Innovative Organic and Regenerative Agricultural Production
Project Acronym (Crops Targeted) | Website | Reference Lists and Selected Publications |
---|---|---|
Blight-MOP (potato) | https://cordis.europa.eu/project/id/QLK5-CT-2000-01065 (accessed on 1 April 2023) | Speiser et al. [41], Wilcockson et al. [42], Ghorbani et al. [45], Hospers-Brands et al. [46], Flier at al. [47] |
BRESOV (broccoli, snap bean, tomato) | https://bresov.eu/ (accessed on 1 April 2023) | https://bresov.eu/publications/scientifc-publications;Tripodi et al. [48], Menga et al. [49], Treccarichi et al. [50], Ben Ammar et al. [51], Scuderi et al. [52] |
ECOBREED (soybean, potato, wheat, buckwheat) | https://ecobreed.eu/ (accessed on 1 April 2023) | https://ecobreed.eu/outcomes/publications/;Vollmann et al. [53], Urbanavičiūtė et al. [54], Zhao et al. [55], Miljaković et al. [56], Praprotnik et al. [57] |
HARNESSTOM (tomato) | http://harnesstom.eu/en/index.html (accessed on 1 April 2023) | https://cordis.europa.eu/project/id/101000716/results (accessed on 1 April 2023); Blanca et al. [58], Hu et al. [59], Gonzalo et al. [60,61], Bineau [62], Asins et al. [63] |
HealthyMinorCerals (spelt, einkorn and emmer wheat, rye, oat) | https://healthyminorcereals.eu/ (accessed on 1 April 2023) | https://healthyminorcereals.eu/en/publications (accessed on 1 April 2023); Rempelos et al. [39], Magistrali et al. [64], Wang et al. [65,66], Tupits et al. [67] |
LIVESEED LIVESEEDING | https://www.liveseed.eu/ (accessed on 1 April 2023) https://liveseeding.eu/ (accessed on 1 April 2023) | https://www.liveseed.eu/tools-for-practitioners/ (accessed on 1 April 2023) https://www.liveseed.eu/synthesis-of-the-projects-results/(accessed on 1 April 2023) |
NUE-crops (maize, oil seed rape, barley, wheat, potato) | https://cordis.europa.eu/project/id/222645/reporting (accessed on 1 April 2023) | https://cordis.europa.eu/project/id/222645/results (accessed on 1 April 2023); Rempelos et al. [40,44], Miersch et al. [68], Li et al. [69], Qi et al. [70] |
QLIF (wheat, potato) | https://cordis.europa.eu/project/id/506358/reporting (accessed on 1 April 2023) | https://orgprints.org/view/projects/eu-qlif.html (accessed on 1 April 2023); Rempelos et al. [3,39], Eyre et al. [27,28,29], Cooper et al. [30], Orr et al. [31,32], Wilkinson et al. [41], Palmer et al. [43] |
- Assessing/comparing contrasting soil, crop, and farm management practices/systems;
- Further improving soil health, crop yields, yield stability, energy and resource use efficiency, biodiversity, food quality, and safety;
- Further reduce negative environmental impacts and, in particular, greenhouse gas emissions and carbon footprints, in organic and regenerative agriculture;
- Development of technologies/strategies for the efficient recycling and production of precision fertilizers from domestic, communal, food processing, and farm waste;
- Studying/modeling impacts of climate change on organic and regenerative farming systems;
- Integrating or reintegrating grazing livestock into annual and perennial cropping systems;
- Developing, evaluating, and/or studying barriers to the implementation of agroforestry systems;
