Digestate Not Only Affects Nutrient Availability but Also Soil Quality Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Digestate
2.3. Soil Analysis
2.4. Data Analysis
3. Results
3.1. Effect of Digestates on Soil Chemical Properties
3.2. Effect of Digestates on Soil Biochemical and Biological Properties
3.3. Clustering the Effect of Fertilizer Treatments on Soil
3.4. Effect of Digestate on Soil Spectral Traits
4. Discussion
4.1. Effect of Digestate on Soil Nutrient Content and Chemical Properties
4.2. Effect on Soil Biological Properties
4.3. Assessing the Overall Effects of Digestates on Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dawson, C.J.; Hilton, J. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy 2011, 36, 14–22. [Google Scholar] [CrossRef]
- Gellings, C.W.; Parmenter, K.E. Energy Efficiency in Fertilizer Production and Use. In Efficient Use and Conservation of Energy; Gellings, C.W., Ed.; UNESCO-EOLSS; Encyclopedia of Life Support Systems: Paris, France, 2016; pp. 123–136. [Google Scholar]
- Cordell, D.; White, S.; Lindström, T. Peak Phosphorus: The Crunch Time for Humanity? The Sustainability Review. Available online: http://www.thesustainabilityreview.org/articles/peak-phosphorus-the-crunch-time-for-humanity (accessed on 7 February 2023).
- Schoumans, O.F.; Bouraoui, F.; Kabbe, C.; Oenema, O.; van Dijk, K.C. Phosphorus management in Europe in a changing world. AMBIO 2015, 44, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Vaccari, D.A. Phosphorus—A Looming Crisis. Sci. Am. 2009, 300, 42–47. [Google Scholar] [CrossRef]
- Khabarov, N.; Obersteiner, M. Global Phosphorus Fertilizer Market and National Policies: A Case Study Revisiting the 2008 Price Peak. Front. Nutr. 2017, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Moe, K.; Mg, K.; Win, K.; Yamakawa, T. Effects of Combined Application of Inorganic Fertilizer and Organic Manures on Nitrogen Use and Recovery Efficiencies of Hybrid Rice (Palethwe-1). Am. J. Plant Sci. 2017, 8, 1043–1064. [Google Scholar] [CrossRef]
- Recena, R.; García-López, A.M.; Quintero, J.M.; Skyttä, A.; Ylivainio, K.; Santner, J.; Delgado, A. Assessing the phosphorus demand in European agricultural soils based on the Olsen method. J. Clean. Prod. 2022, 379, 134749. [Google Scholar] [CrossRef]
- Rosemarin, A.; Macura, B.; Carolus, J.; Barquet, K.; Ek, F.; Järnberg, L.; Lorick, D.; Johannesdottir, S.; Pedersen, S.M.; Koskiaho, J.; et al. Circular nutrient solutions for agriculture and wastewater—A review of technologies and practices. Curr. Opin. Environ. Sustain. 2020, 45, 78–91. [Google Scholar] [CrossRef]
- Bach, I.-M.; Essich, L.; Müller, T. Efficiency of Recycled Biogas Digestates as Phosphorus Fertilizers for Maize. Agriculture 2021, 11, 553. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de la Fuente, C.; Campoy, M.; Carrasco, L.; Najera, I.; Baixauli, C.; Caravaca, F.; Roldan, A.; Cegarra, J.; Bernal, M.P. Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur. J. Agron. 2012, 43, 119–128. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sus. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef]
- Kovačević, D.; Manojlović, M.; Čabilovski, R.; Ilić, Z.S.; Petković, K.; Štrbac, M.; Vijuk, M. Digestate and Manure Use in Kohlrabi Production: Impact on Plant-Available Nutrients and Heavy Metals in Soil, Yield, and Mineral Composition. Agronomy 2022, 12, 871. [Google Scholar] [CrossRef]
