Morphological and Physiological Response of Tomato to Sole and Combined Application of Vermicompost and Chemical Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Collection of Vermicomposts
2.2. Chemical Composition of Cattle Manure and Vermicomposts
2.3. Soil Sampling and Preparation
2.4. Crop Husbandry and Experimental Design
2.4.1. Plant Growth, Physiology and Yield Attributes
2.4.2. Nutritional Quality of the Tomato
2.5. Statistical Analysis
3. Results
3.1. Plant Growth, Yield and Physiological Attributes
Fruit Quality and Nutritional Analysis
3.2. Post-Harvest Variation in Soil Physico-Chemical Properties
4. Discussion
4.1. Plant Growth, Yield, Physiology and Nutritional Quality Attributes of Tomato Plant
4.2. Effect of Vermicompost on Physico-Chemical Properties of Post-Harvest Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.-X.; Zhao, F.; Zhang, G.; Zhang, Y.; Yang, L. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study. Front. Plant Sci. 2017, 8, 1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Villanueva Gutierrez, E.E. An Overview of Recent Studies of Tomato (Solanum lycopersicum spp.) from a Social, Biochemical and Genetic Perspective on Quality Parameters. Basic Microbiol. 2018, 50, 211–217. [Google Scholar]
- Norris, C.E.; Congreves, K.A. Alternative Management Practices Improve Soil Health Indices in Intensive Vegetable Cropping Systems: A Review. Front. Environ. Sci. 2018, 6, 50. [Google Scholar] [CrossRef]
- Chauhan, H.S.; Joshi, S.C.N.; Rana, D.K.; Li, W.; Zheng, P.; Guo, J.; Ji, J.; Zhang, M.; Zhang, Z.; Zhan, E.; et al. Water-Use Efficiency and Transpiration Efficiency of Wheat under Rain-Fed Conditions and Supplemental Irrigation in a Mediterranean-Type Environment. Bioresour. Technol. 2021, 5, 11–20. [Google Scholar] [CrossRef]
- Fu, X.; Huang, K.; Cui, G.; Chen, X.; Li, F.; Zhang, X.; Li, F. Dynamics of Bacterial and Eukaryotic Community Associated with Stability during Vermicomposting of Pelletized Dewatered Sludge. Int. Biodeterior. Biodegrad. 2015, 104, 452–459. [Google Scholar] [CrossRef]
- Edwards, C.A.; Dominguez, J.; Aranconl, N.Q. 18. The Influence Ofvermicomposts on Plant Growth and Pest Incidence. In Soil Zoology for Sustainable Development in the 21st Century; Hanna, H.S.H., Mikhail, W.Z.A., Eds.; Geocities: Cairo, Egypt, 2004. [Google Scholar]
- Lim, S.L.; Wu, T.Y.; Lim, P.N.; Shak, K.P.Y. The Use of Vermicompost in Organic Farming: Overview, Effects on Soil and Economics. J. Sci. Food Agric. 2015, 95, 1143–1156. [Google Scholar] [CrossRef]
- Dubey, R.K.; Dubey, P.K.; Chaurasia, R.; Singh, H.B.; Abhilash, P.C. Sustainable Agronomic Practices for Enhancing the Soil Quality and Yield of Cicer arietinum L. under Diverse Agroecosystems. J. Environ. Manag. 2020, 262, 110284. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, S. Vermicompost, the Story of Organic Gold: A Review. Agric. Sci. 2012, 3, 905–917. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.M.M.; Stamford, N.P.; Santos, C.E.R.S.; Freitas, A.D.S.; Sousa, C.A.; Junior, M.A.L. Effects of Biofertilizer with Diazotrophic Bacteria and Mycorrhizal Fungi in Soil Attribute, Cowpea Nodulation Yield and Nutrient Uptake in Field Conditions. Sci. Hortic. 2013, 162, 374–379. [Google Scholar] [CrossRef]
