Effects of Mineral Fertilization and Organic Amendments on Rice Grain Yield, Soil Quality and Economic Benefit in Newly Cultivated Land: A Study Case from Southeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Climate
2.2. Experiment Design
2.3. Sampling and Measurement
2.4. Data Analysis
3. Results
3.1. Rice Grain Yield
3.2. SOM Fractions
3.3. Soil Nutrients
3.4. Soil Enzyme Activity
3.5. Influencing Factors of Yield Response to Soil Properties
3.6. SQI
3.7. Economy Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, H. Analysis and countermeasures on effective land use of rural residential area in Jinan, Shandong Province. Chin. J. Popul. Resour. Environ. 2006, 4, 41–44. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Otremba, K.; Kozłowski, M.; Tatuśko-Krygier, N.; Pająk, M.; Kołodziej, B.; Bryk, M. Impact of alfalfa and NPK fertilization in agricultural reclamation on the transformation of Technosols in an area following lignite mining. Land Degrad. Dev. 2021, 32, 1179–1191. [Google Scholar] [CrossRef]
- Jacinthe, P.; Lal, R. Tillage effects on carbon sequestration and microbial biomass in reclaimed farmland soils of southwestern Indiana. Soil Sci. Soc. Am. J. 2009, 73, 605–613. [Google Scholar] [CrossRef]
- Shen, X.; Wang, L.; Wu, C.; Lv, T.; Lu, Z.; Luo, W.; Li, G. Local interests or centralized targets? How China’s local government implements the farmland policy of Requisition–Compensation Balance. Land Use Policy 2017, 67, 716–724. [Google Scholar] [CrossRef]
- Chen, W.; Ye, X.; Li, J.; Fan, X.; Liu, Q.; Dong, W. Analyzing requisition–compensation balance of farmland policy in China through telecoupling: A case study in the middle reaches of Yangtze River Urban Agglomerations. Land Use Policy 2019, 83, 134–146. [Google Scholar] [CrossRef]
- Li, X.; Su, Y.; Ahmed, T.; Ren, H.; Javed, M.R.; Yao, Y.; An, Q.; Yan, J.; Li, B. Effects of different organic fertilizers on improving soil from newly reclaimed land to crop soil. Agriculture 2021, 11, 560. [Google Scholar] [CrossRef]
- Xu, X.; Schaeffer, S.; Sun, Z.; Zhang, J.; An, T.; Wang, J. Carbon stabilization in aggregate fractions responds to straw input levels under varied soil fertility levels. Soil Tillage Res. 2020, 199, 104593. [Google Scholar] [CrossRef]
- Biratu, G.K.; Elias, E.; Ntawuruhunga, P. Soil fertility status of cassava fields treated by integrated application of manure and NPK fertilizer in Zambia. Environ. Syst. Res. 2019, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, J.; Shen, J.; Chen, D.; Li, Y.; Jiang, B.; Wu, J. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment. Agric. Ecosyst. Environ. 2018, 262, 83–96. [Google Scholar] [CrossRef]
- Doan, T.T.; Henry-Des-Tureaux, T.; Rumpel, C.; Janeau, J.; Jouquet, P. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Weerasekara, C.S.; Udawatta, R.P.; Gantzer, C.J.; Kremer, R.J.; Jose, S.; Veum, K.S. Effects of cover crops on soil quality: Selected chemical and biological parameters. Commun. Soil Sci. Plant Anal. 2017, 48, 2074–2082. [Google Scholar] [CrossRef]
- Bowles, T.M.; Jilling, A.; Morán-Rivera, K.; Schnecker, J.; Grandy, A.S. Crop rotational complexity affects plant-soil nitrogen cycling during water deficit. Soil Biol. Biochem. 2022, 166, 108552. [Google Scholar] [CrossRef]
