Agricultural Water Quality Assessment and Application in the Yellow River Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Water Quality Assessment
2.4. Statistical Analysis
3. Results
3.1. Agricultural Water Resources
3.1.1. Precipitation
3.1.2. Water Quality Index Parameters
3.1.3. Water Quality Assessment
3.2. Unconventional Water Resources Utilization
4. Discussion
4.1. Coastal Region Water Resources Distribution and Water Quality Evaluation
4.2. Water Resources Rational Utilization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hatfield, J.L. Environmental Impact of Water Use in Agriculture. Agron. J. 2015, 107, 1554–1556. [Google Scholar] [CrossRef]
- Saccon, P. Water for agriculture, irrigation management. Appl. Soil. Ecol. 2018, 123, 793–796. [Google Scholar] [CrossRef]
- de Fraiture, C.; Wichelns, D. Satisfying future water demands for agriculture. Agric. Water Manag. 2010, 97, 502–511. [Google Scholar] [CrossRef]
- Ju, Q.Q.; Du, L.J.; Liu, C.S.; Jiang, S. Water resource management for irrigated agriculture in China: Problems and prospects. Irrig. Drain. 2023, 1–10. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhang, F. Optimal Agricultural Water Allocation for the Sustainable Development of Surface and Groundwater Resources. Water Resour. Manag. 2022, 36, 4219–4236. [Google Scholar] [CrossRef]
- Ai, C.; Zhao, L.; Han, M.Y.; Liu, S.Y.; Wang, Z.Y. Mitigating water imbalance between coastal and inland areas through seawater desalination within China. J. Clean. Prod. 2022, 371, 1–9. [Google Scholar] [CrossRef]
- Huang, G.R.; Hoekstra, A.Y.; Krol, M.S.; Jagermeyr, J.; Galindo, A.; Yu, C.Q.; Wang, R.R. Water-saving agriculture can deliver deep water cuts for China. Resour. Conserv. Recy. 2020, 154, 1–9. [Google Scholar] [CrossRef]
- Guo, T.; Ye, W. The empirical research on the relationship between the irrigation and water conservancy and agricultural growth in China. East China Econ. Manag. 2012, 26, 84–88. [Google Scholar] [CrossRef]
- Loitzenbauer, E.; Mendes, C.A.B. Salinity dynamics as a tool for water resources management in coastal zones: An application in the Tramandai River basin, southern Brazil. Ocean Coast. Manag. 2012, 55, 52–62. [Google Scholar] [CrossRef]
- Lee, J.Y.; Song, S.H. Evaluation of groundwater quality in coastal areas: Implications for sustainable agriculture. Environ. Geol. 2007, 52, 1231–1242. [Google Scholar] [CrossRef]
- Petelet-Giraud, E.; Cary, L.; Cary, P.; Bertrand, G.; Giglio-Jacquemot, A.; Hirata, R.; Aquilina, L.; Alves, L.M.; Martins, V.; Melo, A.M.; et al. Multi-layered water resources, management, and uses under the impacts of global changes in a southern coastal metropolis: When will it be already too late? Crossed analysis in Recife, NE Brazil. Sci. Total Environ. 2018, 618, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, T.; Hasan, M.K.; Haque, A.T.M.S.; Jayasinghe, S.L.; Kumar, L. Sustainability of Coastal Agriculture under Climate Change. Sustainability. 2019, 11, 7200. [Google Scholar] [CrossRef]
- Aguilera, R.; Gershunov, A.; Benmarhnia, T. Atmospheric rivers impact California’s coastal water quality via extreme precipitation. Sci. Total Environ. 2019, 671, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, J.; Al-Khatri, A.; Schutze, N. Managing saltwater intrusion in coastal arid regions and its societal implications for agriculture. Proc. Int. Assoc. Hydrol. Sci. 2016, 373, 31–35. [Google Scholar] [CrossRef]
- Valero, D.; Belay, B.S.; Moreno-Rodenas, A.; Kramer, M.; Franca, M.J. The key role of surface tension in the transport and quantification of plastic pollution in rivers. Water Res. 2022, 226, 119078. [Google Scholar] [CrossRef]
- Cho, M.; Jang, T.; Jang, J.R.; Yoon, C.G. Development of Agricultural Non-Point Source Pollution Reduction Measures in Korea. Irrig. Drain. 2016, 65, 94–101. [Google Scholar] [CrossRef]
