Restoring Soil Cover and Plant Communities with Arbuscular Mycorrhizal Fungi as an Essential Component of DSS for Environmental Safety Management in Post-Industrial Landscapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of the Main Forestry and Taxation Indicators
2.3. Mycological Soil Analysis
2.4. Determination of Physiological Parameters of Plants
2.5. Determination of Ecological and Systematic Analysis of the State of Soil Microbiota
2.6. Preparing the Inoculum
2.7. Construction of Correlation Pleiades and Dendrograms of Group Similarity
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Štofejová, L.; Fazekaš, J.; Fazekašová, D. Analysis of Heavy Metal Content in Soil and Plants in the Dumping Ground of Magnesite Mining Factory Jelšava-Lubeník (Slovakia). Sustainability 2021, 13, 4508. [Google Scholar] [CrossRef]
- Pohrebennyk, V.; Dzhumelia, E. Methods of Soils Pollution Spread Analysis: Case Study of Mining and Chemical Enterprise in Lviv Region (Ukraine). Ecol. Eng. Environ. Technol. 2021, 22, 39–44. [Google Scholar] [CrossRef]
- Parra, A.; Conesa, E.; Zornoza, R.; Faz, Á.; Gómez-López, M.D. Decision Pattern for Changing Polluted Areas into Recreational Places. Agronomy 2022, 12, 775. [Google Scholar] [CrossRef]
- Kirina, T.; Groot, A.; Shilomboleni, H.; Ludwig, F.; Demissie, T. Scaling Climate Smart Agriculture in East Africa: Experiences and Lessons. Agronomy 2022, 12, 820. [Google Scholar] [CrossRef]
- Angelaki, A.; Dionysidis, A.; Sihag, P.; Golia, E.E. Assessment of Contamination Management Caused by Copper and Zinc Cations Leaching and Their Impact on the Hydraulic Properties of a Sandy and a Loamy Clay Soil. Land 2022, 11, 290. [Google Scholar] [CrossRef]
- Pohrebennyk, V.; Koszelnik, P.; Mitryasova, O.; Dzhumelia, E.; Zdeb, M. Environmental Monitoring of Soils of Post-Industrial Mining Areas. J. Ecol. Eng. 2019, 20, 53–61. [Google Scholar] [CrossRef]
- Kvaterniuk, S.; Petruk, V.; Kochan, O.; Frolov, V. Multispectral ecological control of parameters of water environments using a quadrocopter. In Sustainable Production: Novel Trends in Energy, Environment and Material Systems; Królczyk, G., Wzorek, M., Król, A., Kochan, O., Su, J., Kacprzyk, J., Eds.; Springer: Cham, Switzerland, 2007; Volume 198, pp. 75–89. [Google Scholar]
- Ovidiu, C.; Mardari, C.; Bîrsan, C.C.; Tănase, C. Lignicolous Fungal Assemblages and Relationships with Environment in Broadleaved and Mixed Forests from the North-East Region of Romania. Plant Ecol. Evol. 2020, 153, 45–58. Available online: https://www.jstor.org/stable/26906810 (accessed on 10 March 2023).