- Evaluating the impact of contrasting government intervention strategies designed to increase the implementation of organic and/or regenerative agriculture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated soil and crop management in organic agriculture: A logical framework to ensure food quality and human health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- Baranski, M.; Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, H.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analysis. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Rempelos, L.; Wang, J.; Barański, M.; Watson, A.; Volakakis, N.; Hoppe, H.-W.; Kühn-Velten, W.N.; Hadall, C.; Hasanaliyeva, G.; Chatzidimitriou, E.; et al. Diet and food type affect urinary pesticide residue excretion profiles in healthy individuals: Results of a randomized controlled dietary intervention trial. Am. J. Clin. Nutr. 2021, 115, 364–377. [Google Scholar] [CrossRef]
- Ozlu, E.; Arriaga, F.J.; Bilen, S.; Gozukara, G.; Babur, E. Carbon footprint management by agricultural practices. Biology 2022, 11, 1453. [Google Scholar] [CrossRef]
- Holka, M.; Kowalska, J.; Jakubowska, M. Reducing carbon footprint of agriculture—Can organic farming help to mitigate climate change? Agriculture 2022, 12, 1383. [Google Scholar] [CrossRef]
- Magistrali, A.; Cooper, J.; George, D.; Standen, J. Identifying and Implementing Regenerative Agricultural Practices in Challenging Environments: Experiences of Farmers in the North of England. BBSRC Project Report No. PR640-09. Available online: https://projectblue.blob.core.windows.net/media/Default/Research%20Papers/AHDB/2022/PR640-09%20Final%20report%20AHDB-BBSRC%20Farm%20Sustainability%20Fund%20(Cooper).pdf (accessed on 1 February 2023).
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative agriculture: An agronomic perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2021, 485, 229–232. [Google Scholar] [CrossRef]
- Shah, K.K.; Modi, B.; Pandey, H.P.; Subedi, A.; Aryal, G.; Pandey, M.; Shrestha, J. Diversified crop rotation: An approach for sustainable agriculture production. Adv. Agric. 2021, 2021, 8924087. [Google Scholar] [CrossRef]
- Volsi, B.; Higashi, G.E.; Bordin, I.; Telles, T.S. The diversification of species in crop rotation increases the profitability of grain production systems. Sci. Rep. 2022, 12, 19849. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, A.; Kahlon, C.S.; Brar, A.S.; Grover, K.K.; Dia, M.; Steiner, R.L. The role of cover crops towards sustainable soil health and agriculture—A review paper. Am. J. Plant Sci. 2018, 09, 1935–1951. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Chang. Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Reganold, J.P.; Palmer, A.S.; Lockhart, J.C.; Macgregor, A.N. Soil quality and financial performance of biodynamic and con-ventional farms in New Zealand. Science 1993, 260, 344–349. [Google Scholar] [CrossRef]
- Ryan, M.R.; Smith, R.G.; Mortensen, D.A.; Teasdale, J.R.; Curran, W.S.; Seidel, R.; Shumway, D.L. Weed-crop competition relationships differ between organic and conventional cropping systems. Weed Res. 2009, 49, 572–580. [Google Scholar] [CrossRef]
- Rodale Institute. Farming Systems Trial; 40-Year Report. Available online: https://rodaleinstitute.org/wp-content/uploads/FST_40YearReport_RodaleInstitute-1.pdf (accessed on 10 April 2020).