- Haque, M.M.; Haque, M.A.; Ilias, G.N.M.; Molla, A.H. Trichoderma-Enriched Biofertilizer: A Prospective Substitute of Inorganic Fertilizer for Mustard (Brassica campestris) Production. Agriculturists 2010, 8, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Sabrina, D.T.; Hanafi, M.M.; Gandahi, A.W.; Muda Mohamed, M.T.; Abdul Aziz, N.A. Effect of Mixed Organic-Inorganic Fertilizer on Growth and Phosphorus Uptake of Setaria Grass (‘Setaria splendida’). Aust. J. Crop Sci. 2013, 7, 75–83. [Google Scholar]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an Effective Organic Fertilizer and Biocontrol Agent: Effect on Growth, Yield and Quality of Plants. Rev. Environ. Sci. Bio/Technol. 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Gajalakshmi, S.; Abbasi, S.A. Effect of the Application of Water Hyacinth Compost/Vermicompost on the Growth and Flowering of Crossandra Undulaefolia, and on Several Vegetables. Bioresour. Technol. 2002, 85, 197–199. [Google Scholar] [CrossRef]
- Shadanpour, F.; Torkashvand, A.M.; Majd, K.H. The Effect of Cow Manure Vermicompost as the Planting Medium on the Growth of Marigold. Ann. Biol. Res. 2011, 2, 109–115. [Google Scholar]
- Pant, A.P.; Radovich, T.J.K.; Hue, N.V.; Talcott, S.T.; Krenek, K.A. Vermicompost Extracts Influence Growth, Mineral Nutrients, Phytonutrients and Antioxidant Activity in Pak Choi (Brassica rapa Cv. Bonsai, Chinensis Group) Grown under Vermicompost and Chemical Fertiliser. J. Sci. Food Agric. 2009, 89, 2383–2392. [Google Scholar] [CrossRef]
- Reddy, M.V.; Ohkura, K. Vermicomposting of Rice-Straw and Its Effects on Sorghum Growth. Trop. Ecol. 2004, 45, 327–331. [Google Scholar]
- Vijaya, K.S.; Seethalakshmi, S. Contribution of Parthenium Vermicompost in Altering Growth, Yield and Quality of Alelmoschus Esculentus (I) Moench. Adv. Biotech 2011, 11, 44–47. [Google Scholar]
- Azarmi, R.; Giglou, M.T.; Taleshmikail, R.D. Influence of Vermicompost on Soil Chemical and Physical Properties in Tomato (Lycopersicum esculentum) Field. Afr. J. Biotechnol. 2008, 7, 2397–2401. [Google Scholar]
- Hadi, M.; Darz, M.T.; Ghandehari, Z.; Riazi, G. Effects of Vermicompost and Amino Acids on the Flower Yield and Essential Oil Production from Matricaria chamomile L. J. Med. Plants Res. 2011, 5, 5611–5617. [Google Scholar]
- Singh, R.; Sharma, R.R.; Kumar, S.; Gupta, R.K.; Patil, R.T. Vermicompost Substitution Influences Growth, Physiological Disorders, Fruit Yield and Quality of Strawberry (Fragaria x Ananassa Duch.). Bioresour. Technol. 2008, 99, 8507–8511. [Google Scholar] [CrossRef]
- Suthar, S. Earthworm Communities a Bioindicator of Arable Land Management Practices: A Case Study in Semiarid Region of India. Ecol. Indic. 2009, 9, 588–594. [Google Scholar] [CrossRef]
- Garg, V.K.; Gupta, R. Optimization of Cow Dung Spiked Pre-Consumer Processing Vegetable Waste for Vermicomposting Using Eisenia fetida. Ecotoxicol. Environ. Saf. 2011, 74, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S.; Sharma, P. Vermicomposting of Toxic Weed—Lantana Camara Biomass: Chemical and Microbial Properties Changes and Assessment of Toxicity of End Product Using Seed Bioassay. Ecotoxicol. Environ. Saf. 2013, 95, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Reinecke, A.J.; Viljoen, S.A.; Saayman, R.J. The Suitability of Eudrilus eugeniae, Perionyx excavatus and Eisenia fetida (Oligochaeta) for Vermicomposting in Southern Africa in Terms of Their Temperature Requirements. Soil Biol. Biochem. 1992, 24, 1295–1307. [Google Scholar] [CrossRef]