- Li, Z.; Liu, M.; Wu, X.; Han, F.; Zhang, T. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China. Soil Tillage Res. 2010, 106, 268–274. [Google Scholar] [CrossRef]
- He, H.; Li, W.; Zhang, Y.; Cheng, J.; Jia, X.; Li, S.; Yang, H.; Chen, B.; Xin, G. Effects of Italian ryegrass residues as green manure on soil properties and bacterial communities under an Italian ryegrass (Lolium multiflorum L.)-rice (Oryza sativa L.) rotation. Soil Tillage Res. 2020, 196, 104487. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Xin, G.R.; Yuan, J.G.; Fang, W.; Li, G.X. Ecological fertilization: An example for paddy rice performed as a crop rotation system in southern China. In Fertilizers: Properties, Applications and Effects; Elsworth, L.R., Paley, W.O., Eds.; Nova Science Publishers: New York, NY, USA, 2008; pp. 1–28. [Google Scholar]
- Trillas, M.I.; Segarra, G. Chapter 8 interactions between nonpathogenic fungi and plants. Adv. Bot. Res. 2009, 51, 321–359. [Google Scholar] [CrossRef]
- Boluda, R.; Roca-Pérez, L.; Iranzo, M.; Gil, C.; Mormeneo, S. Determination of enzymatic activities using a miniaturized system as a rapid method to assess soil quality. Eur. J. Soil Sci. 2014, 65, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhou, W.; Li, S.; He, P.; Liang, G.; Lv, J.; Jin, H. Assessing soil quality of gleyed paddy soils with different productivities in subtropical China. Catena 2015, 133, 293–302. [Google Scholar] [CrossRef]
- Jones, D.L.; Willett, V.B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem. 2006, 38, 991–999. [Google Scholar] [CrossRef]
- Xiong, Y.; Xia, H.; Li, Z.A.; Cai, X.A.; Fu, S. Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant Soil 2008, 304, 179–188. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Blair, G.J.; Lefroy, R.; Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Watt, G.W.; Chrisp, J.D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006–2008. [Google Scholar] [CrossRef]
- Yang, X.Z.; Chen, Z.H.; Zhang, Y.L.; Chen, L.J. Effect of exogenous phytase addition on soil phosphatase activities: A Fluorescence Spectroscopy study. Spectrosc. Spectr. Anal. 2015, 35, 1294–1299. [Google Scholar]
- Frankeberger, W.T.; Johanson, J.B. Method of measuring invertase activity in soils. Plant Soil 1983, 74, 301–311. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 3–21. [Google Scholar]
- GB/T 28407-2012; Regulation for Gradation on Agriculture Land Quality. Standards Press of China: Beijing, China, 2012.
- Yuan, X.; Shao, Y.; Li, Y.; Liu, Y.; Wang, Y.; Wei, X.; Wang, X.; Zhao, Y. Cultivated land quality improvement to promote revitalization of sandy rural areas along the Great Wall in northern Shaanxi Province, China. J. Rural Stud. 2022, 93, 367–374. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [Green Version]
- Doltra, J.; Olesen, J.E. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. Eur. J. Agron. 2013, 44, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Verlinden, S.; Mcdonald, L.; Kotcon, J.; Childs, S. Long-term effect of manure application in a certified organic production system on soil physical and chemical parameters and vegetable yields. HortTechnology 2017, 27, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Evanylo, G.; Sherony, C.; Spargo, J.; Starner, D.; Brosius, M.; Haering, K. Soil and water environmental effects of fertilizer-, manure-, and compost-based fertility practices in an organic vegetable cropping system. Agric. Ecosyst. Environ. 2008, 127, 50–58. [Google Scholar] [CrossRef]
