Molecular Identification and Phylogenetic Diversity of Native Entomopathogenic Nematodes, and Their Bacterial Endosymbionts, Isolated from Banana and Plantain Crops in Western Colombia
Abstract
:1. Introduction
- Isolate and characterize native entomopathogenic nematodes that are locally adapted to plantain and banana crops, as options for weevil pest biological control;
- Identify the symbiotic bacteria associated with EPNs;
- Explore EPNs and their bacterial symbionts’ phylogenetic diversity.
2. Materials and Methods
2.1. Sampling Area, EPN Isolation, and Propagation
2.2. DNA Extraction and PCR Amplification from EPN
2.3. DNA Sequencing and Data Analysis
2.4. EPN Phylogenetic Analysis
2.5. Bacterial Symbionts Isolation and DNA Extraction
2.6. Molecular Identification and Phylogenetic Analysis of EPNs’ Bacterial Symbionts
3. Results
3.1. Sampling Variation
3.2. EPN Nucleotide Diversity
3.3. EPN Phylogenetic Analysis
3.4. Concatenated Analysis for Ribosomal Loci in EPNs
3.5. Concatenated Analysis for Mitochondrial Loci in EPNs
3.6. Nucleotide Diversity in EPN’s Symbiotic Bacteria
3.7. Phylogenetic Analysis of EPN’s Symbiont Bacteria
4. Discussion
4.1. Polymorphism of Gene Barcodes in EPN and Their Bacterial Endosymbionts
4.2. Phylogenetic Inferences at Ribosomal Loci Enlightens Natural History of EPN
5. Conclusions
- The identification of indigenous entomopathogenic nematodes in altered environments, such as agricultural soils, sources pest control for local conditions.
- The isolation and characterization of Steinernema costaricense is a key finding from our study, taking into account that there are only two reports worldwide, from Central and North America.
- Here, we report a new S. costaricense strain, which provides clues about the possible wide distribution of this species, not only in the Americas but also in highly intervened environments.
- Additionally, the molecular report of its bacterial symbiont was carried out, contributing to the knowledge about the understanding of specific interactions between EPNs and their bacterial endosymbionts.
6. Perspectives
- This study promotes the still incipient research of EPN in Colombia, where the real diversity of these organisms remains obscured.
- An extended sampling would convey more accuracy for comparisons with other studies. Still, EPNs’ potential persists for new discoveries, applications for crop protection, and genetic resources from the bacterial endosymbionts that can provide metabolites with a wide spectrum of uses, for agricultural or medicinal purposes.
- New approaches should be considered in these organisms, such as next-generation technologies, in order to maximize their utility for pest control management that could be directed to specific phytosanitary issues.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varma, A.; Tripathi, S.; Prasad, R. Plant Biotic Interactions; Springer: Cham, Switzerland, 2019; ISBN 9783030266578. [Google Scholar]
- Koppenhöfer, A.M.; Shapiro-Ilan, D.I.; Hiltpold, I. Entomopathogenic Nematodes in Sustainable Food Production. Front. Sustain. Food Syst. 2020, 4, 125. [Google Scholar] [CrossRef]
- Arora, R.; Sandhu, S. Breeding Insect Resistant Crops for Sustainable Agriculture; Springer: Cham, Switzerland, 2017; ISBN 9789811060564. [Google Scholar]
- FAO. Emissions Due to Agriculture. Global, Regional and Country Trends 2000–2018. FAOSTAT Analytical Brief Series No 18. Available online: https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/1382716/ (accessed on 7 May 2023).
- Molani, A.B.; Roa, V.N.; Maghuyop, M.A. Advancing Banana and Plantain R & D in Asia and the Pacific; International Plant Genetics Research Institute: Rome, Italy, 2000; ISBN 9719175133. [Google Scholar]
- Ploetz, R.C.; Kepler, A.K.; Daniells, J.; Nelson, S.C. Banana and Plantain: An Overview with Emphasis on Pacific Island Cultivars. Species Profiles Pac. Isl. Agrofor. 2007, 1, 21–32. [Google Scholar]
- Irish, B.M.; Cuevas, H.E.; Simpson, S.A.; Scheffler, B.E.; Sardos, J.; Ploetz, R.; Goenaga, R. Musa spp. germplasm management: Microsatellite fingerprinting of USDA-ARS national plant germplasm system collection. Crop Sci. 2014, 54, 2140–2151. [Google Scholar] [CrossRef]
- Buitrago-Bitar, M.A.; Enríquez-Valencia, A.L.; Londoño-Caicedo, J.M.; Muñoz-Flórez, J.E.; Villegas-Estrada, B.; Santana-Fonseca, G.E. Molecular and morphological characterization of Musa spp. (Zingiberales: Musaceae) cultivars. Bol. Cient. Cent. Mus. 2020, 24, 33–47. [Google Scholar] [CrossRef]
- FAO. International Trade Banana: Market Review Preliminary Results 2021; Banana Market Review; FAO: Rome, Italy, 2022; Volume 20. [Google Scholar]
- Cubillos, J.P.T.; Soltész, B.; Vasa, L. Bananas, coffee and palm oil: The trade of agricultural commodities in the framework of the EU-Colombia free trade agreement. PLoS ONE 2021, 16, e0256242. [Google Scholar] [CrossRef]