- Lencioni, G.; Imperiale, D.; Cavirani, N.; Marmiroli, N.; Marmiroli, M. Environmental application and phytotoxicity of anaerobic digestate from pig farming by in vitro and in vivo trials. Int. J. Environ. Sci. Technol. 2016, 13, 2549–2560. [Google Scholar] [CrossRef]
- Vitti, A.; Elshafie, H.S.; Logozzo, G.; Marzario, S.; Scopa, A.; Camele, I.; Nuzzaci, M. Physico-Chemical Characterization and Biological Activities of a Digestate and a More Stabilized Digestate-Derived Compost from Agro-Waste. Plants 2021, 10, 386. [Google Scholar] [CrossRef]
- Holík, L.; Hlisnikovský, L.; Honzík, R.; Trögl, J.; Burdová, H.; Popelka, J. Soil microbial communities and enzyme activities after long-term application of inorganic and organic fertilizers at different depths of the soil profile. Sustainability 2019, 11, 3251. [Google Scholar] [CrossRef]
- Möller, K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity A review. Agron. Sustain. Dev. 2015, 35, 1021–1041. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Fontaine, S.; Bardoux, G.; Abbadie, L.; Mariotti, A. Carbon input to soil may decrease soil carbon content. Ecol. Lett. 2004, 7, 314–320. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils. 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Di Lonardo, D.P.; De Boer, W.; Klein Gunnewiek, P.J.A.; Hannula, S.E.; Van der Wal, A. Priming of soil organic matter: Chemical structure of added compounds is more important than the energy content. Soil Biol. Biochem. 2017, 108, 41–54. [Google Scholar] [CrossRef]
- Wild, B.; Li, J.; Pihlblad, J.; Bengtson, P.; Rütting, T. Decoupling of priming and microbial N mining during a short-term soil incubation. Soil Biol. Biochem. 2019, 129, 71–79. [Google Scholar] [CrossRef]
- Na, M.; Yuan, M.; Hicks, L.C.; Rousk, J. Testing the environmental controls of microbial nitrogen-mining induced by semi-continuous labile carbon additions in the subarctic. Soil Biol. Biochem. 2022, 166, 108562. [Google Scholar] [CrossRef]
- Schröder, J.J.; Schulte, R.P.O.; Creamer, R.E.; Delgado, A.; van Leeuwen, J.; Lehtinen, T.; Rutgers, M.; Spiegel, H.; Staes, J.; Tóth, G.; et al. The elusive role of soil quality in nutrient cycling: A review. Soil Use Manag. 2016, 32, 476–486. [Google Scholar] [CrossRef]
- Elkholy, M.M.; Samira, E.; Mahrous El-Tohamy, S.A. Integrated Effect of Mineral, Compost and Biofertilizers on Soil Fertility and Tested Crops Productivity. Res. J. Agric. Biol. Sci. 2010, 5, 453–465. [Google Scholar]
- Chen, J.H. The Combined Use of Chemical and Organic Fertilizers and/or Biofertilizer for Crop Growth and Soil Fertility. In International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use; Department of Soil and Environmental Sciences, National Chung Hsing University: Taichung, Taiwan, 2008. [Google Scholar]
- Delgado, A.; Madrid, A.; Kassem, S.; Andreu, L.; Del Campillo, M.C. Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. Plant Soil 2002, 245, 277–286. [Google Scholar] [CrossRef]
- Horta, C. Fertilisation with compost: Effects on soil phosphorus sorption and on phosphorus availability in acid soils. Open J Soil Sci. 2019, 9, 255–268. [Google Scholar] [CrossRef]