- Davison, J.; Vasar, M.; Sepp, S.K.; Oja, J.; Al-Quraishy, S.; Bueno, C.G.; Cantero, J.J.; Chimbioputo Fabiano, E.; Decocq, G.; Fraser, L.; et al. Dominance, diversity, and niche breadth in arbuscular mycorrhizal fungal communities. Ecology 2022, 103, 103. [Google Scholar] [CrossRef]
- Vahter, T.; Bueno, C.G.; Davison, J.; Herodes, K.; Hiiesalu, I.; Kasari Toussaint, L.; Öpik, M. Co-introduction of native mycorrhizal fungi and plant seeds accelerates restoration of post-mining landscapes. J Appl Ecol. 2020, 57, 1741–1751. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, J.D. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: Cambridge, UK, 2008. [Google Scholar]
- Read, D.J.; Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems—A journey towards relevance? New Phytol. 2003, 157, 475–492. [Google Scholar] [CrossRef]
- Spatafora, J.W.; Chang, Y.; Benny, G.L.; Lazarus, K.; Smith, M.E.; Berbee, M.L.; Stajich, J.E. A phylum-level phylogenetic classifica tion of zygomycete fungi based on genome-scale data. Mycologia 2016, 108, 1028–1046. [Google Scholar] [CrossRef]
- Pozo, M.J.; Lopez-Raez, J.A.; Azcon-Aguilar, C.; Garcia-Garrido, J.M. Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 2015, 205, 1431–1436. [Google Scholar] [CrossRef]
- Keymer, A.; Pimprikar, P.; Wewer, V.; Huber, C.; Brands, M.; Bucerius, S.L.; Gutjahr, C. Lipid transfer from plants to arbuscular my corrhiza fungi. eLife 2017, 6, e29107. [Google Scholar] [CrossRef]
- Koziol, L.; Schultz, P.A.; House, G.L.; Bauer, J.T.; Middleton, E.L.; Bever, J.D. The plant microbiome and native plant resto ration: The example of native mycorrhizal fungi. BioScience 2018, 68, 996–1006. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, K.; Wang, J. Effect of different inoculation treat ments on AM fungal communities and the sustainability of soil remediation in Daliuta coal mining subsidence area in northwest China. Appl. Soil Ecol. 2018, 132, 107–113. [Google Scholar] [CrossRef]
- Revillini, D.; Gehring, C.A.; Johnson, N.C. The role of locally adapted mycorrhizas and Rhizobacteria in plant–soil feedback systems. Funct. Ecol. 2016, 30, 1086–1098. [Google Scholar] [CrossRef]
- Tushnytskyy, R.; Sahan, R.; Korotyeyeva, T. Effective Dynamic Interactive Component of Time-Varying Data Visualization. In Proceedings of the International Scientific and Technical Conference on Computer Sciences and Information Technologies, Lviv, Ukraine, 17–20 September 2019; Volume 2, pp. 180–185. [Google Scholar] [CrossRef]
- Fedasyuk, D.; Volochiy, S. Method of developing the behavior models in form of states diagram for complex information systems. In Proceedings of the International Conference on Computer Sciences and Information Technologies, CSIT, Lviv, Ukraine, 14–17 September 2015; Volume 2015, pp. 5–8. [Google Scholar] [CrossRef]
- Bernatska, N.; Dzhumelia, E.; Dyakiv, V.; Mitryasova, O.; Salamon, I. Web-Based Information and Analytical Monitoring System Tools—Online Visualization and Analysis of Surface Water Quality of Mining and Chemical Enterprises. Ecol. Eng. Environ. Technol. 2023, 24, 99–108. [Google Scholar] [CrossRef]
- Jakubowska, M.; Tratwal, A.; Kachel, M. The Weather as an Indicator for Decision-Making Support Systems Regarding the Control of Cutworms in Beets and Cereal Leaf Beetles in Cereals and Their Adoption in Farming Practice. Agronomy 2023, 13, 786. [Google Scholar] [CrossRef]
- Nyéki, A.; Neményi, M. Crop Yield Prediction in Precision Agriculture. Agronomy 2022, 12, 2460. [Google Scholar] [CrossRef]
- Liu, K.; Mu, Y.; Chen, X.; Ding, Z.; Song, M.; Xing, D.; Li, M. Towards Developing an Epidemic Monitoring and Warning System for Diseases and Pests of Hot Peppers in Guizhou, China. Agronomy 2022, 12, 1034. [Google Scholar] [CrossRef]
- Pohrebennyk, V.; Karpinski, M.; Dzhumelia, E.; Klos-Witkowska, A.; Falat, P. Water bodies pollution of the mining and chemical enterprise. In Proceedings of the International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 8 July 2018; Volume 18, pp. 1035–1042. [Google Scholar] [CrossRef]
- Order of the Cabinet of Ministers of Ukraine "On approval of the project of restoration of ecological balance and reclamation of lands damaged by mining operations of the Yavoriv State Mining and Chemical Enterprise "Sirka". Dated 24 February 2003, No. 87-r. Available online: http://consultant.parus.ua/?doc=06UVG2D895 (accessed on 24 March 2023). (In Ukrainian).