- Aslam, Z.; Bashir, S.; Hassan, W.; Bellitürk, K.; Ahmad, N.; Niazi, N.K.; Khan, A.; Khan, M.I.; Chen, Z.; Maitah, M. Unveiling the Efficiency of Vermicompost Derived from Different Biowastes on Wheat (Triticum aestivum L.) Plant Growth and Soil Health. Agronomy 2019, 9, 791. [Google Scholar] [CrossRef]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual; ICARDA: Beirut, Lebanon, 2001; ISBN 9291271187. [Google Scholar] [Green Version]
- Shapiro, L.; Brannock, W.W. Automatic Photometric Titrations of Calcium and Magnesium in Carbonate Rocks. Anal. Chem. 1955, 27, 725–728. [Google Scholar] [CrossRef]
- Mulvaney, B.J.M.; Page, A.L. Nitrogen-Total. Methods Soil Anal. Part 1982, 2, 595–624. [Google Scholar]
- Watanabe, F.S.; Olsen, S.R. Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil. Soil Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Bansal, S.; Kapoor, K.K. Vermicomposting of Crop Residues and Cattle Dung with Eisenia Foetida. Bioresour. Technol. 2000, 73, 95–98. [Google Scholar] [CrossRef]
- Page, A.L.; Page, A.L. Methods of Soil Analysis: Chemical and Microbiological Properties; Americann Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis. Man. West Asia N. Afr. Reg. 2013, 3, 65–119. [Google Scholar]
- Abbaspour, A.; Kalbasi, M.; Hajrasuliha, S.; Fotovat, A. Effect of Organic Matter and Salinity on Ethylenediaminetetraacetic Acid–Extractable and Solution Species of Cadmium and Lead in Three Agricultural Soils. Commun. Soil Sci. Plant Anal. 2008, 39, 983–1005. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils 1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Soltanpour, P.N.; Schwab, A.P. A New Soil Test for Simultaneous Extraction of Macro-and Micro-nutrients in Alkaline Soils. Commun. Soil Sci. Plant Anal. 1977, 8, 195–207. [Google Scholar] [CrossRef]
- Abraham, J. Organic Carbon Estimations in Soils: Analytical Protocols and Their Implications. Rubber Sci. 2013, 26, 45–54. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Arnon, D.I.; Whatley, F.R. Is Chloride a Coenzyme of Photosynthesis? Science 1949, 110, 554–556. [Google Scholar] [CrossRef]
- Schonfeld, M.A.; Johnson, R.C.; Carver, B.F.; Mornhinweg, D.W. Water Relations in Winter Wheat as Drought Resistance Indicators. Crop Sci. 1988, 28, 526–531. [Google Scholar] [CrossRef]
- Sairam, R.K. Effects of Homobrassinolide Application on Plant Metabolism and Grain Yield under Irrigated and Moisture-Stress Conditions of Two Wheat Varieties. Plant Growth Regul. 1994, 14, 173–181. [Google Scholar] [CrossRef]
- Shehzad, M.T.; Sabir, M.; Zia-ur-Rehman, M.; Zia, M.A.; Naidu, R. Arsenic Concentrations in Soil, Water, and Rice Grains of Rice-Growing Areas of Punjab, Pakistan: Multivariate Statistical Analysis. Environ. Monit. Assess. 2022, 194, 346. [Google Scholar] [CrossRef]
- Levey, D.J.; Bissell, H.A.; O’keefe, S.F. Conversion of Nitrogen to Protein and Amino Acids in Wild Fruits. J. Chem. Ecol. 2000, 26, 1749–1763. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, F.P. Determination of Minerals by Titration Method: Methods of Analysis for Soils, Plants and Water; Agriculture Division, University of California: Oakland, CA, USA, 1982. [Google Scholar]
