Revolutionizing Maize Crop Productivity: The Winning Combination of Zigzag Planting and Deep Nitrogen Fertilization for Maximum Yield through Root–Shoot Ratio Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Root Spatial Distribution Measurement
2.3. Leaf Characteristics Measurement
2.4. Plant Biomass and Grain Yield
2.5. Soil Physiochemical Properties Measurement
2.6. Statistical Analysis
3. Results
3.1. Root Spatial Distribution
3.2. Leaf Morphology and Characteristics
3.3. Biomass Accumulation in Space and Time
3.4. Soil Physicochemical Properties
3.5. Yield and Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheng, Y.; Song, L.G. Agricultural production and food consumption in China: A long-term projection. China Econ. Rev. 2019, 53, 15–29. [Google Scholar] [CrossRef]
- The State Statistical Bureau of the People’s Republic of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2021.
- The State Statistical Bureau of the People’s Republic of China. Announcement of Grain Yield Data in 2021 According to Bulletin of the State; Statistical Bureau of the People’s Republic of China: Beijing, China, 2021.
- The State Statistical Bureau of the People’s Republic of China. Announcement of Grain Yield Data in 2022 According to Bulletin of the State; Statistical Bureau of the People’s Republic of China: Beijing, China, 2022.
- Yu, Y.; Feng, K.S.; Hubacek, K.; Sun, L.X. Global implications of China’s future food on consumption. J. Ind. Ecol. 2016, 20, 593–602. [Google Scholar] [CrossRef]
- The State Statistical Bureau of the People’s Republic of China. Main Data Bulletin of the Third National Land Resource Survey; National Bureau of Statistics: Beijing, China, 2021.
- Liu, T.N.; Chen, J.Z.; Wang, Z.Y.; Wu, X.R.; Wu, X.C.; Ding, R.X.; Han, Q.F.; Cai, T.; Jia, Z.K. Ridge and furrow planting pattern optimizes canopy structure of summer maize and obtains higher grain yield. Field Crop. Res. 2018, 219, 242–249. [Google Scholar] [CrossRef]
- Liu, T.D.; Song, F.B.; Liu, S.Q.; Zhu, X.C. Light interception and radiation use efficiency response to narrow-wide row planting patterns in maize. Aust. J. Crop Sci. 2012, 6, 506–513. [Google Scholar]
- Piao, L.; Zhang, S.Y.; Yan, J.Y.; Xiang, T.X.; Chen, Y.; Li, M.; Gu, W.R. Contribution of fertilizer, density and row spacing practices for maize yield and efficiency enhancement in Northeast China. Plants 2022, 11, 2985. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Xiao, C.X.; Wu, D.L.; Xia, T.T.; Chen, Q.W.; Chen, F.J.; Yuan, L.X.; Mi, G.H. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. Eur. J. Agron. 2015, 62, 79–89. [Google Scholar] [CrossRef]
- Bernhard, B.J.; Below, F.E. Plant population and row spacing effects on corn: Plant growth, phenology, and grain yield. Agron. J. 2020, 112, 2456–2465. [Google Scholar] [CrossRef]