- Herenchuk, K.I.; Burov, V.S.; Bogutsky, A.B.; Demydiuk, M.S.; Tsys, P.M.; Prots-Kravchuk, H.L.; Shtohryn, O.D.; Berezhnyi, I.V.; Shyshova, Y.I.; Shabliy, O.I.; et al. Nature of Lviv Region; Higher school, Lviv University Publishing House: Lviv, Ukraine, 1972; p. 151. (In Ukrainian) [Google Scholar]
- Pohrebennyk, V.; Dzhumelia, E. Environmental assessment of the impact of tars on the territory of the Rozdil state mining and chemical enterprise “Sirka” (Ukraine). In Studies in Systems, Decision and Control, T. 1, Vol. 198: Sustainable Production: Novel Trends in Energy, Environment and Material Systems; Springer: Cham, Switzerland, 2020; Volume 198, pp. 201–214. [Google Scholar]
- Javorskyj, I.; Yuzefovych, R.; Lychak, O.; Kurapov, P. Hilbert Transform for Analysis of Daily Changes of the Earth Magnetic Field. In Proceedings of the 2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT), Lviv, Ukraine, 19–21 May 2021; pp. 181–185. [Google Scholar] [CrossRef]
- Trogisch, S.; Schuldt, A.; Bauhus, J.; Blum, J.A.; Both, S.; Buscot, F.; Castro-Izaguirre, N.; Chesters, D.; Durka, W.; Eichenberg, D.; et al. Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecol. Evol. 2017, 7, 10652–10674. [Google Scholar] [CrossRef] [PubMed]
- Flinn, K.M.; Vellend, M.; Marks, P.L. Environmental causes and consequences of forest clearance and agricultural abandonment in central New York, USA. J. Biogeogr. 2005, 32, 439–452. [Google Scholar] [CrossRef]
- Curatola Fernández, G.F.; Obermeier, W.A.; Gerique, A.; López Sandoval, M.F.; Lehnert, L.W.; Thies, B.; Bendix, J. Land Cover Change in the Andes of Southern Ecuador—Patterns and Drivers. Remote Sens. 2015, 7, 2509–2542. [Google Scholar] [CrossRef]
- Hui, G.; Zhang, G.; Zhao, Z.; Yang, A. Methods of Forest Structure Research: A Review. Curr. For. Rep. 2019, 5, 142–154. [Google Scholar] [CrossRef]
- Buzuk, G.; Sozinov, O. Regression analysis in phytoindication (on the example of environmental scales by D.N. Tsyganov). In Botany (Research): Collection of Scientific Papers; Experiment Institute, bot. NAS of Belarus: Minsk, Belarus, 2009; Volume 37, pp. 356–362. (In Russian) [Google Scholar]
- Polechońska, L.; Samecka-Cymerman, A.; Dambiec, M. Changes in growth rate and macroelement and trace element accumulation in Hydrocharis morsus-Ranae L. during the growing season in relation to environmental contamination. Environ. Sci. Pollut. Res. 2017, 24, 5439–5451. [Google Scholar] [CrossRef]
- Jun, S.; Kochan, O.; Kochan, R. Thermocouples with built-in self-testing. Int. J. Thermophys. 2016, 37, 37. [Google Scholar] [CrossRef]
- Kochan, R.; Kochan, O.; Chyrka, M.; Vasylkiv, N. Precision data acquisition (DAQ) module with remote reprogramming. In Proceedings of the 2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Sofia, Bulgaria, 5–7 September 2005; pp. 279–282. [Google Scholar]
- Hu, Z.; Dychka, I.; Sulema, Y.; Radchenko, Y. Graphical data steganographic protection method based on bits correspondence scheme. Int. J. Intell. Syst. Appl. 2017, 9, 34–40. [Google Scholar] [CrossRef]
- Paul, E.A. Soil Microbiology, ecology, and biochemistry. In Soil Microbiology, Ecology and Biochemistry; Elsevier: London, UK, 2015; pp. 1–14. [Google Scholar]
