; Skyttä, A.; Ylivainio, K.; Santner, J.; Buenemann, E.; Delgado, A. Assessing the phosphorus demand in European agricultural soils based on the Olsen method. J. Clean. Prod. 2022, 379, 134749. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Van Vuuren, D.; Bouwman, A.; Beusen, A. Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Glob. Environ. Chang. 2010, 20, 428–439. [Google Scholar] [CrossRef]
- Ryan, J.; Ibrikci, H.; Delgado, A.; Torrent, J.; Sommer, R.; Rashid, A. Significance of Phosphorus for Agriculture and the Environment in the West Asia and North Africa Region. Adv. Agron. 2012, 114, 91–153. [Google Scholar] [CrossRef]
- Kvakić, M.; Pellerin, S.; Ciais, P.; Achat, D.L.; Augusto, L.; Denoroy, P.; Gerber, J.S.; Goll, D.; Mollier, A.; Mueller, N.D.; et al. Quantifying the Limitation to World Cereal Production Due to Soil Phosphorus Status. Glob. Biogeochem. Cycles 2018, 32, 143–157. [Google Scholar] [CrossRef]
- Schröder, J.; Smit, A.; Cordell, D.; Rosemarin, A. Improved phosphorus use efficiency in agriculture: A key requirement for its sustainable use. Chemosphere 2011, 84, 822–831. [Google Scholar] [CrossRef]
- Recena, R.; Díaz, I.; del Campillo, M.C.; Torrent, J.; Delgado, A. Calculation of threshold Olsen P values for fertilizer response from soil properties. Agron. Sustain. Dev. 2016, 36, 54. [Google Scholar] [CrossRef] [Green Version]
- Metson, G.S.; MacDonald, G.K.; Haberman, D.; Nesme, T.; Bennett, E.M. Feeding the Corn Belt: Opportunities for phosphorus recycling in U.S. agriculture. Sci. Total Environ. 2016, 542, 1117–1126. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and Eutrophication: Where Do We Go from Here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef] [Green Version]
- Recena, R.; Torrent, J.; del Campillo, M.C.; Delgado, A. Accuracy of Olsen P to assess plant P uptake in relation to soil properties and P forms. Agron. Sustain. Dev. 2015, 35, 1571–1579. [Google Scholar] [CrossRef]
- García-López, A.M.; Recena, R.; Delgado, A. The adsorbent capacity of growing media does not constrain myo-inositol hexakiphosphate hydrolysis but its use as a phosphorus source by plants. Plant Soil 2020, 459, 277–288. [Google Scholar] [CrossRef]
- Skoglund, E.; Carlsson, N.-G.; Sandberg, A.-S. Phytate in Healthgrain Methods: Analysis of Bioactive Components in Small Grain Cereals; Shrewy, P.R., Ward, J.L., Eds.; AACC International, Inc: Washington, DC, USA, 2009; pp. 129–139. [Google Scholar]
- van Dijk, K.C.; Lesschen, J.P.; Oenema, O. Phosphorus flows and balances of the European Union Member States. Sci. Total Environ. 2016, 542, 1078–1093. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol. 2019, 295, 122223. [Google Scholar] [CrossRef]
- Yeoman, T.; Stephenson, J.; Lester, N.; Perry, R.; Stephenson, T. The Removal of Phosphorus During Wastewater Treatment: A Review. Environ. Pollut. 1988, 49, 183–233. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Bashan, Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 2004, 38, 4222–4246. [Google Scholar] [CrossRef]
- Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Vie, G.X.; Liu, X.F. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef]