- Staff, S.S. Keys to Soil Taxonomy; United States Department of Agriculture: Washington, DC, USA, 2014. [Google Scholar]
- Horta, C. Normal Climatológica 1986–2015; Posto Meteorológic, Escola Superior Agrária de Castelo Branco: Castelo Branco, Portugal, 2016. [Google Scholar]
- Horta, C.; Carneiro, J.P. Use of Digestate as Organic Amendment and Source of Nitrogen to Vegetable Crops. Appl. Sci. 2022, 12, 248. [Google Scholar] [CrossRef]
- INIAP. Laboratório Químico Agrícola Rebelo da Silva. Manual de Fertilização das Culturas; INIAP: Lisbon, Portugal, 2006; p. 282. [Google Scholar]
- Gao, H.; Guo, R.; Shi, K.; Yue, H.; Zu, S.; Li, Z.; Zhang, X. Effect of Different Water Treatments in Soil-Plant-Atmosphere Continuum Based on Intelligent Weighing Systems. Water 2022, 14, 673. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicar-Bonate; USDA United States Department of Agriculture, Circular Nr. 939; USDA United States Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Tabatabai, M.A. Soil Enzymes. In Methods of Soil Analysis: Microbiological and Biochemical Properties; Weaver, R.W., Angle, J.S., Botttomley, P.S., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 775–833. [Google Scholar]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Bioch. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Acutis, M.; Scaglia, B.; Confalonieri, R. Perfunctory analysis of variance in agronomy, and its consequences in experimental results interpretation. Eur. J. Agron. 2012, 43, 129–135. [Google Scholar] [CrossRef]
- StatPoint Technologies. Statgraphics Centurion XVI; StatPoint Technologies: Warrenton, WV, USA, 2013. [Google Scholar]
- Stenberg, B.; Rossel, R.A.V.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010, 107, 163–215. [Google Scholar]
- Gholizadeh, A.; Rossel, R.A.V.; Saberioon, M.; Boruvka, L.; Kratina, J.; Pavlu, L. National-scale spectroscopic assessment of soil organic carbon in forests of the Czech Republic. Geoderma 2021, 385, 114832. [Google Scholar] [CrossRef]
- Calderón, F.J.; Reeves, J.B.; Collins, H.P.; Paul, E.A. Chemical differences in soil organic matter fractions determined by diffusereflectance mid-infrared spectroscopy. Soil Sci. Soc. Am. J. 2011, 75, 568–579. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Recena, R.; Fernández-Cabanás, V.M.; Delgado, A. Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioning rather than availability indices. Geoderma 2019, 337, 368–374. [Google Scholar] [CrossRef]
- Cécillon, L.; Barthès, B.; Gomez, C.; Ertlen, D.; Genot, V.; Hedde, V.; Stevens, A.; Brun, J.J. Assessment and monitoring of soil quality using indices based on near infrared reflectance (NIR) spectroscopy. Eur. J. Soil Sci. 2009, 60, 770–784. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Hurburgh, C.R., Jr. Influence of Soil Moisture on Near-Infrared Reflectance Spectroscopic Measurement of Soil Properties. Soil Sci. 2005, 170, 244–255. [Google Scholar] [CrossRef]
- Holub, P.; Klem, K.; Tůma, I.; Vavříková, J.; Surá, K.; Veselá, B.; Urban, O.; Záhora, J. Application of organic carbon affects mineral nitrogen uptake by winter wheat and leaching in subsoil: Proximal sensing as a tool for agronomic practice. Sci. Total Environ. 2020, 717, 137058. [Google Scholar] [CrossRef]