- Maryskevych, O.; Shpakivska, I.; Didukh, O. Formation of soils within the technogenic landscape of Yavoriv SMCE “Sirka”. Sci. Bull. Chernivtsi Univ. Biol. 2005, 251, 175–185. (In Ukrainian) [Google Scholar]
- Kopii, M.L. Phytomeliorative role of vegetation in the reproduction of devastated lands within the sulfur deposits of the Western Forest-Steppe. In Candidate of Agricultural Sciences; Zhytomyr National Agroecological University: Zhytomyr, Ukraine, 2018. (In Ukrainian) [Google Scholar]
- Kucheriavyi, V.P.; Kopii, M.L. Analysis of physiological changes of plants in the conditions of disturbed lands of Yavoriv sulfur quarry. Sci. Bull. NLTU Ukr. 2015, 25, 166–173. (In Ukrainian) [Google Scholar]
- Bilay, V. Methods of Experimental Mycology: A Handbook; Naukova dumka: Kyiv, Ukraine, 1982; p. 550. (In Russian) [Google Scholar]
- Samson, R.; Hoekstra, E.; Frisvad, J. Introduction to Food and Airborne Fungi, 7th ed.; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2004; p. 384. [Google Scholar]
- Domsch, K.; Gams, W.; Anderson, T. Compendium of Soil Fungi. Vol. 1–2; Academic Press: London, UK, 1980; p. 839. ISBN 9780122204012. [Google Scholar]
- O’Donnell, K.; Lutzoni, F.M.; Ward, T.J.; Benny, G.L. Evolutionary relationships among mucoralean fungi (Zygomycota): Evidence for family polyphyly on a large scale. Mycologia 2001, 93, 286–297. [Google Scholar] [CrossRef]
- Leontiev, D.V. Floristic Analysis in Mycology; Osnova: Kharkiv, Ukraine, 2017; p. 160. (In Ukrainian) [Google Scholar]
- Mirchink, T.G. Soil Mycology; MSU Publishing House: Moskva, Russia, 1988; p. 220. (In Russian) [Google Scholar]
- Kirk, P.; Cannon, P.; Minter, D.; Stalpers, J. Ainsworth and Bisby’s Dictionary of the Fungi, 10th ed.; Cab International: Wallingford, UK, 2008; p. 771. [Google Scholar]
- Bilay, V.I.; Ellanskaya, I.A.; Kirilenko, T.S. Soil Micromycetes: Monography; Naukova dumka: Kyiv, Ukraine, 1984; p. 264. (In Russian) [Google Scholar]
- Kirilenko, T.S. Atlas of Genera of Soil Fungi; Naukova dumka: Kyiv, Ukraine, 1977; p. 128. (In Russian) [Google Scholar]
- Pidoplichko, N.M. Penicilli (Keys for Species Identification); Naukova dumka: Kyiv, Ukraine, 1972; p. 192. (In Russian) [Google Scholar]
- Lincoln, T.; Eduardo, Z. Plant Physiology, 5th ed.; Oxford University Press: Oxford, UK, 2010; p. 782. [Google Scholar]
- Corporate standard 02.02-37-476:2006; Forest Inventory Sample Plots. Establishing Method, Valid from 1 May 2007; Ministry of Agrarian Policy of Ukraine: Kyiv, Ukraine, 2006. (In Ukrainian)
- Forest, 2017. Forest Resources State Agency of Ukraine—Renewed 2017. Available online: http://dklg.kmu.gov.ua/forest/control/uk/index (accessed on 10 March 2023). (In Ukrainian)
- Krynytskyi, H.T.; Lakyda, I.P.; Marchuk, Y.M.; Tkach, V.P.; Polyakova, L.V. Forests and forestry in Ukraine. Sci. Bull. UNFU 2017, 27, 10–15. [Google Scholar]
- Tryfanova, M.V.; Kunach, O.M.; Zhukov, O.V. Research of Consortia Relationships in Biogeocenoses and Nature Protection; DNU: Dnipropetrovsk, Ukraine, 2015; p. 111. [Google Scholar]
- Didukh, Y.P. A development strategy for geobotany in Ukraine Ukr. Bot. J. 2014, 71, 399–411. [Google Scholar] [CrossRef]