- Uddameri, V.; Ghaseminejad, A.; Hernandez, E.A. A tiered stochastic framework for assessing crop yield loss risks due to water scarcity under different uncertainty levels. Agric. Water Manag. 2020, 238, 106226. [Google Scholar] [CrossRef]
- Yu, M.; Li, Y.Z.; Zhang, K.; Yu, J.B.; Guo, X.L.; Guan, B.; Yang, J.S.; Zhou, D.; Wang, X.H.; Li, X.; et al. Studies on the dynamic boundary of the fresh-salt water interaction zone of estuary wetland in the Yellow River Delta. Ecol. Eng. 2023, 188, 106893. [Google Scholar] [CrossRef]
- Qi, S.Z.; Luo, F. Environmental degradation in the Yellow River Delta, Shandong Province, China. Ambio 2007, 36, 610–611. [Google Scholar] [CrossRef]
- He, H.; Miao, Y.J.; Zhang, Q.; Chen, Y.; Gan, Y.D.; Liu, N.; Dong, L.F.; Dai, J.L.; Chen, W.F. The Structure and Diversity of Nitrogen Functional Groups from Different Cropping Systems in Yellow River Delta. Microorganisms 2020, 8, 424. [Google Scholar] [CrossRef]
- Yu, J.B.; Li, Y.Z.; Han, G.X.; Zhou, D.; Fu, Y.Q.; Guan, B.; Wang, G.M.; Ning, K.; Wu, H.F.; Wang, J.H. The spatial distribution characteristics of soil salinity in coastal zone of the Yellow River Delta. Environ. Earth Sci. 2014, 72, 589–599. [Google Scholar] [CrossRef]
- Mao, W.B.; Kang, S.Z.; Wan, Y.S.; Sun, Y.X.; Li, X.H.; Wang, Y.F. Yellow River Sediment as a Soil Amendment for Amelioration of Saline Land in the Yellow River Delta. Land Degrad. Dev. 2016, 27, 1595–1602. [Google Scholar] [CrossRef]
- Hamdy, A.; Abdeldayem, S.; Abuzeid, M. Saline Water Management for Optimum Crop Production. Agric. Water Manag. 1993, 24, 189–203. [Google Scholar] [CrossRef]
- Chen, J.S.; He, D.W.; Cui, S.B. The response of river water quality and quantity to the development of irrigated agriculture in the last 4 decades in the Yellow River Basin, China. Water Resour. Res. 2003, 39, 1047. [Google Scholar] [CrossRef]
- Zhang, X.N.; Guo, Q.P.; Shen, X.X.; Yu, S.W.; Qiu, G.Y. Water quality, agriculture and food safety in China: Current situation, trends, interdependencies, and management. J. Integr. Agr. 2015, 14, 2365–2379. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Xu, X.P.; Shao, H.B.; Lu, H.Y.; Yang, R.P.; Tang, B.P. Dynamics in soil quality and crop physiology under poplar-agriculture tillage models in coastal areas of Jiangsu, China. Soil Tillage Res. 2020, 204, 104733. [Google Scholar] [CrossRef]
- Xu, X.G.; Chen, Z.X.; Feng, Z. From natural driving to artificial intervention: Changes of the Yellow River estuary and delta development. Ocean Coast. Manag. 2019, 174, 63–70. [Google Scholar] [CrossRef]
- Xu, S.Q.; Yu, Z.B.; Yang, C.G.; Ji, X.B.; Zhang, K. Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin. Agr. For. Meteorol. 2019, 271, 422. [Google Scholar] [CrossRef]
- Han, Z.Q.; Zuo, Q.T.; Wang, C.Q.; Gan, R. Impacts of Climate Change on Natural Runoff in the Yellow River Basin of China during 1961–2020. Water 2023, 15, 929. [Google Scholar] [CrossRef]
- Feng, P.Y.; Wang, B.; Liu, D.L.; Xing, H.T.; Ji, F.; Macadam, I.; Ruan, H.Y.; Yu, Q. Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia. Clim. Chang. 2018, 147, 555–569. [Google Scholar] [CrossRef]
- Fan, J.L.; Wei, Y.P.; Xu, X.W.; Yang, X.H. Effect of drip irrigation with saline water on the construction of shelterbelts for soil and groundwater protection in the hinterland of the Taklimakan Desert, China. Tecnol. Cienc. Agua 2017, 8, 19–30. [Google Scholar] [CrossRef]
- Xiao, M.; Liu, G.M.; Jiang, S.G.; Guan, X.W.; Chen, J.L.; Yao, R.J.; Wang, X.P. Bio-Organic Fertilizer Combined with Different Amendments Improves Nutrient Enhancement and Salt Leaching in Saline Soil: A Soil Column Experiment. Water 2022, 14, 4084. [Google Scholar] [CrossRef]
- Kang, Y.H.; Wan, S.Q.; Chen, M. Drip irrigation with saline water in North China Plain. Ma. Comput. Sci. Eng. 2009, 207–217. Available online: https://www.researchgate.net/publication/292715535_Drip_irrigation_with_saline_water_in_North_China_Plain (accessed on 25 May 2023).