- Esringü, A.; Turan, M.; Sushkova, S.; Minkina, T.; Rajput, V.D.; Glinushkin, A.; Kalinitchenko, V. Influence of Vermicompost Application on the Growth of Vinca rosea valiant, Pelargonium peltatum L. and Pegasus patio rose. Horticulturae 2022, 8, 534. [Google Scholar] [CrossRef]
- Ansari, A.A.; Sukhraj, K. Effect of Vermin Wash and Vermicompost on Soil Parameter and Productivity of A. Esculentus in Guyana. Afr. J. Agric. Res 2010, 5, 1994–1998. [Google Scholar]
- Karagöz, F.P.; Dursun, A.; Tekiner, N.; Kul, R.; Kotan, R. Efficacy of Vermicompost and/or Plant Growth Promoting Bacteria on the Plant Growth and Development in Gladiolus. Ornam. Hortic. 2019, 25, 180–188. [Google Scholar] [CrossRef]
- Naidu, A.K.; Kushwah, S.S.; Mehta, A.K.; Jain, P.K. Study of Organic, Inorganic and Biofertilizers in Relation to Growth and Yield of Tomato. JNKVV Res. J. 2001, 35, 36–37. [Google Scholar]
- Musa, S.I.; Njoku, L.K.; Ndiribe, C.C. The Effect of Vermi Tea on the Growth Parameters of Spinacia oleracea L. (Spinach). J. Environ. Sci. Pollut. Res. 2018, 3, 236–238. [Google Scholar]
- Aslam, Z.; Ahmad, A.; Bellitürk, K.; Kanwal, H.; Asif, M.; Ullah, E. Integrated Use of Simple Compost, Vermicompost, Vermi-Tea and Chemical Fertilizers NP on the Morpho-Physiological, Yield and Yield Related Traits of Tomato (Solanum lycopersicum L.). J. Innov. Sci. 2023, 9, 1–12. [Google Scholar] [CrossRef]
- Raksun, A.; Ilhamdi, M.L.; Merta, I.W.; Mertha, I.G. Analysis of Bean (Phaseolus vulgaris) Growth Due to Treatment of Vermicompost and Different Types of Mulch. J. Biol. Trop. 2022, 22, 907–913. [Google Scholar] [CrossRef]
- Afandi, A.M.; Zulkifli, H.; Khalid, H.; Hasnol, O.; Nur-Zuhaili, H.; Zuraidah, Y. Oil Palm Fertilizer Recommandation for Sabah Soils. Oil Palm Bull. 2016, 72, 1–24. [Google Scholar]
- Dominguez, J.; Edwards, C.A. Biology and Ecology of Earthworm Species Used for Vermicomposting. Vermiculture Technology: Earthworms, Organic Waste and Environmental Management; CRC Press: Boca Raton, FL, USA, 2011; pp. 27–40. [Google Scholar]
- Rekha, G.S.; Kaleena, P.K.; Elumalai, D.; Srikumaran, M.P.; Maheswari, V.N. Effects of Vermicompost and Plant Growth Enhancers on the Exo-Morphological Features of Capsicum annum (Linn.) Hepper. Int. J. Recycl. Org. Waste Agric. 2018, 7, 83–88. [Google Scholar] [CrossRef]
- Mahmoud, S.O.; Gad, D.A.M. Effect of Vermicompost as Fertilizer on Growth, Yield and Quality of Bean Plants (Phaseolus vulgaris L.). Middle East J. Agric. Res. 2020, 9, 220–226. [Google Scholar] [Green Version]
- Khosropour, E.; Weisany, W.; Tahir, N.A.; Hakimi, L. Vermicompost and Biochar Can Alleviate Cadmium Stress through Minimizing Its Uptake and Optimizing Biochemical Properties in Berberis Integerrima Bunge. Environ. Sci. Pollut. Res. 2022, 29, 17476–17486. [Google Scholar] [CrossRef]
- Arancon, N.Q.; Pant, A.; Radovich, T.; Hue, N.V.; Potter, J.K.; Converse, C.E. Seed Germination and Seedling Growth of Tomato and Lettuce as Affected by Vermicompost Water Extracts (Teas). HortScience 2012, 47, 1722–1728. [Google Scholar] [CrossRef]
