Hyphantria cunea (Drury) Showed a Stronger Oviposition Preference for Native Plants after Invading the Subtropical Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Specimens
2.2. Plant Material and Host Selection
2.3. Determination of Tropism of Y Tube in the Laboratory
2.4. Oviposition Host Selection in the Field
2.5. Extraction of Volatiles from Host Plants
2.6. Statistical Analysis
3. Results
3.1. Oviposition Trend Study
3.2. Components and Relative Contents of Volatiles in Five Host Plants
3.3. Identification and Analysis of Volatile Components among Different Host Plants
3.4. Fitting Analysis of Molecular Weight of Volatiles of Host Plants and Residence Number of H. cunea
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holland, J.N.; Buchanan, A.L.; Loubeau, R. Oviposition choice and larval survival of an obligately pollinating granivorous moth. Evol. Ecol. Res. 2004, 6, 607–618. [Google Scholar]
- Zhao, M.; Wickham, J.D.; Zhao, L.; Sun, J. Major ascaroside pheromone component asc-C5 influences reproductive plasticity among isolates of the invasive species pinewood nematode. Integr. Zool. 2021, 16, 893–907. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Wang, Y.; Zeng, B.; Liu, Q.; Zhang, Z. Genome Editing of Wnt-1 in Fall Webworm (Hyphantria cunea). Sci. Silvae Sin. 2017, 53, 119–127. [Google Scholar]
- Gencer, D.; Bayramoglu, Z.; Nalcacioglu, R.; Demirbag, Z.; Demir, I. Genome sequence analysis and organization of the Hyphantria cunea granulovirus (HycuGV-Hc1) from Turkey. Genomics 2019, 12, 459–466. [Google Scholar] [CrossRef]
- Zhang, P.; Li, K.F.; Wu, Y.L.; Liu, Q.Y.; Zhao, P.X.; Li, Y. Analysis and restoration of an ecological flow regime during the Coreius guichenoti spawning period. Ecol. Eng. 2018, 123, 74–85. [Google Scholar] [CrossRef]
- Feng, K.; Luo, J.; Ding, X.; Tang, F. Transcriptome analysis and response of three important detoxifying enzymes to Serratia marcescens Bizio (SM1) in Hyphantria cunea (Drury) (Lepidoptera, Noctuidae). Pestic. Biochem. Phys. 2021, 178, 104922. [Google Scholar] [CrossRef]
- Jiang, D.; Wu, S.; Tan, M.; Wang, Q.; Zheng, L.; Yan, S.C. The high adaptability of Hyphantria cunea larvae to cinnamic acid involves in detoxification, antioxidation and gut microbiota response. Pestic. Biochem. Phys. 2021, 174, 104805. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, L.; Chang, L.; Ma, M.; You, L.; Jiang, C.; Li, S.; Zhang, J. Bacillus thuringiensis cry1C expression from the plastid genome of poplar leads to high mortality of leaf-eating caterpillars. Tree Physiol. 2019, 39, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.N.; Zhang, S.F.; Li, X.W.; Cao, Y.; Liu, X.; Wang, Q.; Liu, Q.; Liu, H.; Hu, X.; Zhou, X.; et al. Fall webworm genomes yield insights into rapid adaptation of invasive species. Nat. Ecol. Evol. 2018, 3, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Yuan, Y.; Liu, X.; Zhang, J. Potential range expansion and niche shift of the invasive Hyphantria cunea between native and invasive countries. Ecol. Entomol. 2021, 46, 910–925. [Google Scholar] [CrossRef]
- Hao, C.J.; Li, J.Z.; Wang, Y.; Chen, Y.; Liu, F. The occurrence of Hyphantria cunea and its forecast for 2022. For. Pest. Dis. 2022, 41, 46–48. [Google Scholar]