- Chiavola, A.; Bongirolami, S.; Di Francesco, G. Technical-economic comparison of chemical precipitation and ion exchange processes for the removal of phosphorus from wastewater. Water Sci. Technol. 2020, 81, 1329–1335. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, K.; Yang, J.; Yu, Z.; Yu, W.; Xu, Q.; Wu, Q.; Liang, S.; Hu, J.; Hou, H.; et al. Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron−rich sludge: A potential phosphorus fertilizer. Water Res. 2020, 174, 115629. [Google Scholar] [CrossRef]
- Groenenberg, J.E.; Chardon, W.J.; Koopmans, G.F. Reducing Phosphorus Loading of Surface Water Using Iron-Coated Sand. J. Environ. Qual. 2013, 42, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, G.; Hiemstra, T.; Vaseur, C.; Chardon, W.; Voegelin, A.; Groenenberg, J. Use of iron oxide nanoparticles for immobilizing phosphorus in-situ: Increase in soil reactive surface area and effect on soluble phosphorus. Sci. Total Environ. 2019, 711, 135220. [Google Scholar] [CrossRef] [PubMed]
- Chardon, W.J.; Groenenberg, J.E.; Temminghoff, E.J.M.; Koopmans, G.F. Use of Reactive Materials to Bind Phosphorus. J. Environ. Qual. 2012, 41, 636–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilfert, P.; Kumar, P.S.; Korving, L.; Witkamp, G.-J.; van Loosdrecht, M.C.M. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review. Environ. Sci. Technol. 2015, 49, 9400–9414. [Google Scholar] [CrossRef]
- Wilfert, P.; Dugulan, A.; Goubitz, K.; Korving, L.; Witkamp, G.; Van Loosdrecht, M. Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery. Water Res. 2018, 144, 312–321. [Google Scholar] [CrossRef]
- Leng, Y.; Soares, A. Microbial phosphorus removal and recovery by struvite biomineralisation in comparison to chemical struvite precipitation in municipal wastewater. J. Environ. Chem. Eng. 2023, 11, 109208. [Google Scholar] [CrossRef]
- Wang, L.; Gu, K.; Zhang, Y.; Sun, J.; Gu, Z.; Zhao, B.; Hu, C. Enhanced struvite generation and separation by magnesium anode electrolysis coupled with cathode electrodeposition. Sci. Total. Environ. 2021, 804, 150101. [Google Scholar] [CrossRef]
- Anderson, R.; Brye, K.; Kekedy-Nagy, L.; Greenlee, L.; Gbur, E.; Roberts, T. Electrochemically precipitated struvite effects on extractable nutrients compared with other fertilizer—Phosphorus sources. Agrosyst. Geosci. Environ. 2021, 4, e20183. [Google Scholar] [CrossRef]
- Walpersdorf, E.; Koch, C.B.; Heiberg, L.; O’Connell, D.; Kjaergaard, C.; Hansen, H.B. Does vivianite control phosphate solubility in anoxic meadow soils? Geoderma 2012, 193–194, 189–199. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Liu, Y.; Wei, W.; Ni, B.-J. Phosphorus recovery from wastewater and sewage sludge as vivianite. J. Clean. Prod. 2022, 370, 133439. [Google Scholar] [CrossRef]
- Roldán, R.; Barrón, V.; Torrent, J. Experimental alteration of vivianite to lepidocrocite in a calcareous medium. Clay Miner. 2002, 37, 709–718. [Google Scholar] [CrossRef]
- de Santiago, A.; Quintero, J.M.; Carmona, E.; Delgado, A. Humic substances increase the effectiveness of iron sulfate and Vivianite preventing iron chlorosis in white lupin. Biol. Fertil. Soils 2008, 44, 875–883. [Google Scholar] [CrossRef]