- Castrillon, C. Distribucion de las Especies de Picudo del Platano Evaluacion de sus Entomopatogenos Nativos en el Departamento de Risaralda; CORPOICA: Manizales, Colombia, 2000; p. 72. [Google Scholar]
- Sepulveda-Cano, P.A.; Rubio-Gomez, J.D. Especies de dryophthorinae (Coleoptera: Curculionidae) asociadas a plátano y banano (Musa spp.) en Colombia. Acta Biol. Colomb. 2009, 14, 49–72. [Google Scholar]
- Gold, C.; Messiaen, S. El picudo negro del banano Cosmopolites Sordidus. Hoja Divulg. 2000, 4, 1–4. [Google Scholar]
- Shukla, A. Insect Pests of Banana with Special Reference to Weevil Borers. Int. J. Plant. Prot. 2010, 3, 387–393. [Google Scholar]
- National, M.; Naturelle, D.H. Bulletin du Muséum National d’Histoire Naturelle 1934; Imprimerie Nationale; Masson et CieMasson et Cie; Muséum National D’histoire Naturellemuséum National D’histoire Naturelle: Paris, France, 1934. [Google Scholar]
- Zimmerman, E.C. Rhynchophorinae of Southeastern Polynesia (Coleoptera: Curculionidae). Pac. Insects 1968, 10, 47–77. [Google Scholar]
- Gold, C.S.; Pena, J.E.; Karamura, E.B. Biology and integrated pest management for the banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). Integr. Pest. Manag. Rev. 2003, 6, 79–155. [Google Scholar] [CrossRef]
- Gold, C.S.; Ragama, P.E.; Coe, R.; Rukazambuga, N.D.T.M. Selection of assessment methods for evaluating banana weevil Cosmopolites sordidus (Coleoptera: Curculionidae) damage on highland cooking banana (Musa spp., genome group AAA-EA). Bull. Entomol. Res. 2005, 95, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Tresson, P.; Tixier, P.; Puech, W.; Carval, D. The challenge of biological control of Cosmopolites sordidus Germar (Col. Curculionidae): A review. J. Appl. Entomol. 2021, 145, 171–181. [Google Scholar] [CrossRef]
- Oliver, K.M.; Russell, J.A.; Moran, N.A.; Hunter, M.S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. USA 2003, 100, 1803–1807. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, J.; Darby, A.C.; Daniell, T.J.; Godfray, H.C.J.; Douglas, A.E. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 2004, 29, 60–65. [Google Scholar] [CrossRef]
- Martins, C.; Souza, R.F.; Bueno, O.C. Presence and distribution of the endosymbiont Wolbachia among Solenopsis spp. (Hymenoptera: Formicidae) from Brazil and its evolutionary history. J. Invertebr. Pathol. 2012, 109, 287–296. [Google Scholar] [CrossRef]
- Cruz, C.; Segarra, A. Potential for Biological Control of Crop Pests in the Caribbean. Fla. Entomol. 1992, 75, 400–408. [Google Scholar] [CrossRef]
- Akello, J.; Dubois, T.; Coyne, D.; Kyamanywa, S. Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop. Prot. 2008, 27, 1437–1441. [Google Scholar] [CrossRef]
- Bortoluzzi, L.; Alves, L.F.A.; Alves, V.S.; Holz, N. Entomopathogenic nematodes and their interaction with chemical insecticide aiming at the control of banana weevil borer, Cosmopolites sordidus Germar (Coleoptera: Curculionidae). Arq. Inst. Biol. 2013, 80, 183–192. [Google Scholar] [CrossRef]
- Nurashikin-Khairuddin, W.; Abdul-Hamid, S.N.A.; Mansor, M.S.; Bharudin, I.; Othman, Z.; Jalinas, J.A. A Review of Entomopathogenic Nematodes as a Biological Control Agent for Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Insects 2022, 13, 245. [Google Scholar] [CrossRef]
- Neira-Monsalve, E.; Wilches-Ramírez, N.C.; Terán, W.; del Pilar Márquez, M.; Mosquera-Espinosa, A.T.; Sáenz-Aponte, A. Isolation, identification, and pathogenicity of Steinernema carpocapsae and its bacterial symbiont in Cauca-Colombia. J. Nematol. 2021, 52, 1–16. [Google Scholar] [CrossRef]
- Chongchitmate, P.; Somsook, V.; Hormchan, P.; Visarathanonth, N. Bionomics of entomopathogenic nematode Steinernema siamkayai Stock, Somsook and Reid (n. sp.) and its efficacy against Helicoverpa armigera Hubner (Lepidoptera: Noctuidae). Kasetsart. J. Nat. Sci. 2005, 39, 431–439. [Google Scholar]
- Garriga, A.; Morton, A.; Ribes, A.; Garcia-del-Pino, F. Soil emergence of Drosophila suzukii adults: A susceptible period for entomopathogenic nematodes infection. J. Pest. Sci. (2004) 2020, 93, 639–646. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Towards optimization of entomopathogenic nematodes for more service in the biological control of insect pests. Egypt. J. Biol. Pest Control 2019, 29, 77. [Google Scholar] [CrossRef]
- Cao, M.; Goodrich-Blair, H. Xenorhabdus nematophila bacteria shift from mutualistic to virulent Lrp-dependent phenotypes within the receptacles of Steinernema carpocapsae insect-infective stage nematodes. Environ. Microbiol. 2020, 22, 5433–5449. [Google Scholar] [CrossRef] [PubMed]
- Chacón-Orozco, J.G.; Bueno, C.J.; Shapiro-Ilan, D.I.; Hazir, S.; Leite, L.G.; Harakava, R. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum. Sci. Rep. 2020, 10, 20649. [Google Scholar] [CrossRef] [PubMed]