- Chen, Y.F. Research on flexible traceability system of Carya cathayensis Quality based on block chain and big data. Internet Things-Neth. 2022, 117, 112–115. [Google Scholar]
- Jang, T.; Rho, M.S.; Koh, S.; Lee, K.P. Host-plant quality alters herbivore responses to temperature, a case study using the generalist Hyphantria cunea. Entomol. Exp. Appl. 2015, 154, 120–130. [Google Scholar] [CrossRef]
- Sun, L.; Peng, L.; Sun, S.; Yan, S.; Cao, C. Transcriptomic analysis of interactions between Hyphantria cunea larvae and nucleopolyhedrovirus, Hyphantria cunea-nucleopolyhedrovirus interactions. Pest. Manag. Sci. 2018, 75, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Xu, F.; Wu, X. Differentially Expressed Proteins from the Peritrophic Membrane Related to the Lethal, Synergistic Mechanisms Observed in Hyphantria cunea Larvae Treated with a Mixture of Bt and Chlorbenzuron. J. Insect Sci. 2017, 17, 61. [Google Scholar] [CrossRef]
- Huang, G.Y. Occurrence regularity of Hyphantria cunea in Jinshan District of Shanghai. For. Pest. Dis. 2022, 14, 27–31. [Google Scholar]
- Luo, L.P.; Wang, X.Y.; Yang, Z.Q.; Cao, L.M. Research progress in the management of fall webworm, Hyphantria cunea (Drury) (Lepidoptera, Arctiidae). J. Environ. Entomol. 2018, 40, 721–735. [Google Scholar]
- Wang, Y.; Zhang, S.F.; Xu, Y.; Fang, J.; Kong, X.; Liu, F.; Zhang, Z. Construction of the Expression Vector and RNAi Mediated by Bacteria Expressed dsRNA of Chitinase Gene from Hyphantria cunea. For. Res. 2019, 32, 1–8. [Google Scholar]
- Liu, X.L.; Zhang, J.; Yan, Q.; Miao, C.L.; Han, W.K.; Hou, W.; Yang, K.; Hansson, B.; Peng, Y.C.; Guo, J.M.; et al. The Molecular Basis of Host Selection in a Crucifer-Specialized Moth. Curr. Biol. 2020, 30, 4476–4482. [Google Scholar] [CrossRef]
- Topkara, E.F.; Yanar, O.; Solmaz, F.G. Effects of gallic acid and Zn, Cu, and Ni on antioxidant enzyme activities of Hyphantria cunea larvae infected with Bacillus thuringiensis. Ecotoxicology 2022, 31, 440–446. [Google Scholar] [CrossRef]
- Edosa, T.T.; Jo, Y.H.; Keshavarz, M.; Anh, Y.S. Current status of the management of fall webworm, Hyphantria cunea, Towards the integrated pest management development. J. Appl. Entomol. 2019, 143, 1–10. [Google Scholar] [CrossRef]
- Guo, X.; Yu, Q.; Chen, D.; Wei, J.; Yang, P.; Yu, J.; Wang, X.; Kang, L. 4-Vinylanisole is an aggregation pheromone in locusts. Nature 2020, 584, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Teng, X.; Luo, Q.; Sheng, Z.; Guo, X.; Wang, G.; Li, W.; Yuan, G. Flight and Walking Performance of Dark Black Chafer Beetle Holotrichia parallela (Coleoptera, Scarabaeidae) in the Presence of Known Hosts and Attractive Nonhost Plants. J. Insect Sci. 2019, 19, 14. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Liu, Y.N.; Geng, X.S.; Fang, L.X.; Zhang, S.K.; Zhang, W.; Shu, J.P.; Wang, H.J. Feeding rhythm of Anoplophora chinensis (Coleoptera, Cerambycidae) adults and their behavioral responses to two kinds of crude extracts from Melia azedarach. Chin. J. Ecol. 2020, 39, 1206–1213. [Google Scholar]
- Yanar, O.; Topkara, E. Synergistic Effects of Some Secondary Compounds Combined with Some Heavy Metals on Hyphantria cunea Drury (Lepidoptera, Arctiidae) Larvae. J. Entomol. Res. Soc. 2019, 21, 85–95. [Google Scholar]