- González-Ponce, R.; López-De-Sá, E.G.; Plaza, C. Lettuce Response to Phosphorus Fertilization with Struvite Recovered from Municipal Wastewater. HortScience 2009, 44, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Talboys, P.J.; Heppell, J.; Roose, T.; Healey, J.R.; Jones, D.L.; Withers, P.J. Struvite: A slow-release fertiliser for sustainable phosphorus management? Plant Soil 2015, 401, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Kubeneck, L.J.; ThomasArrigo, L.K.; Rothwell, K.A.; Kaegi, R.; Kretzschmar, R. Competitive incorporation of Mn and Mg in vivianite at varying salinity and effects on crystal structure and morphology. Geochim. Cosmochim. Acta 2023, 346, 231–244. [Google Scholar] [CrossRef]
- García-López, A.M.; Avilés, M.; Delgado, A. Effect of various microorganisms on phosphorus uptake from insoluble Ca-phosphates by cucumber plants. J. Plant Nutr. Soil Sci. 2016, 179, 454–465. [Google Scholar] [CrossRef]
- Murphy, J.A.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Hijbeek, R.; Berge, H.F.M.T.; Whitmore, A.P.; Barkusky, D.; Schröder, J.J.; van Ittersum, M.K. Nitrogen fertiliser replacement values for organic amendments appear to increase with N application rates. Nutr. Cycl. Agroecosyst. 2017, 110, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Schutter, M.E.; Dick, R.P. Comparison of Fatty Acid Methyl Ester (FAME) Methods for Characterizing Microbial Communities. Soil Sci. Soc. Am. J. 2000, 64, 1659–1668. [Google Scholar] [CrossRef]
- García-López, A.M.; Delgado, A.; Anjos, O.; Horta, C. Digestate Not Only Affects Nutrient Availability but Also Soil Quality Indicators. Agronomy 2023, 13, 1308. [Google Scholar] [CrossRef]
- Plaza, C.; Sanz, R.; Clemente, C.; Fernández, J.M.; González, R.; Polo, A.; Colmenarejo, M.F. Greenhouse Evaluation of Struvite and Sludges from Municipal Wastewater Treatment Works as Phosphorus Sources for Plants. J. Agric. Food Chem. 2007, 55, 8206–8212. [Google Scholar] [CrossRef]
- Delgado, A.; Gomez, J.A. The Soil Physical, Chemical and Biological Properties. In Principles of Agronomy for Sustainable Agriculture; Villalobos, J.F., Fereres, E., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 25–36. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J.; Wiethorn, M.A. How Much Phosphorus Uptake Is Required for Achieving Maximum Maize Grain Yield? Part 1: Luxury Consumption and Implications for Yield. Agronomy 2022, 13, 95. [Google Scholar] [CrossRef]
- Díaz, I.; Barrón, V.; Del Campillo, M.C.; Torrent, J. Vivianite (ferrous phosphate) alleviates iron chlorosis in grapevine. Vitis 2009, 48, 107–113. [Google Scholar]
- De Santiago, A.; Quintero, J.M.; Aviles, M.; Delgado, A. Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant Soil 2010, 342, 97–104. [Google Scholar] [CrossRef]
- Fang, X.-M.; Zhang, X.-L.; Chen, F.-S.; Zong, Y.-Y.; Bu, W.-S.; Wan, S.-Z.; Luo, Y.; Wang, H. Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest. Soil Biol. Biochem. 2019, 133, 119–128. [Google Scholar] [CrossRef]
- Bailey, V.L.; Smith, J.L.; Bolton, H., Jr. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol. Biochem. 2002, 34, 997–1007. [Google Scholar] [CrossRef]
- Malik, A.A.; Chowdhury, S.; Schlager, V.; Oliver, A.; Puissant, J.; Vazquez, P.G.M.; Jehmlich, N.; von Bergen, M.; Griffiths, R.I.; Gleixner, G. Soil Fungal:Bacterial Ratios Are Linked to Altered Carbon Cycling. Front. Microbiol. 2016, 7, 1247. [Google Scholar] [CrossRef] [Green Version]