- Incedayi, G.; Cimen, H.; Ulug, D.; Touray, M.; Bode, E.; Bode, H.B.; Yaylagul, E.O.; Hazir, S.; Cakmak, I. Relative potency of a novel acaricidal compound from Xenorhabdus, a bacterial genus mutualistically associated with entomopathogenic nematodes. Sci Rep. 2021, 11, 11253. [Google Scholar] [CrossRef]
- Fodor, A.; Gualtieri, M.; Zeller, M.; Tarasco, E.; Klein, M.G.; Fodor, A.M.; Haynes, L.; Lengyel, K.; Forst, S.A.; Furgani, G.M.; et al. Type Strains of Entomopathogenic Nematode-Symbiotic Bacterium Species, Xenorhabdus szentirmaii (EMC) and X. budapestensis (EMA), Are Exceptional Sources of Non-Ribosomal Templated, Large-Target-Spectral, Thermotolerant-Antimicrobial Peptides (by Both), and Iodinin (by EMC). Pathogens 2022, 11, 342. [Google Scholar] [CrossRef]
- Stock, S.P.; Blair, H.G. Entomopathogenic nematodes and their bacterial symbionts: The inside out of a mutualistic association. Symbiosis 2008, 46, 65–75. [Google Scholar]
- Chang, D.Z.; Serra, L.; Lu, D.; Mortazavi, A.; Dillman, A.R. A core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema. PLoS Pathog. 2019, 15, e1007626. [Google Scholar] [CrossRef]
- Theopold, U.; Dziedziech, A.; Hyrsl, P. Special issue: Insects, nematodes, and their symbiotic bacteria. Insects 2020, 11, 577. [Google Scholar] [CrossRef]
- Fenton, A.; Norman, R.; Fairbairn, J.P.; Hudson, P.J. Evaluating the efficacy of entomopathogenic nematodes for the biological control of crop pests: A nonequilibrium approach. Am. Nat. 2001, 158, 408–425. [Google Scholar] [CrossRef] [PubMed]
- Sandhi, R.K.; Shapiro-Ilan, D.; Sharma, A.; Reddy, G.V.P. Efficacy of entomopathogenic nematodes against the sugarbeet wireworm, Limonius californicus (Mannerheim) (Coleoptera: Elateridae). Biol. Control. 2020, 143, 104190. [Google Scholar] [CrossRef]
- Feyisa, B. Plant Pathology & Microbiology A Review on the Role of Entomopathoenic Nematodes (EPNs) in Control-ling Agricultural Insect Pest. J. Plant Pathol. Microbiol. 2021, 12, 583. [Google Scholar]
- Poinar, J.G.O.; Leutenegger, R. Anatomy of the infective and normal third stage juveniles of Steinernema carpocapsae Weiser (Steinernematidae: Nematoda). J. Parasitol. 1968, 54, 340–350. [Google Scholar] [CrossRef]
- Owds, B.; Peters, A. Virulence mechanisms. In Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts, 5th ed.; Brill: Gainsville, FL, USA, 2002. [Google Scholar] [CrossRef]
- Morton, A.; García del Pino, F. Effectiveness of different species of entomopathogenic nematodes for biocontrol of the Mediterranean flatheaded rootborer, Capnodis tenebrionis (Linné) (Coleoptera: Buprestidae) in potted peach tree. J. Invertebr. Pathol. 2008, 97, 128–133. [Google Scholar] [CrossRef]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef]
- Abate, B.A.; Slippers, B.; Wingfield, M.J.; Conlong, D.E.; Burger, D.A.; Hurley, B.P. Virulence and survival of native entomopathogenic nematodes for the management of white grubs in South Africa. Biol. Control 2019, 137, 104043. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, X.; Song, L.; Zheng, L.; Wei, X.; Gu, X.; Cui, Y.; Hu, B.; Yoshiga, T.; Abd-Elgawad, M.M.; et al. Evaluation of indigenous entomopathogenic nematodes in Southwest China as potential biocontrol agents against Spodoptera litura (Lepidoptera: Noctuidae). J. Nematol. 2021, 53, 1–17. [Google Scholar] [CrossRef]
- Uribe-Londoño, M.; Muñoz-Florez, J.; Riascos-Ortíz, D. Nematodos Entomopatógenos: Una Alternativa para el Control de los Picudos del Plátano; Primera ed. Palmira Valle Del Cauca; Universidad Nacional de Colombia: Palmira, Colombia, 2020; Volume 1. [Google Scholar]
- Uribe-Londoño, M.; Muñoz-Florez, J.; Riascos-Ortíz, D. Los Nematodos: Microorganismos con Múltiples Funciones en los Cultivos; Primera ed. Palmira Valle Del Cauca; Universidad Nacional de Colombia: Palmira, Colombia, 2020; Volume 1. [Google Scholar]
- Solarte-Quintero, A.; Muñoz-Florez, J.; Riascos-Ortíz, D. Picudos del Plátano y Banano: Cosmopolites sordidus, Metamasius hemipterus, Metamasius hebetatus, Metamasius submaculatus y Polytus mellerborgii; Primera ed. Palmira Valle Del Cauca; Universidad Nacional de Colombia: Palmira, Colombia, 2020; Volume 1. [Google Scholar]
- Angulo-Angulo, W.; Osorio, J.; Muñoz-Florez, J.; Riascos-Ortíz, D. Evaluación de Plagas y su Impacto Sobre la Producción de Plátano y Banano; Primera ed. Palmira Valle Del Cauca; Universidad Nacional de Colombia: Palmira, Colombia, 2020; Volume 1. [Google Scholar]
- Angulo-Angulo, W.; Osorio, J.; Muñoz-Florez, J.; Risacos-Ortíz, D. Monitoreo y Captura de Picudos del Plátano y Banano; Primera ed. Primera ed. Palmira Valle Del Cauca; Universidad Nacional de Colombia: Palmira, Colombia, 2020; Volume 1. [Google Scholar]