- Maeder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef]
- Fließbach, A.; Oberholzer, H.-R.; Gunst, L.; Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 2007, 118, 273–284. [Google Scholar] [CrossRef]
- Hildermann, I.; Messmer, M.; Dubois, D.; Boller, T.; Wiemken, A.; Mäder, P. Nutrient use efficiency and arbuscular mycorrhizal root colonization of winter wheat cultivars in different farming systems of the DOK long-term trial. J. Sci. Food Agric. 2010, 90, 2027–2038. [Google Scholar]
- Skinner, C.; Gattinger, A.; Krauss, M.; Krause, H.-M.; Mayer, J.; van der Heijden, M.G.A.; Mäder, P. The impact of long-term organic farming on soil-derived greenhouse gas emissions. Sci. Rep. 2019, 9, 1702. [Google Scholar] [CrossRef] [PubMed]
- Berner, A.; Hildermann, I.; Fliessbach, A.; Pfiffner, L.; Niggli, U.; Mäder, P. Crop yield and soil quality response to reduced tillage under organic management. Soil Tillage Res. 2008, 101, 89–96. [Google Scholar] [CrossRef]
- Gadermaier, F.; Berner, A.; Fließbach, A.; Friedel, J.K.; Mäder, P. Impact of reduced tillage on soil organic carbon and nutrient budgets under organic farming. Renew. Agric. Food Syst. 2011, 27, 68–80. [Google Scholar] [CrossRef]
- Eyre, M.; Sanderson, R.; Shotton, P.; Leifert, C. Investigating the effects of crop type, fertility management and crop protection on the activity of beneficial invertebrates in an extensive farm management comparison trial. Ann. Appl. Biol. 2009, 155, 267–276. [Google Scholar] [CrossRef]
- Eyre, M.; Critchley, C.; Leifert, C.; Wilcockson, S. Crop sequence, crop protection and fertility management effects on weed cover in an organic/conventional farm management trial. Eur. J. Agron. 2011, 59, 4715–4724. [Google Scholar] [CrossRef]
- Eyre, M.; Luff, M.; Atlihan, R.; Leifert, C. Ground beetle species (Carabidae, Coleoptera) activity and richness in relation to crop type, fertility management and crop protection in a farm management comparison trial. Ann. Appl. Biol. 2012, 161, 169–179. [Google Scholar] [CrossRef]
- Cooper, J.; Butler, G.; Leifert, C. Life cycle analysis of greenhouse gas emissions from organic and conventional systems of food production, with and without bio-energy options. NJAS-Wagen. J. Life Sci. 2011, 58, 185–192. [Google Scholar] [CrossRef]
- Orr, C.; James, A.; Leifert, C.; Cummings, S.; Cooper, J. Diversity and function of free-living nitrogen fixing bacteria and total bacteria in organic and conventionally managed soil. Appl. Environ. Microbiol. 2011, 77, 911–919. [Google Scholar] [CrossRef]
- Orr, C.; Leifert, C.; Cummings, S.P.; Cooper, J.M. Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. PLoS ONE 2013, 7, e52891. [Google Scholar] [CrossRef]
- Haghighi, R.S.; Critchley, N.; Leifert, C.; Eyre, M.; Cooper, J. Individual and interactive effects of crop type and management on weed and seed bank composition in an organic rotation. Int. J. Plant Prod. 2013, 7, 243–268. [Google Scholar] [CrossRef]
- Patterson, E.S.P.; Sanderson, R.A.; Eyre, M.D. Soil tillage reduces arthropod biodiversity and has lag effects within organic and conventional crop rotations. J. Appl. Èntomol. 2018, 143, 430–440. [Google Scholar] [CrossRef]
- Rempelos, L.; Barański, M.; Sufar, E.K.; Gilroy, J.; Shotton, P.; Leifert, H.; Średnicka-Tober, D.; Hasanaliyeva, G.; Rosa, E.A.S.; Hajslova, J.; et al. Effect of climatic conditions, and agronomic practices used in organic and conventional crop production on yield and nutritional composition parameters in potato, cabbage, lettuce and onion; results from the long-term NFSC-trials. Agronomy 2023, 13, 1225. [Google Scholar] [CrossRef]