- Blinkova, O.; Ivanenko, O. Co-adaptive system of tree vegetation and wood-destroying (xylotrophic) fungi in artificial phytocoenoses. For. J. 2014, 60, 168–176. [Google Scholar]
- National Atlas of Ukraine; Chief, L.H. (Ed.) Rudenko: Kyiv, Ukraine, 2007; p. 440. (In Ukrainian) [Google Scholar]
- Mosyakin, S.L.; Fedoronchuk, N.M. Vascular Plants of Ukraine: A Nomenclatural Checklist; MG Kholodny Institute of Botany of the National Academy of Sciences of Ukraine: Kyiv, Ukraine, 1999; p. 345. [Google Scholar]
- Deacon, J.W. Modern Mycology, 3rd ed.; Blackwell Science: Oxford, UK, 1997; p. 303. [Google Scholar]
- Kopii, M.L.; Oliferchuk, V.P. Mycological structure of soil within the formed ecotopes of disturbed landscapes of Yavoriv sulfur quarry. Sci. Bull. NLTU Ukr. 2016, 26, 174–181. (In Ukrainian) [Google Scholar]
- Kopii, M.L.; Oliferchuk, V.P.; Kopii, L.I. Comparative characteristics of the mycological structure of sulfur quarries in the Lviv region. Sci. Bull. NLTU Ukr. 2017, 27, 95–99. (In Ukrainian) [Google Scholar]
- Zhdanova, N.N.; Vasylevskaia, A.P. Melanin-Containing Mushrooms in Extreme Conditions; Naukova dumka: Kyiv, Ukraine, 1988; p. 196. (In Russian) [Google Scholar]
- Levyk, V.; Maryskevych, O.; Brzezińska, M.; Włodarczyk, T. Dehydrogenase activity of technogenic soils of former sulphur mines (Yavoriv and Nemyriv, Ukraine). Int. Agrophysics 2007, 21, 255–260. [Google Scholar]
- Shkaruba, A.; Skryhan, H.; Likhacheva, O.; Katona, A.; Maryskevych, O.; Kireyeu, V.; Sepp, K.; Shpakivska, I. Development of sustainable urban drainage systems in Eastern Europe: An analytical overview of the constraints and enabling conditions. J. Environ. Plann. Manag. 2021, 64, 2435–2458. [Google Scholar] [CrossRef]
- Taras, U.M. Restoration of Plant Communities on the Devastated Lands of Yavoriv Sulfur Quarry; Candidate of Agricultural Sciences; State University National Forestry University of Ukraine: Lviv, Ukraine, 2016. (In Ukrainian) [Google Scholar]
- Kucheriavyi, V.P.; Kopii, M.L. Prospects for reproduction and recreational use of disturbed lands as a result of sulfur mining (on the example of the territory of Yavoriv sulfur quarry). Sci. Work. For. Acad. Sci. Ukr. 2015, 13, 167–172. (In Ukrainian) [Google Scholar]
- Vinohradov, A.P. The average content of chemical elements in the main types of igneous rocks of the earth’s crust. Geochemistry 1962, 7, 555–572. (In Russian) [Google Scholar]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the elements in some major units of the earth’s crust. Bull. Geol. Soc. of Amer. 1961, 72, 175–190. [Google Scholar] [CrossRef]
- Kopii, M.L.; Marutiak, S.B.; Kopii, L.I. Analysis of the morphological structure and chemical composition of disturbed soils within the Novorozdilskyi SMCE “Sirka”. Sci. Bull. NLTU Ukr. 2016, 26, 212–219. (In Ukrainian) [Google Scholar]
- Worrall, R.; Neil, D.; Brereton, D.; Mulligan, D. Towards a sustainability criteria and indicators framework for legacy mine land. J. Clean. Prod. 2009, 17, 1426–1434. [Google Scholar] [CrossRef]