- Bedding, R.A.; Akhurst, R.J. A simple technique for the detection of insect Paristic rhabditid nematodes in soil. Nematologica 1975, 21, 109–110. [Google Scholar] [CrossRef]
- White, G.F. A method for obtaining infective nematode larvae from cultures. Science 1927, 66, 302–303. [Google Scholar] [CrossRef]
- Orozco, R.A.; Lee, M.M.; Patricia Stock, S. Soil sampling and isolation of Entomopathogenic nematodes (Steinernematidae, Heterorhabditidae). J. Vis. Exp. 2014, 89, e52083. [Google Scholar] [CrossRef]
- Stock, S.P.; Goodrich-Blair, H. Nematode parasites, pathogens and associates of insects and invertebrates of economic importance. In Manual of Techniques in Invertebrate Pathology, 2nd ed.; Lacey, L.A., Ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 373–426. [Google Scholar] [CrossRef]
- Schmitz, A.; Riesner, D. Purification of nucleic acids by selective precipitation with polyethylene glycol 6000. Anal. Biochem. 2006, 354, 311–313. [Google Scholar] [CrossRef] [PubMed]
- López-Núñez, J.C.; Plichta, K.; Góngora-Botero, C.E.; Stock, P.S. A new entomopathogenic nematode, Steinernema colombiense n. sp. (Nematoda: Steinernematidae), from Colombia. Nematology 2008, 10, 561–574. [Google Scholar] [CrossRef]
- Větrovský, T.; Baldrian, P. The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Consequences for Bacterial Community Analyses. PLoS ONE 2013, 8, e57923. [Google Scholar] [CrossRef] [PubMed]
- Gürtler, V.; Stanisich, V.A. New Approaches to Typing and Identification of Bacteria Using the 16S-23S rDNA Spacer Region. Microbiolgy 1996, 142, 3–16. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Hunt, D.J.; Nguyen, K.B. Advances in Entomopathogenic Nematode Taxonomy and Phylogeny; Brill: Boston, MA, USA, 2016; Volume 12. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Tavaré. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math Life Sci. (Am. Math Soc.) 1986, 17, 57–86. [Google Scholar]
- Shoemaker, J.S.; Fitch, W.M. Evidence from nuclear sequences that invariable sites should be considered when sequence divergence is calculated. Mol. Biol. Evol. 1989, 6, 270–289. [Google Scholar] [CrossRef]
- Yang, Z.; Goldman, N.; Friday, A. Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol. Biol. Evol. 1994, 11, 316–324. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Nadler, S.A.; Bolotin, E.; Stock, S.P. Phylogenetic relationships of Steinernema travassos, 1927 (Nematoda: Cephalobina: Steinernematidae) based on nuclear, mitochondrial and morphological data. Syst. Parasitol. 2006, 63, 161–181. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Mráček, Z.; Půža, V.; Nermuť, J. Addendum to the description of Steinernema carpocapsae (Weiser, 1955) Wouts, Mráček, Gerdin & Bedding, 1982. Russ. J. Nematol. 2014, 22, 102–120. [Google Scholar]
- Ivanova, E.S.; Shepeleva, N.S.; Spiridonov, S.E. Morphological and molecular characterisation of Steinernema costaricense Uribe-Lorío, Mora & Stock, 2007 (Panagrolaimorpha: Steinernematidae) isolate from Bush Augusta State Park, Missouri, USA. Syst. Parasitol. 2013, 85, 219–234. [Google Scholar] [CrossRef]
- Nguyen, K.B.; Maruniak, J.; Adams, B. Diagnostic and Phylogenetic Utility of the rDNA Internal Transcribed Spacer Sequences of Steinernema. J. Nematol. 2001, 33, 73–82. [Google Scholar]
- Lee, M.M.; Stock, S.P. A multilocus approach to assessing co-evolutionary relationships between Steinernema spp. (Nematoda: Steinernematidae) and their bacterial symbionts Xenorhabdus spp. (γ-Proteobacteria: Enterobacteriaceae). Syst. Parasitol. 2010, 77, 1–12. [Google Scholar] [CrossRef]
- Nguyen, K.; Hunt, D. Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts; Brill: Leiden, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Marokhazi, J.; Waterfield, N.; LeGoff, G.; Feil, E.; Stabler, R.; Hinds, J.; Fodor, A.; ffrench-Constant, R.H. Using a DNA microarray to investigate the distribution of insect virulence factors in strains of Photorhabdus bacteria. J. Bacteriol. 2003, 185, 4648–4656. [Google Scholar] [CrossRef]
- Tailliez, P.; Pagès, S.; Ginibre, N.; Boemare, N. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int. J. Syst. Evol. Microbiol. 2006, 56, 2805–2818. [Google Scholar] [CrossRef]
- Ferreira, T.; van Reenen, C.A.; Endo, A.; Spröer, C.; Malan, A.P.; Dicks, L.M.T. Description of Xenorhabdus khoisanae sp. nov., the symbiont of the entomopathogenic nematode Steinernema khoisanae. Int. J. Syst. Evol. Microbiol. 2013, 63, 3220–3224. [Google Scholar] [CrossRef] [PubMed]
- Rainey, F.A.; Stackebrandt, E. Inability of the Polyphasic Approach to Systematics to Determine the Inability of the Polyphasic Approach to Systematics to Determine the Relatedness of the Genera Xenorhabdus and Photorhabdus. Int. J. Syst. Evol. Microbiol. 1995, 45, 379–381. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; Pathak, E.; El-Borai, F.E.; Stuart, R.J.; Gutiérrez, C.; Rodríguez-Martín, J.A.; Graham, J.H.; Duncan, L.W. Geospatial patterns of soil properties and the biological control potential of entomopathogenic nematodes in Florida citrus groves. Soil Biol. Biochem. 2013, 66, 163–174. [Google Scholar] [CrossRef]