- Galindo, F.S.; Delate, K.; Heins, B.; Phillips, H.; Smith, A.; Pagliari, P.H. Cropping system and rotational grazing effects on soil fertility and enzymatic activity in an integrated organic crop-livestock system. Agronomy 2020, 10, 803. [Google Scholar] [CrossRef]
- Krauss, M.; Wiesmeier, M.; Don, A.; Cuperus, F.; Gattinger, A.; Gruber, S.; Haagsma, W.; Peigné, J.; Palazzoli, M.C.; Schulz, F.; et al. Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil Tillage Res. 2021, 216, 105262. [Google Scholar] [CrossRef]
- Smith, L.G.; Kirk, G.J.D.; Jones, P.J.; Williams, A.G. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat. Commun. 2019, 10, 105262. [Google Scholar] [CrossRef] [PubMed]
- Rempelos, L.; Wang, J.; Sufar, E.K.; Almuayrifi, M.S.B.; Knutt, D.; Leifert, H.; Leifert, A.; Wilkinson, A.; Shotton, P.; Hasanaliyeva, G.; et al. Breeding bread-making wheat varieties for organic farming systems: The need to target productivity, robustness, resource use efficiency and grain quality traits. Foods 2023, 12, 1209. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, M.S.B.; Baranski, M.; Tetard-Jones, C.; Barkla, B.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; Hall, G.; et al. The effect of agronomic factors on crop health and performance of winter wheat varieties bred for the con-ventional and the low input farming sector. Field Crop. Res. 2020, 254, 107822. [Google Scholar] [CrossRef]
- Wilkinson, A.; Wilkinson, J.N.; Shotton, P.; Eyre, M.; Hasanaliyeva, G.; Bilsborrow, P.; Leifert, C.; Rempelos, L. Effect of clover sward management on nitrogen fixation and performance of following spring- and winter wheat crops; results of a 3-year pilot study. Agronomy 2022, 12, 2085. [Google Scholar] [CrossRef]
- Speiser, B.; Tamm, L.; Amsler, T.; Lambion, J.; Bertrand, C.; Hermansen, A.; Ruissen, M.A.; Haaland, P.; Zarb, J.; Santos, J.; et al. Field tests of blight control methods for organic farming: Tolerant varieties and copper fungicides. Biol. Agric. Hortic. 2006, 23, 393–412. [Google Scholar] [CrossRef]
- Palmer, M.W.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Shotton, P.N.; Volakakis, N.; Cakmak, I.; Ozturk, L.; et al. The influence of organic and conventional fertilisation and crop protection practices, preceding crop, harvest year and weather conditions on yield and quality of potato (Solanum tuberosum) in a long-term management trial. Eur. J. Agron. 2013, 49, 83–92. [Google Scholar] [CrossRef]
- Rempelos, L.; Cooper, J.; Wilcockson, S.; Eyre, M.; Shotton, P.; Volakakis, N.; Orr, C.H.; Leifert, C.; Gatehouse, A.M.R.; Tétard-Jones, C. Quantitative proteomics to study the response of potato to contrasting fertilisation regimes. Mol. Breed. 2012, 31, 363–378. [Google Scholar] [CrossRef]
- Ghorbani, R.; Wilcockson, S.; Leifert, C. Alternative treatments for late blight control in organic potato: Antagonistic micro-organisms and compost extracts for activity against Phytophthora infestans. Potato Res. 2007, 48, 181–189. [Google Scholar] [CrossRef]
- Hospers-Brands, A.J.T.M.; Ghorbani, R.; Bremer, E.; Bain, R.; Litterick, A.; Halder, F.; Leifert, C.; Wilcockson, S.J. Effects of presprouting, planting date, plant population and configuration on late blight and yield of organic potato crops grown with different cultivars. Potato Res. 2008, 51, 131–150. [Google Scholar] [CrossRef]