- Aslam, Z.; Ahmad, A. Effects of Vermicompost, Vermi-Tea and Chemical Fertilizer on Morpho-Physiological Characteristics of Maize (Zea mays L.) in Suleymanpasa District, Tekirdag of Turkey. J. Innov. Sci. 2020, 6, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Emami, H.; Astaraei, A.R. Effect of Organic and Inorganic Amendments on Parameters of Water Retention Curve, Bulk Density and Aggregate Diameter of a Saline-Sodic Soil. J. Agric. Sci. Technol. 2012, 14, 1625–1636. [Google Scholar]
- Yadav, V.; Karak, T.; Singh, S.; Singh, A.K.; Khare, P. Benefits of Biochar over Other Organic Amendments: Responses for Plant Productivity (Pelargonium graveolens L.) and Nitrogen and Phosphorus Losses. Ind. Crops Prod. 2019, 131, 96–105. [Google Scholar] [CrossRef]
- Hafez, E.M.; Omara, A.E.D.; Alhumaydhi, F.A.; El-Esawi, M.A. Minimizing Hazard Impacts of Soil Salinity and Water Stress on Wheat Plants by Soil Application of Vermicompost and Biochar. Physiol. Plant. 2021, 172, 587–602. [Google Scholar] [CrossRef]
- Beyk-Khormizi, A.; Hosseini Sarghein, S.; Sarafraz-Ardakani, M.R.; Moshtaghioun, S.M.; Mousavi-Kouhi, S.M.; Ganjeali, A. Ameliorating Effect of Vermicompost on Foeniculum vulgare under Saline Condition. J. Plant Nutr. 2022, 46, 1601–1615. [Google Scholar] [CrossRef]
- Ezzat, A.S.; Badway, A.S.; Abdelkader, A.E. Sequenced Vermicompost, Glycine Betaine, Proline Treatments Elevate Salinity Tolerance in Potatoes. Middle East J. Agric. Res 2019, 8, 126–138. [Google Scholar]
- Ahmadpour, R.; Armand, N. Effect of Ecophysiological Characteristics of Tomato (Lycopersicon esculentum L.) in Response to Organic Fertilizers (Compost and Vermicompost). Not. Bot. Horti Agrobot. Cluj Napoca 2020, 48, 1248–1259. [Google Scholar] [CrossRef]
- Zouari, M.; Elloumi, N.; Ahmed, C.B.; Delmail, D.; Rouina, B.B.; Abdallah, F.B.; Labrousse, P. Exogenous Proline Enhances Growth, Mineral Uptake, Antioxidant Defense, and Reduces Cadmium-Induced Oxidative Damage in Young Date Palm (Phoenix dactylifera L.). Ecol. Eng. 2016, 86, 202–209. [Google Scholar] [CrossRef]
- Aslam, Z.; Ahmad, A.; Bellitürk, K.; Iqbal, N.; Idrees, M.; Rehman, W.U.; Akbar, G.; Tariq, M.; Raza, M.; Riasat, S. 26. Effects of Vermicompost, Vermi-Tea and Chemical Fertilizer on Morpho-Physiological Characteristics of Tomato (Solanum lycopersicum) in Suleymanpasa District, Tekirdag of Turkey. Pure Appl. Biol. 2020, 9, 1920–1931. [Google Scholar] [CrossRef]
- Olowoake, A.A.; Wahab, A.A.; Lawal, O.O.; Subair, S.K. Assessing the Potential of Organic Wastes through Vermicomposting: A Case Study with Cucumber (Cucumis sativus). Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 131–140. [Google Scholar] [CrossRef]
- Adekeye, O.; Ozano, K.; Dixon, R.; Elhassan, E.O.; Lar, L.; Schmidt, E.; Isiyaku, S.; Okoko, O.; Thomson, R.; Theobald, S. Mass Administration of Medicines in Changing Contexts: Acceptability, Adaptability and Community Directed Approaches in Kaduna and Ogun States, Nigeria. PLoS Negl. Trop. Dis. 2020, 14, e0008857. [Google Scholar] [CrossRef]
- Machfudz, M.; Murwani, I. Combined Effect of Vermicompost and Earthworm Pontoscolex Corethrurus Inoculationon the Yield and Quality of Broccoli (Brassica oleracea L.) Using Organic Growing Media. 2017. Available online: http://repository.unisma.ac.id/handle/123456789/2245 (accessed on 5 May 2023).