Soil | Clay | Silt | Sand | CCE | ACCE | Organic C | pH | EC | CEC | Ca | Mg | K | Na | Olsen P | Fe | Mn | Zn | Cu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
–––––––––––––––– g kg−1 –––––––––––––– | µS/cm–1 | –––––––– cmolc kg−1 –––––––– | –––––––––– mg kg−1 ––––––––– | ||||||||||||||||
TQR4 | 225 | 547 | 228 | 472 | 96 | 6.8 | 8.51 | 139 | 9.64 | 8.34 | 0.79 | 0.43 | 0.09 | 6.40 | 9.0 | 8.9 | 3.3 | 26.6 | |
MSQ1 | 154 | 191 | 655 | 33 | 12 | 4.5 | 8.34 | 126 | 10.45 | 9.42 | 0.53 | 0.42 | 0.07 | 3.50 | 10.7 | 13.4 | 0.4 | 19.8 |
Mossbauer | XPS | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fertilizer | C | N | P | K | Ca | Mg | Fe | Zn | Mn | Cu | Fe2+ | Fe3+ | Fe2+ | Fe3+ | |
–––––––––––––––––––––––––– g kg−1 ––––––––––––––––––––––––––––––– | –––––––––– % –––––––––– | ||||||||||||||
Vivianites | |||||||||||||||
Synthetic Vivianite | nd | nd | 116.3 | nd | nd | nd | 314 | nd | nd | nd | |||||
WP1 Vivianite | nd | nd | 108 | 0.25 | 8.9 | 9.2 | 280 | 0.16 | 1.14 | 0.04 | 75 | 25 | 41 | 59 | |
WP2 Vivianite | nd | nd | 106.4 | 0.21 | 17.4 | 13.9 | 267.3 | 0.17 | 1.11 | 0.08 | 78 | 22 | |||
WP3 Vivianite | 100 | 11 | 97.9 | 0.72 | 22.2 | 10.1 | 232.4 | 0.45 | 1.02 | 0.15 | 84 | 16 | 89 | 11 | |
Industrial Process Vivianite | nd | nd | 105.4 | 1 | 0.13 | 2.6 | 263 | nd | 0.92 | 0.1 | 81 | 19 | |||
Struvites | |||||||||||||||
Struvite A | 75.5 | 55 | 114 | 0.65 | 0.35 | 95 | 12.5 | 0.11 | 0.6 | 0.31 | |||||
Struvite B | 85 | 50 | 199 | 1.3 | 2.1 | 152 | 0.67 | <0.01 | 0.2 | <0.01 |
Fertilizer | P Rate | Dry Matter Aerial Part | Dry Matter Roots | P Concentration Aerial Part | P Concentration Roots | Fe Uptake | DTPA Extractable Fe |
---|---|---|---|---|---|---|---|
––––––––––––– g plant−1–––––––––––––––– | –––––––––––––– g kg−1 ––––––––––––––– | mg plant−1 | mg kg−1 | ||||
Control | 0 | 0.55 ± 0.12 g | 0.10 ± 0.03 d | 1.74 ± 0.42 bc | 0.64 ± 0.31 bc | 0.33 ± 0.21 B | 4.3 ± 0.6 e |
Superphosphate | 100 | 1.10 ± 0.40 cde | 0.35 ± 0.26 ab | 3.36 ± 1.48 a | 0.97 ± 0.27 a | 1.40 ± 1.33 A | 4.6 ± 0.7 cde |
50 | 1.23 ± 0.46 abcd | 0.25 ± 0.16 abc | 2.32 ± 1.22 abc | 0.69 ± 0.18 bc | 0.99 ± 1.33 Ab | 4.5 ± 0.7 de | |
Struvites | |||||||
A | 100 | 1.43 ± 0.15 ab | 0.27 ± 0.15 ab | 2.17 ± 0.84 ab | 0.80 ± 0.24 ab | 1.08 ± 1.43 ab | 4.8 ± 1.0 cde |
50 | 1.17 ± 0.18 bcd | 0.24 ± 0.16 abc | 1.95 ± 0.53 bc | 0.71 ± 0.27 abc | 1.03 ± 1.26 ab | 4.6 ± 0.8 cde | |
B | 100 | 1.56 ± 0.33 a | 0.32 ± 0.20 a | 2.49 ± 1.27 ab | 0.77 ± 0.28 abc | 1.24 ± 1.35 a | 4.4 ± 1.3 e |
50 | 1.29 ± 0.12 abc | 0.27 ± 0.16 ab | 1.86 ± 0.44 bc | 0.73 ± 0.25 abc | 1.30 ± 1.38 ab | 4.4 ± 1.1 e | |
Vivianites | |||||||
Synthetic Vivianite | 100 | 1.01 ± 0.21 cde | 0.16 ± 0.10 bcd | 1.57 ± 0.39 bc | 0.68 ± 0.42 bc | 0.51 ± 0.40 ab | 6.5 ± 1.6 ab |
50 | 0.84 ± 0.24 ef | 0.12 ± 0.08 cd | 1.72 ± 0.42 bc | 0.71 ± 0.33 abc | 0.57 ± 0.56 ab | 5.6 ± 1.4 cde | |
WP1 Vivianite | 100 | 0.79 ± 0.26 efg | 0.13 ± 0.06 bcd | 1.60 ± 0.71 c | 0.59 ± 0.28 bc | 0.60 ± 0.38 ab | 4.8 ± 0.6 cde |
50 | 0.66 ± 0.13 fg | 0.12 ± 0.04 bcd | 1.62 ± 0.50 bc | 0.65 ± 0.20 bc | 0.50 ± 0.26 ab | 4.6 ± 0.7 cde | |