- Campos-Herrera, R.; El-Borai, F.E.; Ebert, T.E.; Schumann, A.; Duncan, L.W. Management to control citrus greening alters the soil food web and severity of a pest-disease complex. Biol. Control. 2014, 76, 41–51. [Google Scholar] [CrossRef]
- Valadas, V.; Laranjo, M.; Mota, M.; Oliveira, S. A survey of entomopathogenic nematode species in continental Portugal. J. Helminthol. 2014, 88, 327–341. [Google Scholar] [CrossRef]
- De Brida, A.L.; Rosa, J.M.O.; Oliveira, C.M.G.D.; Serrão, J.E.; Zanuncio, J.C.; Leite, L.G.; Wilcken, S.R.S. Entomopathogenic nematodes in agricultural areas in Brazil. Sci. Rep. 2017, 7, 45254. [Google Scholar] [CrossRef]
- Berkvens, N.; Van Vaerenbergh, J.; Maes, M.; Beliën, T.; Viaene, N. Entomopathogenic nematodes fail to parasitize the woolly apple aphid Eriosoma lanigerum as their symbiotic bacteria are suppressed. J. Appl. Entomol. 2014, 138, 644–655. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.; Raymond, B. Limiting opportunities for cheating stabilizes virulence in insect parasitic nematodes. Evol. Appl. 2016, 9, 462–470. [Google Scholar] [CrossRef]
- Nguyen, K. Methodology, morphology and identification. In Entomopathogenic Nematodes: Systematics, phylogeny and bacterial symbionts, 5th ed.; Nguyen, K., Hunt, D., Koninklijke Brill, N., Eds.; Brill: Gainsville, FL, USA, 2007; pp. 59–119. [Google Scholar]
- Hirao, A.; Ehlers, R.U. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Appl. Microbiol. Biotechnol. 2009, 84, 77–85. [Google Scholar] [CrossRef]
- Sankaranarayanan, C.; Somasejhar, N.; Singaravelu, B. Biocontrol Potential of Entomopathogenic Nematodes Heterorhabditis and Steinernema against Pupae and Adults of White grub Holotrichia serrata F. Sugar Tech. 2006, 8, 2–5. [Google Scholar] [CrossRef]
- Williams, C.D.; Dillon, A.B.; Ennis, D.; Hennessy, R.; Griffin, C.T. Differential susceptibility of pine weevil, Hylobius abietis (Coleoptera: Curculionidae), larvae and pupae to entomopathogenic nematodes and death of adults infected as pupae. BioControl 2015, 60, 537–546. [Google Scholar] [CrossRef]
- Torrini, G.; Paoli, F.; Mazza, G.; Simoncini, S.; Benvenuti, C.; Strangi, A.; Tarasco, E.; Barzanti, G.P.; Bosio, G.; Cutino, I.; et al. Evaluation of indigenous entomopathogenic nematodes as potential biocontrol agents against Popillia japonica (Coleoptera: Scarabaeidae) in Northern Italy. Insects 2020, 11, 804. [Google Scholar] [CrossRef] [PubMed]
- Karagoz, M.; Gulcu, B.; Hazir, C.; Kaya, H.K.; Hazir, S. Biological control potential of Turkish entomopathogenic nematodes against the Mediterranean fruit fly Ceratitis capitata. Phytoparasitica 2009, 37, 153–159. [Google Scholar] [CrossRef]
- Adams, B.; Peat, S.; Dillman, A. Phylogeny and evolution. In Molecular Parasitology; Springer: Vienna, Austria, 2016; pp. 693–733. [Google Scholar] [CrossRef]
- López-Núñez, J.C.; Cano, L.; Góngora-BCE; Stock, S.P. Diversity and evolutionary relationships of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the Central Andean region of Colombia. Nematology 2007, 9, 333–341. [Google Scholar] [CrossRef]
- Uribe-Lorío, L.; Mora, M.; Stock, S.P. Steinernema costaricense n. sp. and S. puntauvense n. sp. (Rhabditida: Steinernematidae), two new entomopathogenic nematodes from Costa Rica. Syst. Parasitol. 2007, 68, 167–182. [Google Scholar] [CrossRef]
- Mokrini, F.; Laasli, S.E.; Benseddik, Y.; Joutei, A.B.; Blenzar, A.; Lakhal, H.; Sbaghi, M.; Imren, M.; Özer, G.; Paulitz, T.; et al. Potential of Moroccan entomopathogenic nematodes for the control of the Mediterranean fruit fly Ceratitis capitata Wiedemann (Diptera: Tephritidae). Sci. Rep. 2020, 10, 19204. [Google Scholar] [CrossRef]
- Flores, P.; Alvarado, A.; Lankin, G.; Lax, P.; Prodan, S.; Aballay, E. Morphological, molecular and ecological characterization of a native isolate of Steinernema feltiae (Rhabditida: Steinernematidae) from southern Chile. Parasites Vectors 2021, 14, 45. [Google Scholar] [CrossRef]
- Bruno, P.; Machado, R.A.; Glauser, G.; Köhler, A.; Campos-Herrera, R.; Bernal, J.; Toepfer, S.; Erb, M.; Robert, C.A.; Arce, C.C.; et al. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Sci. Rep. 2020, 10, 8257. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Hurst, G.D.; Jiggins, F.M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. R. Soc. B Biol. Sci. 2005, 272, 1525–1534. [Google Scholar] [CrossRef]