- Vanden Nest, T.; Vandecasteele, B.; Ruysschaert, G.; Cougnon, M.; Merckx, R.; Reheul, D. Effect of organic and mineral fertilizers on soil P and C levels, crop yield and P leaching in a long term trial on a silt loam soil. Agric. Ecosyst. Environ. 2014, 197, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhou, W.; Shen, J.; He, P.; Lei, Q.; Liang, G. A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China. Geoderma 2014, 235–236, 39–47. [Google Scholar] [CrossRef]
- Mi, W.; Gao, Q.; Xia, S.; Zhao, H.; Wu, L.; Mao, W.; Hu, Z.; Liu, Y. Medium-term effects of different types of N fertilizer on yield, apparent N recovery, and soil chemical properties of a double rice cropping system. Field Crops Res. 2019, 234, 87–94. [Google Scholar] [CrossRef]
- Selladurai, R.; Purakayastha, T.J. Effect of humic acid multinutrient fertilizers on yield and nutrient use efficiency of potato. J. Plant Nutr. 2016, 39, 949–956. [Google Scholar] [CrossRef]
- Wulanningtyas, H.S.; Gong, Y.; Li, P.; Sakagami, N.; Nishiwaki, J.; Komatsuzaki, M. A cover crop and no-tillage system for enhancing soil health by increasing soil organic matter in soybean cultivation. Soil Tillage Res. 2021, 205, 104749. [Google Scholar] [CrossRef]
- Hou, P.; Xue, L.; Wang, J.; Petropoulos, E.; Deng, X.; Qiao, J.; Xue, L.; Yang, L. Continuous milk vetch amendment in rice-fallow rotation improves soil fertility and maintains rice yield without increasing CH4 emissions: Evidence from a long-term experiment. Agric. Ecosyst. Environ. 2022, 325, 107774. [Google Scholar] [CrossRef]
- Nardi, S.; Morari, F.; Berti, A.; Tosoni, M.; Giardini, L. Soil organic matter properties after 40 years of different use of organic and mineral fertilisers. Eur. J. Agron. 2004, 21, 357–367. [Google Scholar] [CrossRef]
- Duval, M.E.; Galantini, J.A.; Iglesias, J.O.; Canelo, S.; Martinez, J.M.; Wall, L. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil Tillage Res. 2013, 131, 11–19. [Google Scholar] [CrossRef]
- Gui, D.; Lei, J.; Mu, G.; Zeng, F. Effects of different management intensities on soil quality of farmland during oasis development in southern Tarim Basin, Xinjiang, China. Int. J. Sust. Dev. World Ecol. 2009, 16, 295–301. [Google Scholar] [CrossRef]
- Liang, X.; Yuan, Q.; Tan, X.; Chen, S. The conservation of collective-owned farmland via the transfer of development rights (TDR) in China--the case of Ecological Fruit Park in Guangzhou. J. Rural Stud. 2020, 78, 399–410. [Google Scholar] [CrossRef]
- Deng, Z.; Zhao, Q.; Bao, H.X.H. The impact of urbanization on farmland productivity: Implications for China’s Requisition–Compensation Balance of Farmland Policy. Land 2020, 9, 311. [Google Scholar] [CrossRef]
Parameter | Unit | Soil | Organic Manure | Humic Acid |
---|---|---|---|---|
pH | - | 6.70 | 7.43 | 6.15 |
OC | g kg−1 | 2.95 | 289.97 | 749.94 |
TN | g kg−1 | 0.22 | 14.38 | 9.03 |
AN | mg kg−1 | 13.7 | - | - |
TP | g kg−1 | 0.38 | 17.92 | 7.87 |
AP | mg kg−1 | 4.91 | - | - |
TK | g kg−1 | 10.8 | 33.0 | 1.3 |
AK | mg kg−1 | 217 | - | - |
Treatment | SOC | POC | PON | LOC | DOC | DON |
---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | |||||
CK | 2.65 ± 0.17 d | 0.77 ± 0.01 c | 0.06 ± 0.01 d | 1.10 ± 0.15 b | 34.4 ± 4.51 b | 4.94 ± 0.11 cd |