- Jiang, C.Q.; Lu, D.J.; Zu, C.L.; Shen, J.; Wang, S.J.; Guo, Z.B.; Zhou, J.M.; Wang, H.Y. One-time root-zone N fertilization increases maize yield, NUE and reduces soil N losses in lime concretion black soil. Sci. Rep. 2018, 8, 10258. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, B.J.; Below, F.E. Plant population and row spacing effects on corn: Phenotypic traits of positive yield-responsive hybrids. Agron. J. 2020, 112, 1589–1600. [Google Scholar] [CrossRef]
- Liu, T.D.; Song, F.B. Maize photosynthesis and microclimate within the canopies at grain-filling stage in response to narrow-wide row planting patterns. Photosynthetica 2012, 50, 215–222. [Google Scholar] [CrossRef]
- Liu, S.Q.; Jian, S.L.; Li, X.N.; Wang, Y. Wide–narrow row planting pattern increases root lodging resistance by adjusting root architecture and root physiological activity in maize (Zea mays L.) in Northeast China. Agriculture 2021, 11, 517. [Google Scholar] [CrossRef]
- Liu, C.W.; Zhang, E.H.; Xie, R.Z.; Liu, W.R.; Li, S.K. Effect of different nitrogen supply methods on yield and photosynthesis of maize under the alternative fallow high stubble about narrow row and wide row. Acta Pratacult. Sin. 2012, 21, 34–42. [Google Scholar]
- Wu, K.; Zhou, F.; Zhou, S.; Zhang, X.; Wu, B. Enhancing root lodging resistance of maize with twin plants in wide-narrow rows: A case study. Plant Prod. Sci. 2020, 23, 286–296. [Google Scholar] [CrossRef]
- Gao, J.; Lei, M.; Yang, L.J.; Wang, P.; Tao, H.B.; Huang, S.B. Reduced row spacing improved yield by optimizing root distribution in maize. Eur. J. Agron. 2021, 127, 126291. [Google Scholar] [CrossRef]
- Lauer, J.G.; Rankin, M. Corn response to within row plant spacing variation. Agron. J. 2004, 96, 1464–1468. [Google Scholar] [CrossRef]
- Balkcom, K.S.; Satterwhite, J.L.; Arriaga, F.J.; Price, A.J.; Van Santen, E. Conventional and glyphosate-resistant maize yields across plant densities in single-and twin-row configurations. Field Crop. Res. 2011, 120, 330–337. [Google Scholar] [CrossRef]
- Liang, S.; Yoshihira, T.; Sato, C. Grain yield responses to planting density in twin and narrow row cultivation of early cultivars in maize. Grassl. Sci. 2020, 66, 183–193. [Google Scholar] [CrossRef]
- Van Roekel, R.J.; Coulter, J.A. Agronomic responses of corn hybrids to row width and plant density. Agron. J. 2012, 104, 612–620. [Google Scholar] [CrossRef]
- Farnham, D.E. Row spacing, plant density, and hybrid effects on corn grain yield and moisture. Agron. J. 2001, 93, 1049–1053. [Google Scholar] [CrossRef]
- Ramezani, M.; Abandani, R.R.S.; Mobasser, H.R.; Amiri, E. Effects of row spacing and plant density on silage yield of corn (Zea mays L. cv. sc704) in two plant patterns in North of Iran. Afr. J. Agr. Res. 2011, 6, 1128–1133. [Google Scholar]