- Bashutska, U.B. Successions of Vegetation of Waste Heaps of Mines of the Chervonograd Mining Area: Monograph; NLTU of Ukraine: Lviv, Ukraine, 2006; p. 180. (In Ukrainian) [Google Scholar]
- Hendrychová, M.; Kabrna, M. An analysis of 200-year-long changes in a landscape affected by large-scale surface coal mining: History, present and future. Appl. Geog. 2016, 74, 151–159. [Google Scholar] [CrossRef]
- Kubit, O.E.; Pluhar, C.J.; De Graff, J.V. A model for prioritizing sites and reclamation methods at abandoned mines. Environ. Earth Sci. 2015, 73, 7915–7931. [Google Scholar] [CrossRef]
- Cueva, V.P. Knowledge about mine legacies, international best practice standards and mine closure regulation in the USA and El Salvador. In An Assessment of Mine Legacies and How to Prevent Them; Springer International Publishing: Cham, Switzerland, 2017; pp. 5–12. [Google Scholar]
- Kochan, R.; Zawislak, S.; Bubela, T.; Ruda, M.; Boyko, T. Regeneration of forest stands by mycorrhiza to promote sustainable development of post-technogenic landscapes. In Proceedings of the International Multidisciplinary Scientific Geo Conference Surveying Geology and Mining Ecology Management, SGEM, Albena, Bulgaria, 30 June–6 July 2019; Volume 19, pp. 881–888. [Google Scholar] [CrossRef]
- Andreyuk, K.I.; Iutynska, G.O.; Antipchuk, A.F.; Valagurova, O.V.; Kozyrytska, V.E.; Ponomarenko, S.P. Functioning of Microbial Coenoses of Soil in the Conditions of Anthropogenic Loading; Oberehy: Kyiv, Ukraine, 2001; p. 233. (In Ukrainian) [Google Scholar]
- Brovko, F.M. Forest Reclamation of Dump Landscapes of the Dnieper Upland of Ukraine: Monograph; Aristey: Kyiv, Ukraine, 2009; p. 263. (In Ukrainian) [Google Scholar]
- Larondelle, N.; Haase, D. Valuing post-mining landscapes using an ecosystem services approach—An example from Germany. Ecol. Ind. 2012, 18, 567–574. [Google Scholar] [CrossRef]
- Kuter, N. Reclamation of degraded landscapes due to opencast mining. In Advances in Landscape Architecture; Özyavuz, M., Ed.; InTech: Rijeka, Croatia, 2013; Available online: https://www.intechopen.com/chapters/45415 (accessed on 10 March 2023).
- Dong, L.; Deng, S.; Wang, F. Some developments and new insights for environmental sustainability and disaster control of tailings dam. J. Clean. Prod. 2020, 269, 122270. [Google Scholar] [CrossRef]
- Dong, L.; Tong, X.; Li, X.; Zhou, J.; Wang, S.; Liu, B. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. J. Clean. Prod. 2019, 210, 1562–1578. [Google Scholar] [CrossRef]
- Maria, D.A.; Acker, V.K. Turning industrial residues into resources: An environmental impact assessment of goethite valorization. Engineering 2018, 4, 421–429. [Google Scholar] [CrossRef]
- Zafar, S.; Aqil, F.; Ahmad, I. Metal tolerance and biosorption potential of filamentous fungiisolated frommetal contaminated agricultural soil. Bioresour. Technol. 2007, 98, 2557–2561. [Google Scholar] [CrossRef]
- John, T.V.; Coleman, D.C. The role of mycorrhizae in plant ecology. Can. J. Bot. 1983, 61, 1005–1014. [Google Scholar] [CrossRef]
- Caravaca, F.; Figueroa, D.; Azcón-Aguilar, C.; Barea, J.; Roldán, A. Medium-term effects of mycorrhizal inoculation and composted municipal waste addition on the establishment of two Mediterranean shrub species under semiarid field conditions. Agric. Ecosyst. Environ. 2003, 97, 95–105. [Google Scholar] [CrossRef]