R | 3.61 ± 0.08 d | 1.06 ± 0.03 c | 0.08 ± 0.01 cd | 1.31 ± 0.04 a | 32.4 ± 3.05 b | 4.13 ± 0.41 d |
RR | 3.28 ± 0.24 d | 1.09 ± 0.06 c | 0.08 ± 0.01 cd | 1.16 ± 0.09 b | 37.6 ± 5.86 b | 5.88 ± 0.25 b |
RRM | 7.05 ± 0.12 c | 2.85 ± 0.05 b | 0.14 ± 0.02 bc | 1.36 ± 0.03 a | 54.1 ± 9.74 a | 5.73 ± 0.17 bc |
RRMO | 10.51 ± 0.34 b | 3.88 ± 0.53 a | 0.24 ± 0.05 a | 1.32 ± 0.01 a | 52.3 ± 5.16 a | 5.57 ± 0.31 bc |
RRMH | 13.02 ± 1.37 a | 3.28 ± 0.29 ab | 0.16 ± 0.02 b | 1.38 ± 0.05 a | 50.5 ± 7.82 a | 8.08 ± 0.43 a |
Treatment | TN | AN | NH4+-N | NO3−-N | AP | AK |
---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | |||||
CK | 0.13 ± 0.01 c | 42.9 ± 0.7 bc | 4.07 ± 0.40 c | 2.33 ± 0.02 a | 1.4 ± 0.2 d | 143 ± 2.6 ab |
R | 0.18 ± 0.01 c | 64.1 ± 7.5 a | 5.81 ± 0.75 bc | 2.34 ± 0.17 a | 3.2 ± 0.5 cd | 113 ± 10.5 bc |
RR | 0.21 ± 0.02 c | 35.6 ± 2.5 c | 4.40 ± 0.59 c | 2.21 ± 0.05 a | 3.3 ± 0.6 cd | 139 ± 13.4 ab |
RRM | 0.32 ± 0.01 b | 61.1 ± 11.1 ab | 11.20 ± 0.97 a | 2.22 ± 0.08 a | 5.5 ± 1.0 bc | 102 ± 10.4 c |
RRMO | 0.55 ± 0.05 a | 70.4 ± 8.9 a | 5.69 ± 0.45 bc | 2.23 ± 0.08 a | 22.8 ± 3.4 a | 160 ± 19.5 a |
RRMH | 0.45 ± 0.08 a | 73.0 ± 9.6 a | 6.35 ± 0.62 b | 2.24 ± 0.05 a | 7.8 ± 1.1 b | 43 ± 2.4 d |
Treatment | Revenue | Cost | Profit | |||||||
---|---|---|---|---|---|---|---|---|---|---|
USD ha−1 | Farmland (Grade) | Rice Production | Total | Land Reclamation | Fertilizer | Seed | Pesticide | Labor | Total | |
CK | 869,565 (Grade 9) | 0 | 869,565 | 217,391 | 0 | 0 | 0 | 0 | 217,391 | 652,174 |
R | 869,565 (Grade 9) | 859 | 870,424 | 217,391 | 0 | 348 | 67 | 1123 | 218,929 | 651,495 |
RR | 869,565 (Grade 9) | 706 | 870,271 | 217,391 | 0 | 609 | 67 | 1435 | 219,501 | 650,770 |
RRM | 978,261 (Grade 8) | 5166 | 983,427 | 217,391 | 2210 | 609 | 67 | 1565 | 221,841 | 761,586 |
RRMO | 1,086,957 (Grade7) | 5731 | 1,092,688 | 217,391 | 7644 | 609 | 67 | 4283 | 229,994 | 862,694 |
RRMH | 1,086,957 (Grade 7) | 5513 | 1,092,470 | 217,391 | 8297 | 609 | 67 | 2652 | 229,015 | 863,455 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, L.; Xu, J.; Cao, K.; Zhang, X.; Han, K.; Wang, J. Effects of Mineral Fertilization and Organic Amendments on Rice Grain Yield, Soil Quality and Economic Benefit in Newly Cultivated Land: A Study Case from Southeast China. Agronomy 2023, 13, 1361. https://doi.org/10.3390/agronomy13051361
Si L, Xu J, Cao K, Zhang X, Han K, Wang J. Effects of Mineral Fertilization and Organic Amendments on Rice Grain Yield, Soil Quality and Economic Benefit in Newly Cultivated Land: A Study Case from Southeast China. Agronomy. 2023; 13(5):1361. https://doi.org/10.3390/agronomy13051361
Chicago/Turabian StyleSi, Linlin, Jing Xu, Kai Cao, Xian Zhang, Kefeng Han, and Jianhong Wang. 2023. "Effects of Mineral Fertilization and Organic Amendments on Rice Grain Yield, Soil Quality and Economic Benefit in Newly Cultivated Land: A Study Case from Southeast China" Agronomy 13, no. 5: 1361. https://doi.org/10.3390/agronomy13051361
APA StyleSi, L., Xu, J., Cao, K., Zhang, X., Han, K., & Wang, J. (2023). Effects of Mineral Fertilization and Organic Amendments on Rice Grain Yield, Soil Quality and Economic Benefit in Newly Cultivated Land: A Study Case from Southeast China. Agronomy, 13(5), 1361. https://doi.org/10.3390/agronomy13051361