- Richards, S.; Marshall, R.; Lag-Brotons, A.J.; Semple, K.T.; Stutter, M. Phosphorus solubility changes following additions of bioenergy wastes to an agricultural soil: Implications for crop availability and environmental mobility. Geoderma 2021, 401, 115150. [Google Scholar] [CrossRef]
- Shi, J.; Gong, J.; Li, X.; Zhang, Z.; Zhang, W.; Li, Y.; Song, L.; Zhang, S.; Dong, J.; Baoyin, T. Phosphorus application promoted the sequestration of orthophosphate within soil microorganisms and regulated the soil solution P supply in a temperate grassland in northern China: A 31P NMR study. Soil Tillage Res. 2023, 227, 105612. [Google Scholar] [CrossRef]
- Delgado, A.; Scalenghe, R. Aspects of phosphorus transfer from soils in Europe. J. Plant Nutr. Soil Sci. 2008, 171, 552–575. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, W.; Zhou, Z.; Huang, G.; Wang, X.; Han, Q.; Liu, G. The Application of Mixed Organic and Inorganic Fertilizers Drives Soil Nutrient and Bacterial Community Changes in Teak Plantations. Microorganisms 2022, 10, 958. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, T.S.; Barth, V.; Lewis, R.W. Soil Acidity Impacts Beneficial Soil Microorganisms; Soil Acidification Series, FS247E; Washington State University: Washington, DC, USA, 2017. [Google Scholar]
- García-Sánchez, M.; Siles, J.A.; Cajthaml, T.; García-Romera, I.; Tlustoš, P.; Száková, J. Effect of digestate and fly ash applications on soil functional properties and microbial communities. Eur. J. Soil. Biol. 2017, 71, 1–12. [Google Scholar] [CrossRef]
- Turner, B.L.; Haygarth, P.M. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Sci. Total Environ. 2005, 344, 27–36. [Google Scholar] [CrossRef]
- Jian, S.; Li, J.; Chen, J.; Wang, G.; Mayes, M.A.; Dzantor, K.E.; Hui, D.; Luo, Y. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biol. Biochem. 2016, 101, 32–43. [Google Scholar] [CrossRef]
- Quiquampoix, H.; Mousain, D. Enzymatic hydrolysis of organic phosphorus. In Organic Phosphorous in the Environment; Turner, B.L., Frossard, E., Baldwin, D.S., Eds.; CABI: Wallingford, UK, 2005; pp. 89–112. [Google Scholar]
- García-López, A.M.; Recena, R.; Delgado, A. Soil properties modulate the effect of different carbon amendments on growth and phosphorus uptake by cucumber plant. Span. J. Agric. Res. 2022, 20, e1101. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Rinkes, Z.L.; Sinsabaugh, R.L.; Weintraub, M.N. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: Informing enzyme-based decomposition models. Front. Microbiol. 2013, 4, 223. [Google Scholar] [CrossRef]
- de Santiago, A.; Recena, R.; Perea-Torres, F.; Moreno, M.T.-; Carmona, E.; Delgado, A. Relationship of soil fertility to biochemical properties under agricultural practices aimed at controlling land degradation. Land Degrad. Dev. 2019, 30, 1121–1129. [Google Scholar] [CrossRef]
- Marcato, C.E.; Mohtar, R.; Revel, J.C.; Pouech, P.; Hafidi, M.; Guiresse, M. Impact of anaerobic digestion on organic matter quality in pig slurry. Int. Biodeter. Biodegr. 2009, 63, 260–266. [Google Scholar] [CrossRef]
- Thomsen, I.K.; Olesen, J.E.; Møller, H.B.; Sørensen, P.; Christensen, B.T. Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces. Soil Biol. Biochem. 2013, 58, 82–87. [Google Scholar] [CrossRef]
- Häfner, F.; Hartung, J.; Möller, K. Digestate Composition Affecting N Fertiliser Value and C Mineralisation. Waste Biomass Valor. 2022, 13, 3445–3462. [Google Scholar] [CrossRef]