- Flier, W.G.; Kroon, L.P.N.M.; Hermansen, A.; van Raaij, H.M.G.; Speiser, B.; Lambion, J.; Razzaghian, J.; Andrivon, D.; Wil-kinson, S.; Leifert, C. Genetic structure and pathogenicity of populations of Phytophthora infestans from organic crops in France, Norway, Switzerland and the United Kingdom. Plant Pathol. 2007, 56, 562–572. [Google Scholar] [CrossRef]
- Tripodi, P.; D’alessandro, A.; Francese, G. An integrated genomic and biochemical approach to investigate the potentiality of heirloom tomatoes: Breeding resources for food quality and sustainable agriculture. Front. Plant Sci. 2023, 13, 1031776. [Google Scholar] [CrossRef]
- Menga, V.; Fares, C.; Campa, A.; Ferreira, J.J.; Bitocchi, E.; Papa, R.; Beleggia, R. Variability of nutritional, antioxidant, and textural traits of a collection of snap beans of different colors. Horticulturae 2023, 9, 311. [Google Scholar] [CrossRef]
- Treccarichi, S.; Ben Ammar, H.; Amari, M.; Cali, R.; Tribulato, A.; Branca, F. Molecular markers for detecting inflorescence size of Brassica oleracea L. crops and B. oleracea complex species (n = 9) useful for breeding of broccoli (B. oleracea var. italica) and cauliflower (B. oleracea var. botrytis). Plants 2023, 12, 407. [Google Scholar] [CrossRef]
- Ben Ammar, H.; Arena, D.; Treccarichi, S.; Di Bella, M.C.; Marghali, S.; Ficcadenti, N.; Scalzo, R.L.; Branca, F. The effect of water stress on the glucosinolate content and profile: A comparative study on roots and leaves of Brassica oleracea L. crops. Agronomy 2023, 13, 579. [Google Scholar] [CrossRef]
- Scuderi, A.; Timpanaro, G.; Branca, F.; Cammarata, M. Economic and environmental sustainability assessment of an innovative organic broccoli production pattern. Agronomy 2023, 13, 624. [Google Scholar] [CrossRef]
- Vollmann, J.; Rischbeck, P.; Pachner, M.; Đorđević, V.; Manschadi, A.M. High-throughput screening of soybean dinitrogen fixation and seed nitrogen content using spectral sensing. Comput. Electron. Agric. 2022, 199, 107169. [Google Scholar] [CrossRef]
- Urbanavičiūtė, I.; Bonfiglioli, L.; Pagnotta, M.A. Phenotypic and genotypic diversity of roots response to salt in durum wheat seedlings. Plants 2023, 12, 412. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; He, Y.; Zhang, K.; Li, S.; Chen, Y.; He, M.; He, F.; Gao, B.; Yang, D.; Fan, Y.; et al. Rewiring of the seed metabolome during Tartary buckwheat domestication. Plant Biotechnol. J. 2022, 21, 150–164. [Google Scholar] [CrossRef] [PubMed]
- Miljaković, D.; Marinković, J.; Tamindžić, G.; Đorđević, V.; Tintor, B.; Milošević, D.; Ignjatov, M.; Nikolić, Z. Bio-priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: Strategy to improve seed germination and the initial seedling growth. Plants 2022, 11, 1927. [Google Scholar] [CrossRef] [PubMed]
- Praprotnik, E.; Lončar, J.; Razinger, J. Testing virulence of different species of insect associated fungi against yellow mealworm (Coleoptera: Tenebrionidae) and their potential growth stimulation to maize. Plants 2021, 10, 2498. [Google Scholar] [CrossRef] [PubMed]
- Blanca, J.; Pons, C.; Montero-Pau, J.; Sanchez-Matarredona, D.; Ziarsolo, P.; Fontanet, L.; Fisher, J.; Plazas, M.; Casals, J.; Rambla, J.L.; et al. European traditional tomatoes galore: A result of farmers’ selection of a few diversity-rich loci. J. Exp. Bot. 2022, 73, 3431–3445. [Google Scholar] [CrossRef]