- Nazarovets, U.R.; Oliferchuk, V.P.; Kopii, L.I.; Kopii, M.L. Successions of phytocenoses within Podorozhnensky sulfur quarry. Agroecol. J. 2017, 27, 121–127. (In Ukrainian) [Google Scholar] [CrossRef]
- Bubela, T.; Stolyarchuk, P.; Mykyychuk, M.; Basalkevych, O. Admittance method application in the maintenance of ecomonitoring information system for soil parameters. In Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems, Prague, Czech Republic, 15–17 September 2011; pp. 97–100. [Google Scholar]
- Cunningham, S.D.; Berti, W.R.; Huang, J.W. Phytoremediation of contaminated soils. Trends Biotechnol. 1995, 9, 393–397. [Google Scholar] [CrossRef]
- Raskin, I.; Smith, R.D.; Salt, D.E. Phytoremediation of metals: Using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 1997, 2, 221–226. [Google Scholar] [CrossRef]
- Beliuchenko, I.S. Complex compost and ecological niches of living organisms in the agro-landscape. Sci. J. KubSAU 2014, 101, 1005–1031. (In Russian) [Google Scholar]
- Yatsuk, V.; Bubela, T.; Pokhodylo, Y.; Yatsuk, Y.; Kochan, R. Improvement of Data Acquisition for the Measurement of Physical-chemical Environmental Properties. In Proceedings of the 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, (IDAACS 2017), Bukharest, Romania, 21–23 September 2017; pp. 41–46. [Google Scholar]
- Obshta, A.; Bubela, T.; Ruda, M.; Kochan, R. The model of environmental assessment of complex landscape systems. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. SGEM 2018, 18, 973–980. [Google Scholar]
- Suding, K.N.; Gross, K.L.; Houseman, G.R. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 2004, 19, 46–53. [Google Scholar] [CrossRef]
- Rodriguez, J.P.; Keith, D.A.; Rodrguez-Clark, K.M.; Murray, N.J.; Nicholson, E.; Regan, T.J.; Miller, R.M.; Barrow, E.G.; Bland, L.M.; Boe, K.; et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140003. [Google Scholar] [CrossRef]
- Steinera, M.; Linkovb, I.; Yoshida, S. The role of fungi in the transfer and cycling of radionuclides in forest ecosystems. J. Environ. Radioact. 2002, 58, 217–241. [Google Scholar] [CrossRef]
- Querejeta, J.I.; Roldan, A.; Albaladejo, J.; Castillo, V. The role of mycorrhize, site preparation, and organic amendment in the afforestation of a semiarid mediterranean site with Pinus halepensis. For. Sci. 1998, 2, 203–211. [Google Scholar]
Types of Soil | Season | N | Sorensen Species Diversity Index | Simpson | Types of Soil | Season |
---|---|---|---|---|---|---|
Embryozems | 2019 | 21 | 9.34 | 0.011 | 1.02 | 0.38 |
2020 | 24 | 9.47 | 0.014 | 1.03 | 0.34 | |
2021 | 27 | 11.24 | 0.102 | 2.37 | 0.73 | |
Zonal soil | 2019 | 35 | 13.56 | 0.087 | 2.76 | 0.79 |
2020 | 40 | 16.64 | 0.066 | 3.07 | 0.79 | |
2021 | 41 | 16.91 | 0.068 | 3.12 | 0.84 |
Species Name of Seedlings | Ratios (Processed/Unprocessed) | ||
---|---|---|---|
2017 | 2019 | 2021 | |
Q. robur | 3.7 | 4.1 | 4.3 |
P. sylvestris | 2.5 | 2.7 | 2.9 |
R. pseudoacacia | 1.9 | 2.7 | 4.0 |
B. pendula Roth. | 2.6 | 3.2 | 3.7 |
P. cerasifera | 2.8 | 3.6 | 4.5 |
S. aucuparia | 2.2 | 2.6 | 2.8 |