- Zhang, Y.Q.; Yang, H.S.; Li, C.F.; Zhao, M.; Luo, F.; Zhang, R.F. Effects of strip-till with staggered planting on yield formation and shoot-root characteristics of spring maize in irrigation area of Xiliaohe plain. Acta Agron. Sin. 2020, 46, 902–913. [Google Scholar]
- Hou, P.; Liu, Y.; Liu, W.M.; Liu, G.Z.; Xie, R.Z.; Wang, K.R.; Ming, B.; Wang, Y.H.; Zhao, R.L.; Zhang, W.J.; et al. How to increase maize production without extra nitrogen input. Resour. Conserv. Recycl. 2020, 160, 104913. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Fan, P.S.; Mo, Z.W.; Kong, L.L.; Tian, H.; Duan, M.Y.; Li, L.; Wu, L.J.; Wang, Z.M.; Tang, X.R.; et al. Deep placement of nitrogen fertilizer affects grain yield, nitrogen recovery efficiency, and root characteristics in direct-seeded rice in South China. J. Plant Growth Regul. 2021, 40, 379–387. [Google Scholar] [CrossRef]
- Liu, T.Q.; Li, S.H.; Guo, L.G.; Cao, C.G.; Li, C.F.; Zhai, Z.B.; Zhou, J.Y.; Mei, Y.M.; Ke, H.J. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields. J. Clean. Prod. 2020, 263, 121322. [Google Scholar] [CrossRef]
- Xia, L.L.; Li, X.B.; Ma, Q.Q.; Lam, S.K.; Wolf, B.; Kiese, R.; Butterbach-Bahl, K.; Chen, D.L.; Li, Z.A.; Yan, X.Y. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different N fertilization regimes. Glob. Chang. Biol. 2020, 26, 2292–2303. [Google Scholar] [CrossRef]
- Jiang, C.Q.; Ren, X.X.; Wang, H.Y.; Lu, D.J.; Zu, C.L.; Wang, S.J. Optimal nitrogen application rates of one-time root zone fertilization and the effect of reducing nitrogen application on summer maize. Sustainability 2019, 11, 2979. [Google Scholar] [CrossRef]
- Xu, J.Z.; Liao, L.X.; Tan, J.Y.; Shao, X.H. Ammonia volatilization in gemmiparous and early seedling stages from direct seeding rice fields with different nitrogen management strategies: A pots experiment. Soil Tillage Res. 2013, 126, 169–176. [Google Scholar] [CrossRef]
- Zhao, X.H.; Yu, H.Q.; Wen, J.; Wang, X.G.; DU, Q.; Wang, J.; Wang, Q. Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency. J. Integr. Agric. 2016, 15, 785–794. [Google Scholar] [CrossRef]
- Wu, P.; Chen, G.Z.; Liu, F.; Cai, T.; Zhang, P.; Jia, Z.K. How does deep-band fertilizer placement reduce N2O emissions and increase maize yields? Agr. Ecosyst. Environ. 2021, 322, 107672. [Google Scholar] [CrossRef]
- Wu, P.; Liu, F.; Li, H.; Cai, T.; Zhang, P.; Jia, Z.K. Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Sci. Total Environ. 2021, 781, 146787. [Google Scholar] [CrossRef]
- Guo, L.; Ning, T.; Nie, L.; Li, Z.; La, R. Interaction of deep placed controlled-release urea and water retention agent on nitrogen and water use and maize yield. Eur. J. 2016, 75, 118–129. [Google Scholar] [CrossRef]
- Department of Agriculture and Rural Affairs of Jilin Province. The Agricultural Main Promotion Varieties and Technologies in Jilin Province in 2019 According to Jilin Provincial Department of Agriculture; Department of Agriculture: Jilin, China, 2019.