- Hu, G.; Wang, K.; Huang, B.; Mila, I.; Frasse, P.; Maza, E.; Djari, A.; Hernould, M.; Zouine, M.; Li, Z.; et al. The auxin-responsive transcription factor SlDOF9 regulates inflorescence and flower development in tomato. Nat. Plants 2022, 8, 419–433. [Google Scholar] [CrossRef]
- Gonzalo, M.J.; da Maia, L.C.; Nájera, I.; Baixauli, C.; Giuliano, G.; Ferrante, P.; Granell, A.; Asins, M.J.; Monforte, A.J. Genetic control of reproductive traits under different temperature regimes in inbred line populations derived from crosses between S. pimpinellifolium and S. lycopersicum accessions. Plants 2022, 11, 1069. [Google Scholar] [CrossRef]
- Gonzalo, M.J.; Nájera, I.; Baixauli, C.; Gil, D.; Montoro, T.; Soriano, V.; Olivieri, F.; Rigano, M.M.; Ganeva, D.; Grozeva-Tileva, S.; et al. Identification of tomato accessions as source of new genes for improving heat tolerance: From controlled experiments to field. BMC Plant Biol. 2021, 21, 345. [Google Scholar] [CrossRef]
- Bineau, E.; Rambla, J.L.; Priego-Cubero, S.; Hereil, A.; Bitton, F.; Plissonneau, C.; Granell, A.; Causse, M. Breeding tomato hybrids for flavour: Comparison of GWAS results obtained on lines and F1 hybrids. Genes 2021, 12, 1443. [Google Scholar] [CrossRef]
- Asins, M.J.; Romero-Aranda, M.R.; Espinosa, J.; González-Fernández, P.; Jaime-Fernández, E.; Traverso, J.A.; Carbonell, E.A.; Belver, A. HKT1;1 and HKT1;2 Na+ Transporters from Solanum galapagense play different roles in the plant Na+ distribution under salinity. Int. J. Mol. Sci. 2022, 23, 5130. [Google Scholar] [CrossRef]
- Magistrali, A.; Vavera, R.; Janovska, D.; Rempelos, L.; Cakmak, I.; Leifert, C.; Grausgruber, H.; Butler, G.; Wilkinson, A.; Bilsborrow, P. Evaluating the effect of agronomic management practices on the performance of differing spelt (Triticum spelta) cultivars in contrasting environments. Field Crop. Res. 2020, 255, 107869. [Google Scholar] [CrossRef]
- Wang, J.; Baranski, M.; Korkut, R.; Kalee, H.A.; Wood, L.; Bilsborrow, P.; Janovska, D.; Leifert, A.; Winter, S.; Willson, A.; et al. Performance of modern and traditional spelt wheat (Triticum spelta) varieties in rain-fed and irrigated, organic and con-ventional production systems in a semi-arid environment; results from exploratory field experiments in Crete, Greece. Agronomy 2021, 11, 890. [Google Scholar] [CrossRef]
- Wang, J.; Baranski, M.; Korkut, R.; Kalee, H.A.; Wood, L.; Willson, A.; Barkla, B.; Iversen, P.O.; Bilsborrow, P.; Rempelos, L.; et al. Effect of irrigation, fertiliser type and variety choice on grain yield and nutritional quality parameters in spelt wheat (Triticum spelta) grown under semi-arid conditions. Food Chem. 2021, 358, 129826. [Google Scholar] [CrossRef]
- Tupits, I.; Tamm, I.; Magistrali, A.; Rempelos, L.; Cakmak, I.; Leifert, C.; Grausgruber, H.; Wilkinson, A.; Butler, G.; Bilsborrow, P. Evaluating the effect of nitrogen fertilizer rate and source on the performance of open-pollinated rye (Secale cereale L.) cultivars in contrasting European environments. Crop Sci. 2022, 62, 928–946. [Google Scholar] [CrossRef]
- Miersch, S.; Gertz, A.; Breuer, F.; Schierholt, A.; Becker, H.C. Influence of the semi-dwarf growth type on nitrogen use ef-ficiency in winter oilseed rape. Crop Sci. 2016, 56, 2952–2961. [Google Scholar] [CrossRef]