H. rhamnoides | 2.4 | 3.1 | 4.3 |
R. canina | 2.8 | 2.9 | 3.0 |
No | Indicator | Seedlings | F | Reliability of the Experiment | |
---|---|---|---|---|---|
Processed | Unprocessed | ||||
1 | Raw mass, mg | 1242 | 598 | 152.437 | p > 0.01 |
2 | Absolutely dry weight, mg | 345 | 155 | 35.648 | p > 0.01 |
3 | Nitrogen, % to absolutely dry weight | 1.78 | 1.88 | 2.475 | p > 0.01 |
4 | Nitrogen in one seedling, mg | 5.75 | 2.87 | 4.368 | p > 0.01 |
5 | Phosphorus, % to absolutely dry weight | 0.185 | 0.097 | 0.6158 | p > 0.01 |
6 | Phosphorus in one seedling, mg | 0.60 | 0.15 | 0.246 | p > 0.01 |
7 | Potassium, % to absolutely dry weight | 0.66 | 0.62 | 0.3478 | p > 0.01 |
8 | Potassium in one seedling, mg | 2.17 | 0.96 | 0.981 | p > 0.01 |
Species Name of Seedlings | Height Increase, cm | Growth of Processed/Growth of Unprocessed, Times | |||
---|---|---|---|---|---|
Unprocessed | Processed | ||||
h | p, 95% | h | p, 95% | ||
Q. robur | 4.19 | 0.37 | 10.64 | 0.48 | 2.5 |
P. sylvestris | 5.02 | 0.32 | 10.33 | 0.38 | 2.1 |
R. pseudoacacia | 10.71 | 0.31 | 31.81 | 0.87 | 3.0 |
B. pendula Roth | 13.38 | 1.04 | 34.40 | 1.35 | 2.6 |
P. cerasifera | 6.76 | 0.48 | 22.41 | 0.44 | 3.3 |
S. aucuparia | 7.87 | 0.46 | 23.29 | 0.52 | 3.0 |
H. rhamnoides | 5.99 | 0.44 | 14.62 | 0.42 | 2.4 |
R. canina | 4.69 | 0.44 | 14.54 | 0.52 | 3.1 |
Species Name of Seedlings | Plant Height, cm | |||
---|---|---|---|---|
Unprocessed | Processed | |||
H | p, 95% | H | p, 95% | |
Q. robur | 13.76 | 0.37 | 20.44 | 0.48 |
P. sylvestris | 15.64 | 0.33 | 21.22 | 0.34 |
R. pseudoacacia | 31.07 | 0.33 | 52.44 | 0.79 |
B. pendula Roth. | 32.95 | 0.98 | 54.18 | 1.24 |
P. cerasifera | 22.41 | 0.34 | 37.90 | 0.32 |
S. aucuparia | 25.08 | 0.32 | 40.58 | 0.39 |
H. rhamnoides | 20.62 | 0.33 | 29.52 | 0.40 |
R. canina | 14.66 | 0.31 | 24.76 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, C.; Ruda, M.; Dzhumelia, E.; Shybanova, A.; Kochan, O.; Levkiv, M. Restoring Soil Cover and Plant Communities with Arbuscular Mycorrhizal Fungi as an Essential Component of DSS for Environmental Safety Management in Post-Industrial Landscapes. Agronomy 2023, 13, 1346. https://doi.org/10.3390/agronomy13051346
Shu C, Ruda M, Dzhumelia E, Shybanova A, Kochan O, Levkiv M. Restoring Soil Cover and Plant Communities with Arbuscular Mycorrhizal Fungi as an Essential Component of DSS for Environmental Safety Management in Post-Industrial Landscapes. Agronomy. 2023; 13(5):1346. https://doi.org/10.3390/agronomy13051346
Chicago/Turabian StyleShu, Chang, Mariia Ruda, Elvira Dzhumelia, Alla Shybanova, Orest Kochan, and Mariana Levkiv. 2023. "Restoring Soil Cover and Plant Communities with Arbuscular Mycorrhizal Fungi as an Essential Component of DSS for Environmental Safety Management in Post-Industrial Landscapes" Agronomy 13, no. 5: 1346. https://doi.org/10.3390/agronomy13051346
APA StyleShu, C., Ruda, M., Dzhumelia, E., Shybanova, A., Kochan, O., & Levkiv, M. (2023). Restoring Soil Cover and Plant Communities with Arbuscular Mycorrhizal Fungi as an Essential Component of DSS for Environmental Safety Management in Post-Industrial Landscapes. Agronomy, 13(5), 1346. https://doi.org/10.3390/agronomy13051346