- Ren, H.; Qi, H.; Zhao, M.; Zhou, W.B.; Wang, X.B.; Gong, X.W.; Jiang, Y.; Li, C.F. Characterization of source-sink traits and carbon translocation in maize hybrids under high plant density. Agronomy 2022, 12, 961. [Google Scholar] [CrossRef]
- Wang, Y.J.; Lv, Y.J.; Liu, H.T.; Bian, S.F.; Wang, L.C. Integrated management of high-yielding and high nutrient efficient spring maize in Northeast China. Sci. Agric. Sin. 2019, 52, 3533–3535. [Google Scholar]
- Lv, Y.J.; Wang, Y.J.; Wang, L.C.; Zhu, P. Straw return with reduced nitrogen fertilizer maintained maize high yield in Northeast China. Agronomy 2019, 9, 229. [Google Scholar] [CrossRef]
- Ritchie, S.W.; Hanway, J.J.; Benson, G.O. How a Corn Plant Develops; Special Report No. 48; Iowa State University of Science and Technology Cooperative Extension Service: Ames, IA, USA, 1993; Volume 48, p. 21. [Google Scholar]
- Piao, L.; Li, M.; Xiao, J.L.; Gu, W.R.; Zhan, M.; Cao, C.G.; Zhao, M.; Li, C.F. Effects of soil tillage and canopy optimization on grain yield, root growth, and water use efficiency of rainfed maize in Northeast China. Agronomy 2019, 9, 336. [Google Scholar] [CrossRef]
- Ren, B.Z.; Li, X.; Dong, S.T.; Liu, P.; Zhao, B.; Zhang, J.W. Soil physical properties and maize root growth under different tillage systems in the North China Plain. Crop J. 2018, 6, 669–676. [Google Scholar] [CrossRef]
- Wang, X.B.; Zhou, B.Y.; Sun, X.F.; Yue, Y.; Ma, W.; Zhao, M. Soil tillage management affects maize grain yield by regulating spatial distribution coordination of roots, soil moisture and nitrogen status. PLoS ONE 2015, 10, e0129231. [Google Scholar] [CrossRef] [PubMed]
- Ku, L.X.; Zhao, W.M.; Zhang, J.; Wu, L.C.; Wang, C.L.; Wang, P.A.; Zhang, W.Q.; Chen, Y.H. Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor. Appl. Genet. 2010, 121, 951–959. [Google Scholar] [CrossRef]
- You, D.B.; Tian, P.; Sui, P.X.; Zhang, W.K.; Yang, B.; Qi, H. Short-term effects of tillage and residue on spring maize yield through regulating root-shoot ratio in Northeast China. Sci. Rep. 2017, 7, 13314. [Google Scholar] [CrossRef]
- Tian, P.; Lian, H.L.; Wang, Z.Y.; Jiang, Y.; Li, C.F.; Sui, P.X.; Qi, H. Effects of deep and shallow tillage with straw incorporation on soil organic carbon, total nitrogen and enzyme activities in Northeast China. Sustainability 2020, 12, 8679. [Google Scholar] [CrossRef]
- Olsen, S.; Sommers, L.; Page, A. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties of Phosphorus; American Society of Agronomy: Madison, WI, USA, 1982; Volume 9, pp. 403–430. [Google Scholar]
- Mulumba, L.N.; Lal, R. Mulching effects on selected soil physical properties. Soil Tillage Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- Jin, L.B.; Cui, H.Y.; Li, B.; Zhang, J.W.; Dong, S.T.; Liu, P. Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China. Field Crop. Res. 2012, 134, 30–35. [Google Scholar] [CrossRef]