- Bik, H.M.; Fournier, D.; Sung, W.; Bergeron, R.D.; Thomas, W.K. Intra-Genomic Variation in the Ribosomal Repeats of Nematodes. PLoS ONE 2013, 8, e78230. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Kobayashi, T. Are “universal” DNA primers really universal? J. Appl. Genet. 2014, 55, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Avó, A.P.; Daniell, T.J.; Neilson, R.; Oliveira, S.; Branco, J.; Adão, H. DNA barcoding and morphological identification of benthic nematodes assemblages of estuarine intertidal sediments: Advances in molecular tools for biodiversity assessment. Front. Mar. Sci. 2017, 4, 66. [Google Scholar] [CrossRef]
- Bolaños, A.C.; Bononi, V.L.R.; Londoño, J.M.; Castillo, A.; Vitali, V.M.; Gugliotta, A.D.M.; Muñoz, J.E. Detecting Manganese Peroxidase (MnP) Gene in Ganoderma Species. Cryptogamie 2018, 39, 325–340. [Google Scholar] [CrossRef]
- Bhat, A.H.; Chaubey, A.K.; Askary, T.H. Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egypt. J. Biol. Pest Control 2020, 30, 31. [Google Scholar] [CrossRef]
- Stock, S.P.; Campbell, J.F.; Nadler, S.A. Phylogeny of Steinernema travassos, 1927 (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characters. J. Parasitol. 2001, 87, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Wray, G.A.; Levinton, J.S.; Shapiro, L.H. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 1996, 274, 568–581. [Google Scholar] [CrossRef]
- Averbeck, K.T.; Eickbush, T.H. Monitoring the mode and tempo of concerted evolution in the Drosophila melanogaster rDNA locus. Genetics 2005, 171, 1837–1846. [Google Scholar] [CrossRef]
- Ganley, A.R.D.; Kobayashi, T. Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res. 2007, 17, 184–191. [Google Scholar] [CrossRef]
- Long, E.; Dawid, B. Drosophila of Ribosomal melanogaster DNA Insertions in Drosohpila melanogaster. Cell 1979, 18, 1185–1196. [Google Scholar] [CrossRef]
- Keller, I.; Chintauan-Marquier, I.C.; Veltsos, P.; Nichols, R.A. Ribosomal DNA in the grasshopper Podisma pedestris: Escape from concerted evolution. Genetics 2006, 174, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Eickbush, T.H.; Eickbush, D.G. Finely orchestrated movements: Evolution of the ribosomal RNA genes. Genetics 2007, 175, 477–485. [Google Scholar] [CrossRef] [PubMed]
- McTaggart, S.J.; Dudycha, J.L.; Omilian, A.; Crease, T.J. Rates of recombination in the ribosomal DNA of apomictically propagated Daphnia obtusa lines. Genetics 2007, 175, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Adams, B.J.; Ciche, T.A.; Clifton, S.; Gaugler, R.; Kim, K.S.; Spieth, J.; Sternberg, P.W.; Wilson, R.K.; Grewal, P.S. A Lover and a Fighter: The Genome Sequence of an Entomopathogenic Nematode Heterorhabditis bacteriophora. PLoS ONE 2013, 8, e69618. [Google Scholar] [CrossRef] [PubMed]
- Dillman, A.R.; Macchietto, M.; Porter, C.F.; Rogers, A.; Williams, B.; Antoshechkin, I.; Lee, M.M.; Goodwin, Z.; Lu, X.; Lewis, E.E.; et al. Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks. Genome Biol. 2015, 16, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Rougon-Cardoso, A.; Flores-Ponce, M.; Ramos-Aboites, H.E.; Martínez-Guerrero, C.E.; Hao, Y.J.; Cunha, L.; Rodríguez-Martínez, J.A.; Ovando-Vázquez, C.; Bermúdez-Barrientos, J.R.; Abreu-Goodger, C.; et al. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: Evolutionary signatures of a pathogenic lifestyle. Sci. Rep. 2016, 6, 37536. [Google Scholar] [CrossRef]
- Hayden, E.J.; Ferrada, E.; Wagner, A. Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature 2011, 474, 92–95. [Google Scholar] [CrossRef]
- Rooney, A.P. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in apicomplexans. Mol. Biol. Evol. 2004, 21, 1704–1711. [Google Scholar] [CrossRef]
- Gualtieri, M.; Ogier, J.C.; Pagès, S.; Givaudan, A.; Gaudriault, S. Draft genome sequence and annotation of the entomopathogenic bacterium Xenorhabdus szentirmaii strain DSM16338. Genome Announc. 2014, 2, 14–16. [Google Scholar] [CrossRef]
- Kour, S.; Khurma, U.; Brodie, G.; Hazir, S. Natural occurrence and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in Viti Levu, Fiji Islands. J. Nematol. 2020, 52, 1–17. [Google Scholar] [CrossRef]
- Sajnaga, E.; Kazimierczak, W. Evolution and taxonomy of nematode-associated entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus: An overview. Symbiosis 2020, 80, 1–13. [Google Scholar] [CrossRef]
- Santhi, V.S.; Ment, D.; Faigenboim, A.; Salame, L.; Soroker, V.; Hetzroni, A.; Glazer, I. Behavioral and molecular response of the insect parasitic nematode Steinernema carpocapsae to cues emitted by a host, the red palm weevil, Rhynchophorus ferrugineus. Mol. Biochem. Parasitol. 2021, 241, 111345. [Google Scholar] [CrossRef] [PubMed]
- Skowronek, M.; Sajnaga, E.; Pleszczyńska, M.; Kazimierczak, W.; Lis, M.; Wiater, A. Bacteria from the midgut of common cockchafer (Melolontha melolontha L.) larvae exhibiting antagonistic activity against bacterial symbionts of entomopathogenic nematodes: Isolation and molecular identification. Int. J. Mol. Sci. 2020, 21, 580. [Google Scholar] [CrossRef]