- Janes-Bassett, V.; Blackwell, M.S.; Blair, G.; Davies, J.; Haygarth, P.M.; Mezeli, M.M.; Stewart, G. A meta-analysis of phosphatase activity in agricultural settings in response to phosphorus deficiency. Soil Biol. Biochem. 2022, 165, 108537. [Google Scholar] [CrossRef]
- Nielsen, K.; Roß, C.-L.; Roß, C.; Hoffmann, M.; Muskolus, A.; Ellmer, F.; Kautz, T. The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity. Agriculture 2020, 10, 244. [Google Scholar] [CrossRef]
- Sidorova, D.E.; Plyuta, V.A.; Padiy, D.A.; Kupriyanova, E.V.; Roshina, N.V.; Koksharova, O.A.; Khmel, I.A. The Effect of Volatile Organic Compounds on Different Organisms: Agrobacteria, Plants and Insects. Microorganisms 2022, 10, 69. [Google Scholar] [CrossRef]
- Monard, C.; Jeanneau, L.; Le Garrec, J.-L.; Le Bris, N.; Binet, F. Short-term effect of pig slurry and its digestate application on biochemical properties of soils and emissions of volatile organic compounds. Appl. Soil Ecol. 2020, 147, 103376. [Google Scholar] [CrossRef]
- Doyeni, M.O.; Stulpinaite, U.; Baksinskaite, A.; Suproniene, S.; Tilvikiene, V. The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System. Plants 2021, 10, 1734. [Google Scholar] [CrossRef]
pH | EC | SOM | C/N | CEC | Ca2+ | Mg2+ | Na2+ | K+ | Total N | Olsen P | Pi | Po |
---|---|---|---|---|---|---|---|---|---|---|---|---|
dS m−1 | % | cmol(+) kg−1 | g kg−1 | mg kg−1 | ||||||||
6.4 | 0.10 | 5.4 | 8.3 | 36.9 | 7.30 | 0.90 | 0.02 | 1.37 | 2.43 | 149 | 663 | 373 |
Treatments | 1st Crop—Lettuce | 2nd Crop—Kale | ||||
---|---|---|---|---|---|---|
Preplant | 1st topdressing | 2nd topdressing | Preplant | 1st topdressing | 2nd topdressing | |
February 2020 | March 2020 | April 2020 | October 2020 | December 2020 | February 2021 | |
kg N ha−1 | ||||||
Control | - | - | - | - | - | - |
Ni85 | Ni35 (CAN) | Ni25 (CAN) | Ni25 (CN) | Ni35 (AS) | Ni25 (AS) | Ni25 (AS) |
DG-N85 | DG-85 | - | - | DG-85 | - | - |
DG-N170 | DG-170 | - | - | DG-170 | - | - |
DG-N255 | DG-255 | - | - | DG-255 | - | - |
DG-N340 | DG-340 | - | - | DG-340 | - | - |
DG-N85 + Ni60 | DG-85 + Ni35 (CAN) | Ni25 (CAN) | - | DG-85 + Ni35(AS) | Ni25 (AS) | - |
DG-N170 + Ni60 | DG-170 + Ni35 (CAN) | Ni25 (CAN) | - | DG-170 + Ni35(AS) | Ni25 (AS) | - |
DG-N170 + Ni25 | DG-170 | Ni25 (CAN) | - | DG-170 | Ni25 (AS) | - |
DG Lettuce | DG Kale | |
---|---|---|
DM (g kg−1) | 282 | 248 |
OM (g kg−1) | 637 | 761 |
pH (H2O) | 7.7 | 8.3 |
EC (dS m−1) | 1.46 | 1.25 |
N-total (g kg−1) | 29.7 | 29.7 |
N-org (g kg−1) | 19.3 | 24.1 |
C/N | 12 | 15 |
PT (g kg−1) | 4.8 | 7.1 |
Pi (g kg−1) | 4.5 | 6.8 |
Po (g kg−1) | 0.3 | 0.3 |
K (g kg−1) | 17 | 20.3 |
Treatment | Nt | Nam | Olsen P | Po | Pi | SOM | pH | EC |
---|---|---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | % | dS m−1 | |||||
DG-N85 | 2.46 cd a) | 0.88 b | 100.73 cd | 253 | 768 ab | 4.6 | 6.15 ab | 0.11 c |
DG-N170 | 2.63 bc | 0.86 b | 111.83 bc | 275 | 827 a | 7.87 | 6.28 a | 0.12 bc |
DG-N255 | 2.94 ab | 0.89 b | 132.1 a | 272 | 852 a | 6.70 | 6.31 a | 0.15 ab |
DG-N340 | 3.08 a | 1.06 ab | 123.76 ab | 267 | 835 a | 6.96 | 6.31 a | 0.15 ab |
DG-N85 + Ni60 | 2.82 ab | 0.81 b | 96.4 cd | 293 | 734 ab | 6.42 | 5.96 c | 0.11 c |
DG-N170 + Ni60 | 2.88 ab | 1.21 a | 103.15 cd | 336 | 794 ab | 7.47 | 6.08 bc | 0.12 bc |