- Liu, T.; Song, F.; Liu, S.; Zhu, X. Canopy structure, light interception, and photosynthetic characteristics under different narrow-wide planting patterns in maize at silking stage. Span. J. Agric. Res. 2011, 9, 1249. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, K.L.; Dong, S.T.; Liu, P.; Zhao, B.; Zhang, J.W. Effects of integrated agronomic practices management on root growth and development of summer maize. Eur. J. Agron. 2017, 84, 140–151. [Google Scholar] [CrossRef]
- Gao, J.; Shi, J.; Dong, S.T.; Liu, P.; Zhao, B.; Zhang, J.W. Grain yield and root characteristics of summer maize (Zea mays L.) under shade stress conditions. J. Agron. Crop Sci. 2017, 203, 562–573. [Google Scholar] [CrossRef]
- Gheysari, M.; Sadeghi, S.H.; Loescher, H.W.; Amiri, S.; Zareian, M.J.; Majidi, M.M.; Asgarinia, P.; Payero, J.O. Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize. Agr. Water Manag. 2017, 182, 126–138. [Google Scholar] [CrossRef]
- Feng, G.Z.; He, X.L.; Coulter, J.A.; Chen, Y.L.; Gao, Q.; Mi, G.H. Effect of limiting vertical root growth on maize yield and nitrate migration in clay and sandy soils in Northeast China. Soil Tillage Res. 2019, 195, 104407. [Google Scholar] [CrossRef]
- York, L.M.; Galindo-Castañeda, T.; Schussler, J.R.; Lynch, J.P. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J. Exp. Bot. 2015, 66, 2347–2358. [Google Scholar] [CrossRef]
- Guan, D.H.; Al-Kaisi, M.M.; Zhang, Y.S.; Duan, L.S.; Tan, W.M.; Zhang, M.C.; Li, Z.; Li, Z.H. Tillage practices affect biomass and grain yield through regulating root growth, root-bleeding sap and nutrients uptake in summer maize. Field Crop Res. 2014, 157, 89–97. [Google Scholar] [CrossRef]
- Ahmed, S.; Shima, B.; Yasmin, N.; Mohammad, A.; Alam, S.; Islam, M.R. Effects of row distance and nitrogen rate on canopy efficiency and yield of maize. Int. J. Biol. Sci. 2018, 12, 126–135. [Google Scholar]
- Battaglia, M.; Lee, C.; Thomason, W.; Van Mullekom, J. Effects of corn row width and defoliation timing and intensity on canopy light interception. Crop Sci. 2019, 59, 1718–1731. [Google Scholar] [CrossRef]
- Setter, T.L.; Flannigan, B.A.; Melkonian, J. Loss of kernel set due to water deficit and shade in maize: Carbohydrate supplies, abscisic acid, and cytokinins. Crop Sci. 2001, 41, 1530–1540. [Google Scholar] [CrossRef]
- Wang, Y.S.; Janz, B.; Engedal, T.; Neergaard, A.D. Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize. Agr. Water Manag. 2017, 179, 271–276. [Google Scholar] [CrossRef]
Treatment | Leaf Angle (°) (LA) | Leaf Orientation Value (LOV) | |||||||
---|---|---|---|---|---|---|---|---|---|
Upper Leaf | Middle Leaf | Lower Leaf | Average of Total | Upper Leaf | Middle Leaf | Lower Leaf | Average of Total | ||