- Sun, Y.P.; Chen, X.B.; Shan, J.J.; Xian, J.T.; Cao, D.; Luo, Y.M.; Yao, R.J.; Zhang, X. Nitrogen Mitigates Salt Stress and Promotes Wheat Growth in the Yellow River Delta, China. Water 2022, 14, 3819. [Google Scholar] [CrossRef]
- Waris, M.; Baig, J.A.; Talpur, F.N.; Kazi, T.G.; Afridi, H.I.; Shakeel, S. Estimation of phytoextraction potential of selected halophytes for accumulation of heavy metals from wetland saline soil. Rend. Lincei.-Sci. Fis. E Nat. 2023, 34, 553–562. [Google Scholar] [CrossRef]
- Susaiappan, S.; Somanathan, A.; Sulthan, M. Suitability of Water Sources for Domestic and Irrigation Purpose around Corporate Dumpsite. Pol. J. Environ. Stud. 2021, 30, 3803–3812. [Google Scholar] [CrossRef]
- Bolinches, A.; Blanco-Gutierrez, I.; Zubelzu, S.; Esteve, P.; Gomez-Ramos, A. A method for the prioritization of water reuse projects in agriculture irrigation. Agric. Water Manag. 2022, 263, 107435. [Google Scholar] [CrossRef]
- Jiao, P.; Yu, Y.; Xu, D. Effect of Drainage Water Reuse on Supplementary Irrigation and Drainage Reduction. Trans. ASABE 2018, 61, 1619–1626. [Google Scholar] [CrossRef]
- Williams, C.N.; Joseph, K.T. Effects of Sea Water on Growth of Reyong-20 Rice in Malaysia. Exp. Agr. 1969, 5, 231–240. [Google Scholar] [CrossRef]
- Mehta, M.H. Sea farming and saline water agriculture. Curr. Sci. India 2022, 122, 7–8. [Google Scholar]
- Cai, X.M.; McKinney, D.C.; Rosegrant, M.W. Sustainability analysis for irrigation water management in the Aral Sea region. Agr. Syst. 2003, 76, 1043–1066. [Google Scholar] [CrossRef]
- Ma, T.; Zhao, N.; Ni, Y.; Yi, J.W.; Wilson, J.P.; He, L.H.; Du, Y.Y.; Pei, T.; Zhou, C.H.; Song, C.; et al. China’s improving inland surface water quality since 2003. Sci. Adv. 2020, 6, eaau3798. [Google Scholar] [CrossRef] [PubMed]
- Kaesmentan, D. Groundwater and Water Quality: Hydraulics, Water Resources and Coastal Engineering. Prog. Phys. Geog. 2023, 47, 171–172. [Google Scholar] [CrossRef]
- Lyra, A.; Loukas, A. Simulation and Evaluation of Water Resources Management Scenarios Under Climate Change for Adaptive Management of Coastal Agricultural Watersheds. Water Resour. Manag. 2022, 37, 2625–2642. [Google Scholar] [CrossRef]
- Zhang, P.P.; Zhang, L.X.; Chang, Y.; Xu, M.; Hao, Y.; Liang, S.; Liu, G.Y.; Yang, Z.F.; Wang, C. Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review. Resour. Conserv. Recy. 2019, 142, 215–224. [Google Scholar] [CrossRef]
- Bao, C.; Fang, C.L. Water Resources Flows Related to Urbanization in China: Challenges and Perspectives for Water Management and Urban Development. Water Resour. Manag. 2012, 26, 531–552. [Google Scholar] [CrossRef]
- Gould, I.J.; Wright, I.; Collison, M.; Ruto, E.; Bosworth, G.; Pearson, S. The impact of coastal flooding on agriculture: A case-study of Lincolnshire, United Kingdom. Land Degrad. Dev. 2020, 31, 1545–1559. [Google Scholar] [CrossRef]
- Cao, D.; Chen, X.; Yi, X. Crop structure optimization based on agricultural irrigation water demand calculation in the Yellow River Delta. Water Resour. Prot. 2022, 38, 14. [Google Scholar] [CrossRef]
- Marchioni, M.; Raimondi, A.; Di Chiano, M.G.; Sanfilippo, U.; Mambretti, S.; Becciu, G. Costs-benefit Analysis for the use of Shallow Groundwater as non-conventional Water Resource. Water Resour. Manag. 2023, 37, 2125–2142. [Google Scholar] [CrossRef]