DG-N170 + Ni25 | 2.8 ab | 0.90 b | 102.14 cd | 254 | 745 ab | 5.48 | 6.24 ab | 0.12 bc |
Ni85 | 2.36 cd | 1.28 a | 94.17 cd | 302 | 666 b | 4.31 | 5.72 d | 0.19 a |
Control | 2.27 d | 1.04 ab | 88.88 d | 300 | 655 b | 5.11 | 6.08 bc | 0.11 c |
ANOVA | * | ** | *** | NS | *** | NS | *** | *** |
Treatment | Nt | Nam | Olsen P | Pi | Po | SOM | pH | EC |
---|---|---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | % | dS m−1 | |||||
DG-N85 | 2.93 ab a) | 0.64 ab | 77.27 cde | 596 cd | 269 abc | 7.61 abc | 6.38 c | 0.08 b |
DG-N170 | 2.85 ab | 0.66 ab | 83.51 bcde | 692 bc | 443 a | 7.87 abc | 6.53 b | 0.09 b |
DG-N255 | 3.97 a | 0.78 a | 109.91 a | 806 a | 376 ab | 8.22 a | 6.66 ab | 0.1 ab |
DG-N340 | 3.50 ab | 0.41 ab | 107.98 a | 759 ab | 372 abc | 8.26 a | 6.70 a | 0.12 a |
DG-N85 + Ni60 | 3.08 ab | 0.67 a | 85.46 bcd | 685 bc | 451 a | 8.01 ab | 6.08 d | 0.07 b |
DG-N170 + Ni60 | 3.67 ab | 0.60 ab | 96.10 ab | 729 ab | 352 abc | 7.85 abc | 6.11 d | 0.09 b |
DG-N170 + Ni25 | 2.83 ab | 0.39 ab | 91.06 bc | 680 bc | 237 bc | 7.29 abc | 6.27 c | 0.08 b |
Ni85 | 2.36 b | 0.31 ab | 73.33 de | 539 d | 219 bc | 6.83 c | 5.91 e | 0.07 b |
Control | 2.59 ab | 0.13 b | 66.98 e | 545 d | 185 c | 7.10 bc | 6.27 c | 0.08 b |
ANOVA | * | ** | *** | *** | *** | ** | *** | *** |
Treatment | AcPh | AlPh | B-glu | TMB | Bacteria | Fungi | BacG+ | BacG- | Mycorrhizae |
---|---|---|---|---|---|---|---|---|---|
mg pnp kg−1 h−1 | nmol g−1 | ||||||||
DG-N85 | 495 ab a) | 179 ab | 164 ab | 262 ab | 53.7 ab | 19.0 ab | 24.0 abc | 20.9 ab | 11.2 ab |
DG-N170 | 455 bc | 144 bc | 140 b | 225 c | 48.1 b | 17.2 ab | 21.6 bc | 20.8 ab | 7.9 ab |
DG-N255 | 480 ab | 153 bc | 159 ab | 224 c | 46.8 b | 14.2 b | 20.1 c | 21.3 ab | 6.6 ab |
DG-N340 | 415 c | 125 c | 124 b | 230 bc | 48.4 b | 15.0 b | 21.7 bc | 18.0 b | 8.4 b |
DG-N85 + Ni60 | 461 abc | 144 bc | 141 b | 218 c | 46.3 b | 15.8 b | 21.0 bc | 19.9 b | 8.2 ab |
DG-N170 + Ni60 | 520 a | 170 ab | 171 ab | 231 bc | 50.1 ab | 15.1 ab | 21.4 bc | 18.8 ab | 8.1 ab |
DG-N170 + Ni25 | 487 ab | 130 c | 170 ab | 241 bc | 48.2 b | 17.8 ab | 20.9 bc | 19.7 ab | 8.8 ab |
Ni85 | 462 abc | 201 a | 204 a | 281 a | 57.6 a | 20.9 a | 26.7 a | 21.2 ab | 10.4 ab |
Control | 484 ab | 160 bc | 197 a | 295 a | 57.0 a | 20.6 a | 24.8 ab | 25.0 a | 11.5 a |
ANOVA | ** | *** | *** | *** | *** | ** | *** | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-López, A.M.; Delgado, A.; Anjos, O.; Horta, C. Digestate Not Only Affects Nutrient Availability but Also Soil Quality Indicators. Agronomy 2023, 13, 1308. https://doi.org/10.3390/agronomy13051308
García-López AM, Delgado A, Anjos O, Horta C. Digestate Not Only Affects Nutrient Availability but Also Soil Quality Indicators. Agronomy. 2023; 13(5):1308. https://doi.org/10.3390/agronomy13051308
Chicago/Turabian StyleGarcía-López, Ana María, Antonio Delgado, Ofélia Anjos, and Carmo Horta. 2023. "Digestate Not Only Affects Nutrient Availability but Also Soil Quality Indicators" Agronomy 13, no. 5: 1308. https://doi.org/10.3390/agronomy13051308
APA StyleGarcía-López, A. M., Delgado, A., Anjos, O., & Horta, C. (2023). Digestate Not Only Affects Nutrient Availability but Also Soil Quality Indicators. Agronomy, 13(5), 1308. https://doi.org/10.3390/agronomy13051308