2018 | CK | 20.96 ± 1.54 a | 29.01 ± 0.71 a | 29.16 ± 0.21 a | 26.37 ± 0.56 a | 68.10 ± 0.84 a | 48.20 ± 0.65 c | 40.45 ± 0.89 b | 52.25 ± 0.44 c |
LD20 | 20.39 ± 0.78 a | 26.20 ± 1.09 ab | 27.75 ± 0.76 a | 24.78 ± 0.45 ab | 68.34 ± 0.60 a | 48.85 ± 0.99 bc | 43.05 ± 0.45 a | 53.41 ± 0.52 bc | |
ZD10 | 18.16 ± 1.59 a | 23.37 ± 0.13 b | 27.35 ± 1.10 a | 22.96 ± 0.74 b | 70.67 ± 0.75 a | 52.32 ± 0.87 a | 42.71 ± 0.34 a | 55.23 ± 0.46 a | |
ZD20 | 20.21 ± 0.40 a | 25.24 ± 1.38 b | 26.30 ± 1.14 a | 23.92 ± 0.90 b | 69.09 ± 0.88 a | 51.30 ± 0.43 ab | 43.68 ± 0.80 a | 54.69 ± 0.64 ab | |
2019 | CK | 21.46 ± 0.83 a | 24.52 ± 1.23 a | 29.80 ± 2.00 a | 25.26 ± 1.28 a | 66.08 ± 2.28 b | 49.08 ± 4.11 a | 41.85 ± 2.81 a | 52.34 ± 2.92 a |
LD20 | 21.46 ± 0.68 a | 23.70 ± 1.25 a | 29.19 ± 0.53 a | 24.78 ± 0.47 ab | 67.60 ± 1.30 ab | 49.94 ± 2.33 a | 43.56 ± 0.38 a | 53.70 ± 1.23 a | |
ZD10 | 17.85 ± 0.30 b | 22.87 ± 0.70 a | 25.90 ± 0.96 a | 22.21 ± 0.44 bc | 70.04 ± 0.79 ab | 51.49 ± 1.14 a | 46.27 ± 0.49 a | 55.94 ± 0.58 a | |
ZD20 | 17.77 ± 1.17 b | 22.27 ± 0.76 a | 27.54 ± 1.24 a | 22.52 ± 0.26 c | 72.23 ± 1.17 a | 53.90 ± 1.47 a | 43.68 ± 0.33 a | 56.61 ± 0.76 a | |
ANOVA Year (Y) | NS | 14.09 ** | NS | NS | NS | NS | NS | NS | |
Planting (P) | 12.73 ** | 12.07 ** | 7.84 * | 23.04 *** | 12.57 ** | 5.94 * | 5.48 * | 9.60 ** | |
N depth (D) | NS | NS | NS | NS | NS | NS | NS | NS | |
P × D | NS | NS | NS | NS | NS | NS | NS | NS | |
Y × P × D | NS | NS | NS | NS | NS | NS | NS | NS |
Year | Treatment | R1 | R6 | Before R1 | After R1 | ||||
---|---|---|---|---|---|---|---|---|---|
Shoot Biomass (t ha−1) | Root Biomass (t ha−1) | Shoot Biomass (t ha−1) | Root Biomass (t ha−1) | Biomass Accumulation (t ha−1) | Accumulation Rate (%) | Biomass Accumulation (t ha−1) | Accumulation Rate (%) | ||
2018 | CK | 8.83 ± 0.25 a | 1.31 ± 0.03 a | 21.17 ± 0.84 c | 1.07 ± 0.03 b | 10.14 ± 0.27 a | 0.46 ± 0.03 a | 12.10 ± 1.10 b | 0.54 ± 0.03 b |
LD20 | 8.81 ± 0.27 a | 1.36 ± 0.06 a | 22.50 ± 0.74 b | 1.08 ± 0.11 b | 10.17 ± 0.33 a | 0.43 ± 0.03 b | 13.41 ± 1.15 ab | 0.57 ± 0.03 a | |
ZD10 | 9.00 ± 0.13 a | 1.41 ± 0.09 a | 23.03 ± 0.47 ab | 1.30 ± 0.06 a | 10.42 ± 0.22 a | 0.43 ± 0.00 b | 13.91 ± 0.31 ab | 0.57 ± 0.00 a | |
ZD20 | 9.11 ± 0.25 a | 1.42 ± 0.08 a | 23.91 ± 0.71 a | 1.36 ± 0.10 a | 10.53 ± 0.32 a | 0.42 ± 0.03 b | 14.75 ± 1.11 a | 0.58 ± 0.03 a | |
2019 | CK | 9.01 ± 0.34 a | 1.41 ± 0.05 a | 21.69 ± 0.82 c | 1.14 ± 0.06 b | 10.41 ± 0.38 a | 0.46 ± 0.01 a | 12.42 ± 0.71 b | 0.54 ± 0.01 b |
LD20 | 9.13 ± 0.50 a | 1.43 ± 0.11 a | 22.81 ± 1.36 bc | 1.22 ± 0.12 b | 10.56 ± 0.56 a | 0.44 ± 0.01 a | 13.47 ± 1.01 b | 0.56 ± 0.01 b | |
ZD10 | 9.38 ± 0.47 a | 1.52 ± 0.06 a | 23.92 ± 1.22 ab | 1.38 ± 0.07 a | 10.90 ± 0.53 a | 0.43 ± 0.04 a | 14.41 ± 1.79 ab | 0.57 ± 0.04 b | |