- Duan, M.; Zhu, H.; Wang, H.; Guo, S.; Li, H.; Jiang, L.; Li, X.; Xie, G.; Ren, B. Effects of water deficiency on preference and performance of an insect herbivore Ostrinia furnacalis. Bull. Entomol. Res. 2021, 111, 595–604. [Google Scholar] [CrossRef]
- Sotelo-Cardona, P.; Chuang, W.P.; Lin, M.Y.; Chiang, M.Y.; Ramasamy, S. Oviposition preference not necessarily predicts offspring performance in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) on vegetable crops. Sci. Rep. 2021, 11, 15885. [Google Scholar] [CrossRef]
- Tang, R.; Zhang, F.; Zhang, Z.N. Electrophysiological Responses and Reproductive Behavior of Fall Webworm Moths (Hyphantria cunea Drury) are Influenced by Volatile Compounds from Its Mulberry Host (Morus alba L.). Insects 2016, 7, 19. [Google Scholar] [CrossRef]
- Guo, J.F.; Zhang, M.D.; Gao, Z.P.; Wang, D.J.; He, K.L.; Wang, Z.Y. Comparison of larval performance and oviposition preference of Spodoptera frugiperda among three host plants: Potential risks to potato and tobacco crops. Insect Sci. 2020, 28, 602–610. [Google Scholar] [CrossRef]
- Rojas, J.C.; Kolomiets, M.V.; Bernal, J.S. Nonsensical choices? Fall armyworm moths choose seemingly best or worst hosts for their larvae, but neonate larvae make their own choices. PLoS ONE 2018, 13, e0197628. [Google Scholar] [CrossRef]
- Peng, X.; Liu, L.; Huang, Y.X.; Wang, S.J.; Li, D.X.; Chen, S.T.; Simon, J.C.; Qu, M.J.; Chen, M.H. Involvement of chemosensory proteins in host plant searching in the bird cherry-oat aphid. Insect Sci. 2021, 28, 16. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Su, M.W.; Zhang, Z.N. Electroantennogram responses of an invasive species fall webworm (Hyphantria cunea) to host volatile compounds. CSB 2012, 57, 4560–4568. [Google Scholar] [CrossRef]
- Yang, F.; Sendi, J.J.; Johns, R.C.; Takeda, M. Haplotype diversity of mtCOI in the fall webworm Hyphantria cunea (Lepidoptera, Arctiidae) in introduced regions in China, Iran, Japan, Korea, and its homeland, the United States. Appl. Entomol. Zool. 2017, 52, 401–406. [Google Scholar] [CrossRef]
- Malo, E.A.; Rojas, J.C.; Gago, R.; Guerrero, A. Inhibition of the responses to sex pheromone of the fall armyworm, Spodoptera frugiperda. J. Insect Sci. 2013, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Q.; Wang, X.Y.; Zhang, L.N.; Zhang, Y.L. Research Advances of Chinese Major Forest Pests by Integrated Management Based on Biological Control. Chin. J. Biol. Control. 2018, 34, 163–183. [Google Scholar]
- Andrade, S.M.M.; Szczerbowski, D.; Vidal, D.M.; Allison, J.D.; Zarbin, P.H.G. Mate recognition by the green mate borer, Hedypathes betulinus (Coleoptera, Cerambycidae), The role of cuticular compounds. J. Insect Behav. 2019, 32, 120–133. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.Y.; Shen, H.X.; Hu, Q.; Fan, J.T. Oviposition preferences of Anoplophora glabripennis on three host plants and composition analysis of host plant volatiles. J. Zhejiang A&F Univ. 2017, 34, 1059–1064. [Google Scholar]
- Füerstenau, B.; Hilker, M. Cuticular hydrocarbons of Tribolium confusum larvae mediate trail following and host recognition in the ectoparasitoid Holepyris sylvanidis. J. Chem. Ecol. 2017, 43, 858–868. [Google Scholar] [CrossRef]
- Liu, X.Y.; Jiang, D.; Meng, Z.J.; Yan, S.C. Effects of Secondary Substances on Food Utilization by Hyphantria cunea Larvae. J. Northeast. For. Univ. 2020, 48, 99–103. [Google Scholar]