WP2 Vivianite | 100 | 0.92 ± 0.23 def | 0.15 ± 0.08 bcd | 1.42 ± 0.29 c | 0.59 ± 0.22 bc | 0.64 ± 0.44 ab | 5.3 ± 0.8 cde |
50 | 0.79 ± 0.19 efg | 0.15 ± 0.04 abcd | 1.77 ± 0.87 bc | 0.62 ± 0.30 bc | 0.51 ± 0.32 ab | 4.8 ± 0.8 cde | |
WP3 Vivianite | 100 | 0.91 ± 0.22 def | 0.14 ± 0.06 bcd | 1.58 ± 0.41 bc | 0.64 ± 0.32 bc | 0.57 ± 0.45 ab | 5.3 ± 1.0 cde |
50 | 0.83 ± 0.17 ef | 0.12 ± 0.03 bcd | 1.62 ± 0.47 bc | 0.52 ± 0.16 c | 0.43 ± 0.32 ab | 5.4 ± 1.1 bcd | |
Industrial | 100 | 1.06 ± 0.21 cde | 0.19 ± 0.09 abcd | 1.60 ± 0.56 bc | 0.59 ± 0.21 bc | 0.88 ± 0.73 ab | 6.7 ± 1.5 a |
Process Vivianite | 50 | 0.93 ± 0.23 def | 0.17 ± 0.10 abcd | 1.63 ± 0.54 bc | 0.55 ± 0.23 bc | 0.70 ± 0.90 ab | 5.5 ± 1.4 bcd |
ANOVA | p values | ||||||
Treatment | 0 | 0 | 0 | 0 | 0.0056 | 0 | |
Soil | 0 | 0 | 0.061 | 0 | 0.0008 | 0.5033 | |
Treatment x Soil | 0.0635 | 0.934 | 0.3546 | 0.0547 | 0.9753 | 0.4336 |
Fertilizer Treatment | Microbial Biomass | Bacteria | Gram+ | Gram− | Gram+/Gram− | Fungi | Bacteria/Fungi Ratio | Microfauna |
---|---|---|---|---|---|---|---|---|
–––––––––––––––––––––––––––––––––––––––––––––––––––– nmol g−1 –––––––––––––––––––––––––––––––––––––––––––––––––––– | ||||||||
Control | 257 ± 31 | 47.4 ± 9.4 | 11.8 ± 3.3 | 29.7 ± 6.6 ab | 0.41 ± 0.10 c | 8.7 ± 2.5 | 5.9 ± 1.9 ab | 2.2 ± 1.0 |
Superphosphate | 472 ± 258 | 42.3 ± 14.0 | 14.7 ± 4.9 | 15.6 ± 6.0 b | 0.98 ± 0.23 a | 9.0 ± 1.6 | 4.6 ± 1.0 ab | 3.6 ± 2.1 |
Struvite A | 361 ± 140 | 34.2 ± 5.5 | 11.4 ± 3.1 | 13.8 ± 1.9 b | 0.82 ± 0.17 ab | 10.2 ± 2.1 | 3.4 ± 0.7 b | 2.9 ± 0.6 |
Synthetic Vivianite | 373 ± 95 | 49.3 ± 23.5 | 14.6 ± 8.6 | 24.2 ± 12.6 ab | 0.63 ± 0.22 bc | 11.4 ± 4.1 | 4.3 ± 0.9 ab | 3.3 ± 1.4 |
Industrial Process Vivianite | 228 ± 38 | 49.1 ± 6.2 | 14.9 ± 1.6 | 25.3 ± 7.0 ab | 0.63 ± 0.20 bc | 8.4 ± 1.3 | 6.0 ± 1.6 a | 2.8 ± 0.5 |
WP1 Vivianite | 609 ± 673 | 57.6 ± 24.2 | 13.4 ± 4.6 | 35.4 ± 14.8 a | 0.40 ± 0.09 c | 12.1 ± 11 | 6.0 ± 2.4 a | 3.4 ± 2.7 |
ANOVA | p value | |||||||
Treatment | 0.3381 | 0.3088 | 0.7150 | 0.0094 | 0 | 0.6529 | 0.0182 | 0.8101 |
Soil | 0.3287 | 0.1308 | 0.0344 | 0.7353 | 0.0047 | 0.1097 | 0.2709 | 0.6691 |
Treatment x soil | 0.6619 | 0.7258 | 0.7948 | 0.7599 | 0.183 | 0.235 | 0.1510 | 0.3497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayeyemi, T.; Recena, R.; García-López, A.M.; Delgado, A. Circular Economy Approach to Enhance Soil Fertility Based on Recovering Phosphorus from Wastewater. Agronomy 2023, 13, 1513. https://doi.org/10.3390/agronomy13061513
Ayeyemi T, Recena R, García-López AM, Delgado A. Circular Economy Approach to Enhance Soil Fertility Based on Recovering Phosphorus from Wastewater. Agronomy. 2023; 13(6):1513. https://doi.org/10.3390/agronomy13061513
Chicago/Turabian StyleAyeyemi, Tolulope, Ramiro Recena, Ana María García-López, and Antonio Delgado. 2023. "Circular Economy Approach to Enhance Soil Fertility Based on Recovering Phosphorus from Wastewater" Agronomy 13, no. 6: 1513. https://doi.org/10.3390/agronomy13061513
APA StyleAyeyemi, T., Recena, R., García-López, A. M., & Delgado, A. (2023). Circular Economy Approach to Enhance Soil Fertility Based on Recovering Phosphorus from Wastewater. Agronomy, 13(6), 1513. https://doi.org/10.3390/agronomy13061513