- Rahman, M.; Alauddin, M.; Ali, A.H.M.Z. Growth and Yield Performance of Strawberry (Fragaria Ananassa) under Various Doses of Vermicompost and NPK Fertilizers Grown at Rooftop of Charfasson Area in the Southern Parts of Bangladesh. Dhaka Univ. J. Biol. Sci. 2021, 30, 283–292. [Google Scholar] [CrossRef]
- Gupta, R.K.; Patel, A.K.; Shah, N.; Choudhary, A.K.; Jha, U.K.; Yadav, U.C.; Gupta, P.K.; Pakuwal, U. Oxidative Stress and Antioxidants in Disease and Cancer: A Review. Asian Pac. J. Cancer Prev. 2014, 15, 4405–4409. [Google Scholar] [CrossRef]
- Kamal, M.D. Efficacy of Different Combinations of Nitrogenous Fertilizer and Vermicompost on Yield and Quality of Aromatic Rice. Master’s Thesis, Sher-e-Bangla Agricultural University Dhaka, Dhaka, Bangladesh, 2020. Available online: http://archive.saulibrary.edu.bd:8080/xmlui/handle/123456789/4551 (accessed on 5 May 2023).[Green Version]
- Lachnicht, S.L.; Hendrix, P.F. Interaction of the Earthworm Diplocardia Mississippiensis (Megascolecidae) with Microbial and Nutrient Dynamics in a Subtropical Spodosol. Soil Biol. Biochem. 2001, 33, 1411–1417. [Google Scholar] [CrossRef]
- Nasrin, A.; Khanom, S.; Hossain, S.A. Effects of Vermicompost and Compost on Soil Properties and Growth and Yield of Kalmi (Ipomoea Aquatica Forsk.) in Mixed Soil. Dhaka Univ. J. Biol. Sci. 2019, 28, 121–129. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil Structure and Soil Organic Matter II. A Normalized Stability Index and the Effect of Mineralogy. Soil Sci. Soc. Am. J. 2000, 64, 1042–1049. [Google Scholar] [CrossRef]
- Wick, A.F.; Daniels, W.L.; Nash, W.L.; Burger, J.A. Aggregate Recovery in Reclaimed Coal Mine Soils of SW Virginia. Land Degrad. Dev. 2016, 27, 965–972. [Google Scholar] [CrossRef]
- Ouda, B.A.; Mahadeen, A.Y. Effect of Fertilizers on Growth, Yield, Yield Components, Quality and Certain Nutrient Contents in Broccoli (Brassica oleracea). Int. J. Agric. Biol. 2008, 10, 627–632. [Google Scholar]
- Paul, V.; Dhiman, S.; Dubey, Y.P. Effect of Vermicompost and P Enriched Biocompost on Soil Properties under French Bean Crop. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2170–2177. [Google Scholar] [CrossRef]
- Gholami, H.; Fard, F.R.; Saharkhiz, M.J.; Ghani, A. Yield and Physicochemical Properties of Inulin Obtained from Iranian Chicory Roots under Vermicompost and Humic Acid Treatments. Ind. Crops Prod. 2018, 123, 610–616. [Google Scholar] [CrossRef]
- Sreenivas, C.; Muralidhar, S.; Rao, M.S. Vermicompost: A Viable Component of IPNSS in Nitrogen Nutrition of Ridge Gourd. Ann. Agric. Res. 2000, 21, 108–113. [Google Scholar]