- Sun, S.; Sun, L.; Deng, Y.; Lin, F.; Nan, J. Observation of black-headed and red-headed races of Hyphantria cunea in the eastern US, with implications to populations in China. For. Pest. Dis. 2017, 36, 13–18. [Google Scholar]
- Bai, P.H.; Wang, H.M.; Liu, B.S.; Li, M.; Liu, B.M.; Gu, X.S.; Tang, R. Botanical Volatiles Selection in Mediating Electrophysiological Responses and Reproductive Behaviors for the Fall Webworm Moth Hyphantria cunea. Front. Physiol. 2020, 11, 486. [Google Scholar] [CrossRef] [PubMed]
- Han, S.J.; Wang, M.X.; Wang, Y.S.; Wang, Y.G.; Cui, L.; Han, B.Y. Exploiting push-pull strategy to combat the tea green leafhopper based on volatiles of Lavandula angustifolia and Flemingia macrophylla. J. Integr. Agr. 2020, 19, 193–203. [Google Scholar] [CrossRef]
- Qiu, L.M.; Liu, Q.Q.; Yang, X.J.; Huang, X.; Guan, R.; Liu, B.; He, Y.; Zhang, Z. Feeding and oviposition preference and fitness of the fall armyworm, Spodoptera frugiperda (Lepidoptera, Noctuidae), on rice and maize. Acta Entomol. Sinica 2020, 63, 604–612. [Google Scholar]
- Zhang, W.L.; Wang, Z.Q.; Bai, S.X.; Zhang, T.T.; He, K.L.; Wang, Z.Y. Screening of host plants preferred for oviposition by female adults of Ostrinia furnacalis (Lepidoptera, Crambidae) and their electrophysiological responses to volatile components of Humulus scandens (Cannabaceae). Acta. Entomol. Sinica 2018, 61, 224–231. [Google Scholar]
- Bolter, C.J.; Dicke, M.; Loon, J.; Visser, J.H.; Posthumus, M.A. Attraction of Colorado Potato Beetle to Herbivore-Damaged Plants during Herbivory and after Its Termination. J. Chem. Ecol. 1997, 23, 1003–1023. [Google Scholar] [CrossRef]
- Dicke, M.; Beek, T.A.V.; Posthumus, M.A.; Dom, N.B.; Bokhoven, H.V.; Groot, A.D. Isolation and identification of volatile kairomone that affects acarine predatorprey interactions Involvement of host plant in its production. J. Chem. Ecol. 1990, 16, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.; Botti, F.; Galletti, G.; Bocchini, P.; Bazzocchi, G.; Baronio, P.; Burgio, G. The influence of pine volatile compounds on the olfactory response by Neodiprion sertifer (Geoffroy) females. J. Chem. Ecol. 2010, 36, 1114–1121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yin, H.; Li, Y.; Wang, Y.; Yu, W.; Feng, B.; Zhang, S. Hyphantria cunea (Drury) Showed a Stronger Oviposition Preference for Native Plants after Invading the Subtropical Region of China. Agronomy 2023, 13, 1360. https://doi.org/10.3390/agronomy13051360
Li Z, Yin H, Li Y, Wang Y, Yu W, Feng B, Zhang S. Hyphantria cunea (Drury) Showed a Stronger Oviposition Preference for Native Plants after Invading the Subtropical Region of China. Agronomy. 2023; 13(5):1360. https://doi.org/10.3390/agronomy13051360
Chicago/Turabian StyleLi, Zikun, Hao Yin, Yue Li, Yiping Wang, Wenxian Yu, Bojie Feng, and Shouke Zhang. 2023. "Hyphantria cunea (Drury) Showed a Stronger Oviposition Preference for Native Plants after Invading the Subtropical Region of China" Agronomy 13, no. 5: 1360. https://doi.org/10.3390/agronomy13051360
APA StyleLi, Z., Yin, H., Li, Y., Wang, Y., Yu, W., Feng, B., & Zhang, S. (2023). Hyphantria cunea (Drury) Showed a Stronger Oviposition Preference for Native Plants after Invading the Subtropical Region of China. Agronomy, 13(5), 1360. https://doi.org/10.3390/agronomy13051360