- Li, P.; Chen, F.; Cai, H.; Liu, J.; Pan, Q.; Liu, Z.; Gu, R.; Mi, G.; Zhang, F.; Yuan, L. A genetic relationship between nitrogen use efficiency and seedling root traits in maize as revealed by QTL analysis. J. Exp. Bot. 2015, 66, 3175–3188. [Google Scholar] [CrossRef]
- Qi, W.-Z.; Liu, H.-H.; Liu, P.; Dong, S.-T.; Zhao, B.; So, W.B.; Li, G.; Liu, H.-D.; Zhang, J.-W.; Zhao, B. Morphological and physiological characteristics of corn (Zea mays L.) roots from cultivars with different yield potentials. Eur. J. Agron. 2012, 38, 54–63. [Google Scholar] [CrossRef]
- Stergiadis, S.; Bieber, A.; Chatzidimitriou, E.; Franceschin, E.; Isensee, A.; Rempelos, L.; Baranski, M.; Maurer, V.; Cozzi, G.; Bapst, B.; et al. Impact of US Brown Swiss genetics on milk quality from low-input herds in Switzerland: Interactions with season. Food Chem. 2018, 251, 93–102. [Google Scholar] [CrossRef]
- Eit Food. Can Regenerative Agriculture Replace Conventional Farming? Available online: https://www.eitfood.eu/blog/can-regenerative-agriculture-replace-conventional-farming?gclid=CjwKCAiAr4GgBhBFEiwAgwORrVurBMEya4iUL7it5m72gg6O1w5eGs3rNl_NlE7qBh5eGDh801wl6BoCOegQAvD_BwE (accessed on 1 February 2023).
- Massey, C. Call of the Reed Warbler; University of Queensland Press: St Lucia, Australia, 2017. [Google Scholar]
- Bergmann, L.; Chaves, L.F.; Betz, C.R.; Stein, S.; Wiedenfeld, B.; Wolf, A.; Wallace, R.G. Mapping agricultural lands: From conventional to regenerative. Land 2022, 11, 437. [Google Scholar] [CrossRef]
- Gordon, E.; Davila, F.; Riedy, C. Regenerative agriculture: A potentially transformative storyline shared by nine discourses. Sustain. Sci. 2023. [Google Scholar] [CrossRef]
- Dent, D.; Boincean, B. Regenerative Agriculture; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Lankford, B.; Orr, S. Exploring the critical role of water in regenerative agriculture; building promises and avoiding pitfalls front. Sustain. Food Syst. 2022, 6, 891709. [Google Scholar] [CrossRef]
Study Type (Trial Name) | Main Agronomic Parameter(s) Studied
| References |
Farm survey | Long term biodynamic farming
| [18] |
Field trial (Rodale trial) | Long term organic farming Rotation design, tillage, regular manure inputs
| [19,20] |
Field trial (DOK-trial) | Long-term organic farming Regular manure/composted manure inputs
| [21,22,23,24] |
Field trial | Reduced tillage
| [25,26] |
Field trial (NFSC-trial) | Long-term organic farming Rotation design, crop protection, fertilization, tillage
| [27,28,29,30,31,32,33,34,35] |
Field trial | Rotational grazing; rotation design
| [36] |
Literature review | Reduced tillage
| [37] |
Modeling study | Organic farming
| [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rempelos, L.; Kabourakis, E.; Leifert, C. Innovative Organic and Regenerative Agricultural Production. Agronomy 2023, 13, 1344. https://doi.org/10.3390/agronomy13051344
Rempelos L, Kabourakis E, Leifert C. Innovative Organic and Regenerative Agricultural Production. Agronomy. 2023; 13(5):1344. https://doi.org/10.3390/agronomy13051344
Chicago/Turabian StyleRempelos, Leonidas, Emmanouil Kabourakis, and Carlo Leifert. 2023. "Innovative Organic and Regenerative Agricultural Production" Agronomy 13, no. 5: 1344. https://doi.org/10.3390/agronomy13051344
APA StyleRempelos, L., Kabourakis, E., & Leifert, C. (2023). Innovative Organic and Regenerative Agricultural Production. Agronomy, 13(5), 1344. https://doi.org/10.3390/agronomy13051344