- Zupanc, V.; Justin, M.Z. Changes in Soil Characteristics during Landfill Leachate Irrigation of Populus Deltoides. Waste Manag. 2010, 30, 2130–2136. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, R.C.; Bairwa, H.L.; Kumar, U.; Javed, T.; Asad, M.; Lal, K.; Mahawer, L.N.; Sharma, S.K.; Singh, P.; Hassan, M.M. Influence of Organic Manures on Soil Nutrient Content, Microbial Population, Yield and Quality Parameters of Pomegranate (Punica granatum L.) Cv. Bhagwa. PLoS ONE 2022, 17, e0266675. [Google Scholar] [CrossRef]
- Atiyeh, R.M.; Edwards, C.A.; Subler, S.; Metzger, J.D. Pig Manure Vermicompost as a Component of a Horticultural Bedding Plant Medium: Effects on Physicochemical Properties and Plant Growth. Bioresour. Technol. 2001, 78, 11–20. [Google Scholar] [CrossRef]
- González, M.; Gomez, E.; Comese, R.; Quesada, M.; Conti, M. Influence of Organic Amendments on Soil Quality Potential Indicators in an Urban Horticultural System. Bioresour. Technol. 2010, 101, 8897–8901. [Google Scholar] [CrossRef]
Properties | Cattle Manure | Vermicompost 1 | Vermicompost 2 |
---|---|---|---|
Color | Dark Brown | Dark Brown to Black | Dark Brown to Black |
Odor | Odor | Odorless | Odorless |
Particles size | 4 mm | 4 mm | 4 mm |
Moisture % | - | 24.28 ± 0.20 | 21.29 ± 0.14 |
pH | 8.6 ± 0.03 | 7.74 ± 0.05 | 8.07 ± 0.05 |
Electrical conductivity (dS m−1) | 0.66 ± 0.04 | 3.56 ± 0.07 | 4.26 ± 0.07 |
Organic Carbon (OC) % | 0.65 ± 0.03 | 18.13 ± 0.05 | 16.70 ± 0.04 |
Nitrogen (N) % | 0.86 ± 0.04 | 1.85 ± 0.03 | 1.75 ± 0.03 |
Available Phosphorus (P) % | 0.26 ± 0.02 | 0.68 ± 0.02 | 0.81 ± 0.06 |
Available Potassium (K) % | 0.60 ± 0.03 | 0.93 ± 0.02 | 0.83 ± 0.03 |
Calcium (Ca) % | 1.10 ± 0.02 | 1.29 ± 0.05 | 1.47 ± 0.04 |
Soil Properties | Values |
---|---|
a. Sand (%) | 32.40% |
b. Silt (%) | 27.30% |
c. Clay (%) | 40.30% |
Textural class | Clay |
pH (1:2.5 soil water extract) | 8.43 ± 0.05 |
Electrical conductivity (dS m−1) | 0.66 ± 0.03 |
Soil organic matter (%) | 1.60 ± 0.11 |
Nitrogen (%) | 0.08 ± 0.01 |
Phosphorus (mg kg−1) | 1.63 ± 0.23 |
Potassium (mg kg−1) | 82.25 ± 2.66 |
Treatments | Plant Height (cm) | Shoot Fresh Weight (g) | Shoot Dry Weight (g) | Root Length (cm) | Root Fresh Weight (g) | Root Dry Weight (g) |
---|---|---|---|---|---|---|
T1 | 68.7 ± 2.40 e | 7.57 ± 0.06 d | 0.72 ± 0.018 d | 9.46 ± 0.20 d | 2.14 ± 0.06 c | 0.26 ± 0.005 e |
T2 | 133.8 ± 1.24 c | 10.22 ± 0.13 a | 0.86 ± 0.016 c | 10.84 ± 0.22 bc | 2.93 ± 0.13 ab | 0.35 ± 0.002 bc |
T3 | 120.3 ± 0.50 d | 9.31 ± 0.09 b | 0.82 ± 0.012 c | 10.69 ± 0.13 bc | 2.62 ± 0.09 b | 0.32 ± 0.002 cd |
T4 | 111.3 ± 0.91 d | 8.78 ± 0.12 c | 0.75 ± 0.003 d | 10.15 ± 0.07 cd | 2.58 ± 0.10 bc | 0.31 ± 0.003 d |
T5 | 184.0 ± 2.93 a | 10.52 ± 0.09 a | 1.04 ± 0.014 a | 11.50 ± 0.15 a | 3.11 ± 0.09 a | 0.38 ± 0.009 a |