- Dichusa, C.A.; Ramos, R.; Aryal, S.; Sumaya, N.P.D.; Sumaya, N.H. Survey and identification of entomopathogenic nematodes in the province of Cotabato, Philippines, for biocontrol potential against the tobacco cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2021, 31, 60. [Google Scholar] [CrossRef]
- Abate, B.A.; Slippers, B.; Wingfield, M.J.; Malan, A.P.; Hurley, B.P. Diversity of entomopathogenic nematodes and their symbiotic bacteria in south African plantations and indigenous forests. Nematology 2018, 20, 355–371. [Google Scholar] [CrossRef]
- Böszörményi, E.; Érsek, T.; Fodor, A.; Fodor, A.M.; Földes, L.S.; Hevesi, M.; Hogan, J.S.; Katona, Z.; Klein, M.G.; Kormány, A.; et al. Isolation and activity of xenorhabdus antimicrobial compounds against the plant pathogens Erwinia amylovora and phytophthora nicotianae. J. Appl. Microbiol. 2009, 107, 746–759. [Google Scholar] [CrossRef]
- Ohlendorf, B.; Simon, S.; Wiese, J.; Imhoff, J.F. Szentiamide, an N-formylated cyclic depsipeptide from Xenorhabdus szentirmaii DSM 16338T. Nat. Prod. Commun. 2011, 6, 1247–1250. [Google Scholar] [CrossRef] [PubMed]
- Pei, A.Y.; Oberdorf, W.E.; Nossa, C.W.; Agarwal, A.; Chokshi, P.; Gerz, E.A.; Jin, Z.; Lee, P.; Yang, L.; Poles, M.; et al. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl. Environ. Microbiol. 2010, 76, 3886–3897. [Google Scholar] [CrossRef] [PubMed]
- Espejo, R.T.; Plaza, N. Multiple Ribosomal RNA operons in bacteria, Their concerted evolution and potential consequences on the rate of evolution of their 16S rRNA. Front. Microbiol. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Aydn, H.; Susurluk, A. Competitive abilities of the entomopathogenic nematodes Steinernema feltiae and Heterorhabditis bacteriophora in the same host at different temperatures. Turk. J. Biol. 2005, 29, 35–39. [Google Scholar]
- O’Callaghan, K.M.; Zenner, A.N.R.L.; Hartley, C.J.; Griffin, C.T. Interference competition in entomopathogenic nematodes: Male steinernema kill members of their own and other species. Int. J. Parasitol. 2014, 44, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Jaspers, E.; Overmann, J. Ecological significance of microdiversity: Identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl. Environ. Microbiol. 2004, 70, 4831–4839. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Ogier, J.C.; Pagès, S.; Frayssinet, M.; Gaudriault, S. Entomopathogenic nematode-associated microbiota: From monoxenic paradigm to pathobiome. Microbiome 2020, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.J. Morphological characterisation of the entomogenous nematodes Steinernema spp. and Heterorhabditis spp. (Nematoda: Rhabditida). New Zeal. J. Zool 1990, 17, 577–585. [Google Scholar] [CrossRef]
- Ngugi, C.N.; Haukeland, S.; Wachira, P.M.; Mbaka, J.N.; Okoth, S. Morphometrics and Morphological Characterization of Entomopathogenic Nematode Isolate Tk1 from Kenya. Int. J. Agric. Environ. Biores. 2019, 4, 80–90. [Google Scholar]
- Szalanski, A.L.; Taylor, D.B.; Mullin, P.G. Assessing nuclear and mitochondrial DNA sequence variation within Steinernema (Rhabditida: Steinernematidae). J. Nematol. 2000, 32, 229–233. [Google Scholar]
- Chaerani, R.; Stock, S.P. Morphological and molecular characterisation of Steinernema hermaphroditum n. sp. (Nematoda: Steinernematidae), an entomopathogenic nematode from Indonesia, and its phylogenetic relationships with other members of the genus. Nematology 2004, 6, 401–412. [Google Scholar] [CrossRef]
- Nadler, S.A.; De Ley, P.; Mundo-Ocampo, M.; Smythe, A.B.; Patricia Stock, S.; Bumbarger, D.; Adams, B.J.; De Ley, I.T.; Holovachov, O.; Baldwin, J.G. Phylogeny of Cephalobina (Nematoda): Molecular evidence for recurrent evolution of probolae and incongruence with traditional classifications. Mol. Phylogenet. Evol. 2006, 40, 696–711. [Google Scholar] [CrossRef]
- Montiel, R.; Lucena, M.A.; Medeiros, J.; Simões, N. The complete mitochondrial genome of the entomopathogenic nematode Steinernema carpocapsae: Insights into nematode mitochondrial DNA evolution and phylogeny. J. Mol. Evol. 2006, 62, 211–225. [Google Scholar] [CrossRef]
- Půža, V.; Chundelová, D.; Nermuť, J.; Žurovcová, M.; Mráček, Z. Intra-individual variability of ITS regions in entomopathogenic nematodes (Steinernematidae: Nematoda): Implications for their taxonomy. BioControl 2015, 60, 547–554. [Google Scholar] [CrossRef]
- Maneesakorn, P.; An, R.; Daneshvar, H.; Taylor, K.; Bai, X.; Adams, B.J.; Grewal, P.S.; Chandrapatya, A. Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes (Heterorhabditis: Rhabditida) and their symbiotic bacteria (Photorhabdus: Enterobacteriaceae). Mol. Phylogenet. Evol. 2011, 59, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Escudero, M.; Osorio, A.N.; Cortés, A.J. Integrative Pre-Breeding for Biotic Resistance in Forest Trees. Plants 2021, 10, 2022. [Google Scholar] [CrossRef] [PubMed]