- Karimidastenaei, Z.; Avellan, T.; Sadegh, M.; Klove, B.; Haghighi, A.T. Unconventional water resources: Global opportunities and challenges. Sci. Total Environ. 2022, 827, 154429. [Google Scholar] [CrossRef]
- Khan, Z.I.; Hussain, M.I.; Zafar, A.; Ahmad, K.; Ashraf, M.A.; Ahmed, M.; ALrashidi, A.A.; ALHaithloul, H.A.S.; Alghanem, S.M.; Khan, M.I.; et al. Ecological risk assessment and bioaccumulation of trace element, copper, in wheat varieties irrigated with non-conventional water resources in a semi-arid tropics. Agric. Water Manag. 2022, 269, 107711. [Google Scholar] [CrossRef]
- Li, J.G.; Chen, J.; He, P.R.; Chen, D.; Dai, X.P.; Jin, Q.; Su, X.Y. The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia. Agric. Water Manag. 2022, 274, 107940. [Google Scholar] [CrossRef]
- Soleimani-Sardo, M.; Khanjani, M.H. Utilization of unconventional water resources (UWRS) for aquaculture development in arid and semi-arid regions$#X2014;A review. Ann. Anim. Sci. 2023, 23, 11–23. [Google Scholar] [CrossRef]
Parameters | Limiting Value |
---|---|
pH | 5.5~8.5 |
Salt content (mg/L) | 1000 (non-saline soil area) 2000 (saline soil area) |
Cl− (mg/L) | 350 |
Ions Composition | Irrigation Coefficient/Ka |
---|---|
c (Na+) < c (Cl−), NaCl existing | |
c (Cl−) < c (Na+) < c (1/2 SO42−)+ c (Cl−), NaCl and Na2SO42− existing | |
c (Na+) < c (1/2 SO42−)+ c (Cl−), NaCl, Na2SO42−, and Na2CO3 existing |
Classification of the Water | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Water quality | Very good | Good | Used after dilute | Not well applicable, need good drainage | Cannot be used |
EC (mS/cm) | ≤0.25 | 0.25~0.75 | 0.76~2.00 | 2.01~3.00 | ≥3.00 |
Parameters | Harmful Water | Harmful Marginal Water | Safer Water | Used Safely |
---|---|---|---|---|
>20 | 15~20 | 8~15 | <8 |
Degree | Low | Middle | High | Very High |
---|---|---|---|---|
Cl− (mg/L) | ≤70 | 70–140 | 141–350 | ≥350 |
Application status | Suitable for all plants | Sensitive plants are susceptible to damage | Non-sensitive plants damaged | Produce severe environment problems, plants harmed |
SAR | 1~9 | 10~17 | 18~25 | ≥26 |
Application status | Careful when used for Na+ sensitive plants | Need infiltration and dilute | Usually not used consistently | Not used |
Water Quality Indicators | Parameters | Status of Restricted Utilization | ||
---|---|---|---|---|
Non | Light to Moderate | Heavy | ||
Salinity | EC (mS/cm) | <0.7 | 0.7~3.0 | >3.0 |
Infiltration | SAR | EC (mS/cm) | ||
0~3 | >0.7 | 0.2~0.7 | <0.2 | |
3~6 | >1.2 | 0.3~1.2 | <0.3 | |
6~12 | >1.9 | 0.5~1.9 | <0.5 | |
12~20 | >2.9 | 1.3~2.9 | <1.3 | |
20~40 | >5.0 | 2.9~5.0 | <2.9 |
Guangrao County | Kenli County | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Maximum | Minimum | Average | SE | Parameters | Maximum | Minimum | Average | SE |
pH | 9.22 | 7.15 | 8.38 | 0.48 | pH | 8.47 | 6.39 | 7.60 | 0.79 |
EC | 15.97 | 0.95 | 6.07 | 3.76 | EC | 24.49 | 0.88 | 7.50 | 8.70 |
TDS | 7986.00 | 476.50 | 3035.08 | 1881.80 | TDS | 12,240.00 | 438.20 | 3749.14 | 4350.25 |
SAR | 38.26 | 3.86 | 21.88 | 9.37 | SAR | 44.30 | 2.98 | 16.01 | 13.74 |