ZD20 | 9.18 ± 0.89 a | 1.55 ± 0.11 a | 25.19 ± 1.06 a | 1.43 ± 0.07 a | 10.73 ± 1.00 a | 0.40 ± 0.02 b | 15.90 ± 0.31 a | 0.60 ± 0.02 a | |
ANOVA Year (Y) | NS | 9.58 ** | NS | 7.15 * | NS | NS | NS | NS | |
Planting (P) | NS | 9.20 ** | 26.23 *** | 50.10 *** | NS | 6.72 * | 19.68 *** | 6.72 * | |
N depth (D) | NS | NS | 8.90 ** | NS | NS | 7.55 * | NS | NS | |
P × D | NS | NS | NS | NS | NS | NS | NS | NS | |
Y × P × D | NS | NS | NS | NS | NS | NS | NS | NS |
Year | Treatment | Effective Ear (×104 ear ha−1) | Kernel Number (ear−1) | 1000-Kernel Weight (g) | Yield (t ha−1) |
---|---|---|---|---|---|
2018 | CK | 6.70 ± 0.05 ab | 499.92 ± 11.4 b | 343.21 ± 5.09 a | 9.53 ± 0.12 c |
LD20 | 6.67 ± 0.06 b | 509.25 ± 5.02 ab | 347.48 ± 1.52 a | 9.98 ± 0.07 b | |
ZD10 | 6.73 ± 0.06 ab | 518.42 ± 2.75 a | 345.11 ± 1.77 a | 10.12 ± 0.24 b | |
ZD20 | 6.80 ± 0.05 a | 522.00 ± 8.51 a | 343.99 ± 8.88 a | 10.48 ± 0.07 a | |
2019 | CK | 6.60 ± 0.10 a | 511.08 ± 4.02 b | 351.74 ± 2.22 a | 9.58 ± 0.16 c |
LD20 | 6.68 ± 0.08 a | 513.42 ± 4.30 b | 353.17 ± 1.15 a | 10.21 ± 0.33 b | |
ZD10 | 6.72 ± 0.10 a | 534.08 ± 12.98 a | 353.07 ± 0.90 a | 10.58 ± 0.25 ab | |
ZD20 | 6.75 ± 0.10 a | 542.50 ± 14.98 a | 350.96 ± 2.53 a | 10.96 ± 0.25 a | |
ANOVA Year (Y) | NS | 12.01 ** | 20.62 *** | 13.12 ** | |
Planting (P) | 7.60 * | 31.44 *** | NS | 71.51 *** | |
N depth (D) | NS | NS | NS | 29.87 *** | |
P × D | NS | NS | NS | NS | |
Y × *P × *D | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Yue, Y.; Li, C.; Wang, Y.; Zhang, H.; Ren, H.; Gong, X.; Jiang, Y.; Qi, H. Revolutionizing Maize Crop Productivity: The Winning Combination of Zigzag Planting and Deep Nitrogen Fertilization for Maximum Yield through Root–Shoot Ratio Management. Agronomy 2023, 13, 1307. https://doi.org/10.3390/agronomy13051307
Zheng Y, Yue Y, Li C, Wang Y, Zhang H, Ren H, Gong X, Jiang Y, Qi H. Revolutionizing Maize Crop Productivity: The Winning Combination of Zigzag Planting and Deep Nitrogen Fertilization for Maximum Yield through Root–Shoot Ratio Management. Agronomy. 2023; 13(5):1307. https://doi.org/10.3390/agronomy13051307
Chicago/Turabian StyleZheng, Yongzhao, Yang Yue, Congfeng Li, Yongjun Wang, Hongyu Zhang, Hong Ren, Xiangwei Gong, Ying Jiang, and Hua Qi. 2023. "Revolutionizing Maize Crop Productivity: The Winning Combination of Zigzag Planting and Deep Nitrogen Fertilization for Maximum Yield through Root–Shoot Ratio Management" Agronomy 13, no. 5: 1307. https://doi.org/10.3390/agronomy13051307
APA StyleZheng, Y., Yue, Y., Li, C., Wang, Y., Zhang, H., Ren, H., Gong, X., Jiang, Y., & Qi, H. (2023). Revolutionizing Maize Crop Productivity: The Winning Combination of Zigzag Planting and Deep Nitrogen Fertilization for Maximum Yield through Root–Shoot Ratio Management. Agronomy, 13(5), 1307. https://doi.org/10.3390/agronomy13051307