- Burbano-Erazo, E.; León-Pacheco, R.I.; Cordero-Cordero, C.C.; López-Hernández, F.; Cortés, A.J.; Tofiño-Rivera, A.P. Multi-Environment Yield Components in Advanced Common Bean (Phaseolus vulgaris L.) × Tepary Bean (P. acutifolius A. Gray) Interspecific Lines for Heat and Drought Tolerance. Agronomy 2021, 11, 1978. [Google Scholar] [CrossRef]
- Arenas, S.; Cortés, A.J.; Mastretta-Yanes, A.; Jaramillo-Correa, J.P. Evaluating the Accuracy of Genomic Prediction for the Management and Conservation of Relictual Natural Tree Populations. Tree Genet. Genomes 2021, 17, 12. [Google Scholar] [CrossRef]
- Cortés, A.J.; López-Hernández, F. Harnessing Crop Wild Diversity for Climate Change Adaptation. Genes 2021, 12, 783. [Google Scholar] [CrossRef]
- Aggarwal, S.; Gupta, S.; Gupta, D.; Gulzar, Y.; Juneja, S.; Alwan, A.A.; Nauman, A. An Artificial Intelligence-Based Stacked Ensemble Approach for Prediction of Protein Subcellular Localization in Confocal Microscopy Images. Sustainability 2023, 15, 1695. [Google Scholar] [CrossRef]
- Peláz, D.; Aguilar, P.A.; Mercado, M.; López-Hernández, F.; Guzmán, M.; Burbano-Erazo, E.; Denning-James, K.; Medina, C.I.; Blair, M.W.; De Vega, J.J.; et al. Genotype Selection, and Seed Uniformity and Multiplication to Ensure Common Bean (Phaseolus vulgaris L.) var. Liborino. Agronomy 2022, 12, 2285. [Google Scholar] [CrossRef]
Organism | Primer | Region | Primer Sequence | Orientation | Author |
---|---|---|---|---|---|
Nematode | AB28 | ITS | ATATGCTTAAGTTCAGCGGGT | Forward | Stock and Goodrich-Blair, 2012 [55] |
TW81 | ITS | GTTTCCGTAGGTGAACCTGC | Reverse | ||
533 | ITS internal | CAAGTCTTATCGGTGGATCAC | Forward | ||
534 | ITS internal | GCAATTCACGCCAAATAACGG | Reverse | ||
391 | LSU | AGCGGAGGAAAAGAAACTAA | Forward | Stock et al., 2001 [57] | |
501 | LSU | TCGGAAGGAACCAGCTACTA | Reverse | ||
502 | LSU internal | CAAGTACCGTGAGGGAAAGTTGC | Forward | ||
503 | LSU internal | CCTTGGTCCGTGTTTCAAGACG | Reverse | ||
COX1F | COI | AGTTCTAATCATAARGATATYGG | Forward | Nadler et al., 2006 [58] | |
COX1R | COI | TAAACTTCAGGGTGACCAAAAAATCA | Reverse | ||
12SF | 12S | GTTCCAGAATAATCGGCTAGAC | Forward | ||
12SR | 12S | TCTACTTTACTACAACTTACTCCCC | Reverse | ||
Bacteria | 27F | 16S | AGAGTTTGATCMTGGCTCAG | Forward | Gurtler and Stanisich, 1996 [59] |
1492R | 16S | TACGGYTACCTTGTTACGACTT | Reverse | ||
518F | 16S internal | CCAGCAGCCGCGGTAATACG | Forward | ||
800R | 16 internal | TACCAGGGTATCTAATCC | Reverse |
Species | Specimen Voucher | Municipality | Lat Lon | ITS rDNA | LSU rDNA | 12S mt rDNA | COI mtDNA |
---|---|---|---|---|---|---|---|
S. carpocapsae | UNPR52 | Obando | 4587 N 75,916 W | MH231235 | MH231232 | MH231121 | MH252432 |
S. carpocapsae | UNPR73 | Buenaventura | 3481 N 76,185 W | MH231236 | MH231233 | MH231122 | MH252433 |
S. costaricense | UNPR70 | Palmira | 3742 N 76,965 W | – | MH231234 | – | – |
Species | Specimen Voucher | Organism Source | 16S rDNA Accession Number |
---|---|---|---|
X. nematophila | UNPB52 | S. carpocapsae | MH249989 |
X. nematophila | UNPB73 | S.carpocapsae | MH249990 |
Xenorhabdus sp. | UNPB70 | S. costaricense | MH249991 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Londoño-Caicedo, J.M.; Uribe-Londoño, M.; Buitrago-Bitar, M.A.; Cortés, A.J.; Muñoz-Flórez, J.E. Molecular Identification and Phylogenetic Diversity of Native Entomopathogenic Nematodes, and Their Bacterial Endosymbionts, Isolated from Banana and Plantain Crops in Western Colombia. Agronomy 2023, 13, 1373. https://doi.org/10.3390/agronomy13051373
Londoño-Caicedo JM, Uribe-Londoño M, Buitrago-Bitar MA, Cortés AJ, Muñoz-Flórez JE. Molecular Identification and Phylogenetic Diversity of Native Entomopathogenic Nematodes, and Their Bacterial Endosymbionts, Isolated from Banana and Plantain Crops in Western Colombia. Agronomy. 2023; 13(5):1373. https://doi.org/10.3390/agronomy13051373
Chicago/Turabian StyleLondoño-Caicedo, Jorge Mario, Miguel Uribe-Londoño, María Angélica Buitrago-Bitar, Andrés J. Cortés, and Jaime Eduardo Muñoz-Flórez. 2023. "Molecular Identification and Phylogenetic Diversity of Native Entomopathogenic Nematodes, and Their Bacterial Endosymbionts, Isolated from Banana and Plantain Crops in Western Colombia" Agronomy 13, no. 5: 1373. https://doi.org/10.3390/agronomy13051373
APA StyleLondoño-Caicedo, J. M., Uribe-Londoño, M., Buitrago-Bitar, M. A., Cortés, A. J., & Muñoz-Flórez, J. E. (2023). Molecular Identification and Phylogenetic Diversity of Native Entomopathogenic Nematodes, and Their Bacterial Endosymbionts, Isolated from Banana and Plantain Crops in Western Colombia. Agronomy, 13(5), 1373. https://doi.org/10.3390/agronomy13051373