Cl− | 4576.50 | 50.29 | 1479.64 | 1194.28 | Cl− | 7988.14 | 98.36 | 2129.23 | 2803.69 |
SO42− | 1259.00 | 38.80 | 743.51 | 367.34 | SO42− | 840.91 | 129.64 | 366.59 | 270.89 |
NO3− | 116.69 | 0.00 | 10.05 | 25.04 | NO3− | 3.99 | 0.00 | 0.82 | 1.57 |
Na+ | 2656.44 | 96.21 | 1051.73 | 689.76 | Na+ | 3370.18 | 84.95 | 1052.93 | 1241.07 |
K+ | 123.91 | 1.30 | 25.44 | 21.73 | K+ | 72.30 | 3.89 | 17.46 | 22.89 |
Mg2+ | 318.08 | 5.15 | 142.97 | 86.78 | Mg2+ | 776.14 | 13.72 | 195.08 | 262.19 |
Ca2+ | 210.12 | 2.56 | 88.74 | 51.06 | Ca2+ | 912.72 | 14.22 | 236.70 | 320.59 |
Guangrao County | Kenli County | ||||||
---|---|---|---|---|---|---|---|
Underground Water | Irrigation Water | Drainage Water | Underground Water | Irrigation Water | Drainage Water | ||
Na+ toxicity | Low | 0% | 20% | 0% | 33% | 50% | 67% |
Moderate | 20% | 40% | 14% | 33% | 50% | 0% | |
High | 40% | 20% | 43% | 0% | 0% | 0% | |
Very high | 40% | 20% | 43% | 34% | 0% | 33% | |
Cl− toxicity | Low | 0% | 10% | 0% | 0% | 0% | 0% |
Moderate | 0% | 20% | 7% | 33% | 50% | 0% | |
High | 0% | 0% | 0% | 0% | 0% | 33% | |
Very high | 100% | 70% | 93% | 67% | 50% | 67% |
Guangrao County | Kenli County | ||||||
---|---|---|---|---|---|---|---|
Underground Water | Irrigation Water | Drainage Water | Underground Water | Irrigation Water | Drainage Water | ||
Degree of water availability on crop affected | Mild to moderate | 40% | 60% | 7% | 33% | 100% | 67% |
Severe | 60% | 40% | 93% | 67% | 0% | 33% | |
Degree of water infiltration affected | None | 60% | 60% | 93% | 67% | 100% | 33% |
Mild to moderate | 20% | 20% | 7% | 33% | 0% | 33% | |
Severe | 20% | 20% | 0% | 0% | 0% | 34% |
Items | pH | EC (mS/cm) | SAR | Cl− | SO42− | Na+ |
---|---|---|---|---|---|---|
Guangrao County | ||||||
Minimum value | 7.38 | 2.42 | 11.4 | 360.39 | 250.26 | 393.04 |
Average | 8.33 | 6.85 | 23.51 | 1700.71 | 837.26 | 1192.41 |
Maximum value | 8.95 | 15.97 | 38.26 | 4576.5 | 1259 | 2656.44 |
Kenli County | ||||||
Minimum value | 6.39 | 2.49 | 9.82 | 588.76 | 227.28 | 355.37 |
Average | 6.93 | 11.36 | 21.98 | 3329.85 | 498.18 | 1602.74 |
Maximum value | 7.97 | 24.49 | 44.3 | 7988.14 | 840.91 | 3370.18 |
The Yellow River water | ||||||
Average | 7.82 | 0.88 | 2.98 | 98.36 | 129.64 | 84.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Chen, X.; Luo, Y.; Cao, D.; Feng, H.; Zhang, X.; Yao, R. Agricultural Water Quality Assessment and Application in the Yellow River Delta. Agronomy 2023, 13, 1495. https://doi.org/10.3390/agronomy13061495
Sun Y, Chen X, Luo Y, Cao D, Feng H, Zhang X, Yao R. Agricultural Water Quality Assessment and Application in the Yellow River Delta. Agronomy. 2023; 13(6):1495. https://doi.org/10.3390/agronomy13061495
Chicago/Turabian StyleSun, Yunpeng, Xiaobing Chen, Yongming Luo, Dan Cao, Hongyu Feng, Xin Zhang, and Rongjiang Yao. 2023. "Agricultural Water Quality Assessment and Application in the Yellow River Delta" Agronomy 13, no. 6: 1495. https://doi.org/10.3390/agronomy13061495
APA StyleSun, Y., Chen, X., Luo, Y., Cao, D., Feng, H., Zhang, X., & Yao, R. (2023). Agricultural Water Quality Assessment and Application in the Yellow River Delta. Agronomy, 13(6), 1495. https://doi.org/10.3390/agronomy13061495