T6 | 159.8 ± 2.78 b | 10.35 ± 0.16 a | 0.94 ± 0.016 b | 11.20 ± 0.10 ab | 2.94 ± 0.10 ab | 0.36 ± 0.008 ab |
Treatments | Yield (kg ha−1) | Fruit Length (cm) | Fruit Diameter (cm) |
---|---|---|---|
T1 | 7310 ± 250 d | 4.40 ± 0.12 e | 3.33 ± 0.15 f |
T2 | 11,827 ± 310 b | 7.17 ± 0.10 c | 4.43 ± 0.19 c |
T3 | 10,742 ± 270 c | 6.45 ± 0.15 d | 4.15 ± 0.16 d |
T4 | 10,612 ± 258 c | 5.62 ± 0.14 f | 3.76 ± 0.10 e |
T5 | 13,778 ± 285 a | 8.51 ± 0.12 a | 5.85 ± 0.10 a |
T6 | 12,515 ± 264 b | 7.94 ± 0.13 b | 5.45 ± 0.14 b |
Soil Properties | T1 | T2 | T3 | T4 | T5 | T6 |
---|---|---|---|---|---|---|
pH (1:2.5 soil water extract) | 8.6 ± 0.02 a | 8.5 ± 0.07 ab | 8.1 ± 0.04 de | 8.0 ± 0.07 e | 8.2 ± 0.07 cd | 8.4 ± 0.07 bc |
EC (dS m−1) | 0.56 ± 0.02 d | 0.62 ± 0.01 e | 0.90 ± 0.02 a | 0.86 ± 0.03 a | 0.75 ± 0.02 b | 0.64 ± 0.03 c |
Soil organic matter (SOM, %) | 1.2 ± 0.05 c | 1.3 ± 0.11 c | 2.2 ± 0.11 a | 1.6 ± 0.07 b | 1.7 ± 0.07 b | 1.6 ± 0.04 b |
Nitrogen (N, %) | 0.069 ± 0.01 b | 0.080 ± 0.01 b | 0.147 ± 0.01 a | 0.129 ± 0.01 a | 0.128 ± 0.01 a | 0.117 ± 0.01 a |
Available Phosphorus (P, mg kg−1) | 1.60 ± 0.08 d | 1.88 ± 0.07 c | 2.50 ± 0.07 a | 2.20 ± 0.07 b | 2.15 ± 0.04 b | 2.03 ± 0.05 bc |
Extractable Potassium (K, mg kg−1) | 78.1 ± 0.93 c | 80.3 ± 1.11 d | 98.3 ± 0.57 a | 94.1 ± 0.95 b | 89.6 ± 0.64 c | 87.7 ± 0.83 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qasim, M.; Ju, J.; Zhao, H.; Bhatti, S.M.; Saleem, G.; Memon, S.P.; Ali, S.; Younas, M.U.; Rajput, N.; Jamali, Z.H. Morphological and Physiological Response of Tomato to Sole and Combined Application of Vermicompost and Chemical Fertilizers. Agronomy 2023, 13, 1508. https://doi.org/10.3390/agronomy13061508
Qasim M, Ju J, Zhao H, Bhatti SM, Saleem G, Memon SP, Ali S, Younas MU, Rajput N, Jamali ZH. Morphological and Physiological Response of Tomato to Sole and Combined Application of Vermicompost and Chemical Fertilizers. Agronomy. 2023; 13(6):1508. https://doi.org/10.3390/agronomy13061508
Chicago/Turabian StyleQasim, Muhammad, Jing Ju, Haitao Zhao, Saleem Maseeh Bhatti, Gulnaz Saleem, Saima Parveen Memon, Shahzaib Ali, Muhammad Usama Younas, Nimra Rajput, and Zameer Hussain Jamali. 2023. "Morphological and Physiological Response of Tomato to Sole and Combined Application of Vermicompost and Chemical Fertilizers" Agronomy 13, no. 6: 1508. https://doi.org/10.3390/agronomy13061508
APA StyleQasim, M., Ju, J., Zhao, H., Bhatti, S. M., Saleem, G., Memon, S. P., Ali, S., Younas, M. U., Rajput, N., & Jamali, Z. H. (2023). Morphological and Physiological Response of Tomato to Sole and Combined Application of Vermicompost and Chemical Fertilizers. Agronomy, 13(6), 1508. https://doi.org/10.3390/agronomy13061508