Impact of Chemically Diverse Organic Residue Amendment on Soil Enzymatic Activities in a Sandy Loam Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Details
2.3. Proximate Analysis of Organic Residues
2.4. Enzymatic Activity in the Soil
2.5. Statistical Analysis
3. Results
Effect of Organic Residues on Enzymatic Activity
4. Discussion
Enzymatic Activity Correlates Their Biochemical Composition of Plant Residues
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urra, J.; Alkorta, I.; Garbisu, C. Potential benefits and risks for soil health derived from the use of organic amendments in agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.G.; Huggins, D.R.; Reganold, J.P. Linking soil health and ecological resilience to achieve agricultural sustainability. Front. Ecol. Environ. 2023, 21, 131–139. [Google Scholar] [CrossRef]
- Kumar, N.; Chaudhary, A.; Ahlawat, O.P.; Naorem, A.; Upadhyay, G.; Chhokar, R.S.; Gill, S.C.; Khippal, A.; Tripathi, S.C.; Singh, G.P. Crop residue management challenges, opportunities and way forward for sustainable food-energy security in India: A review. Soil Tillage Res. 2023, 228, 105641. [Google Scholar] [CrossRef]
- Gura, I.; Mnkeni, P.N.S.; Preez, D.C.C.; Barnard, J.H. Short-term effects of conservation agriculture strategies on the soil quality of a Haplic Plinthosol in Eastern Cape, South Africa. Soil Tillage Res. 2022, 220, 105378. [Google Scholar] [CrossRef]
- Cotrufo, F.M.; Haddix, M.L.; Kroeger, M.E.; Stewart, C.E. The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biol. Biochem. 2022, 168, 108648. [Google Scholar] [CrossRef]
- Leogrande, R.; Vitti, C. Use of organic amendments to reclaim saline and sodic soils: A review. Arid Land Res. Manag. 2018, 33, 1–21. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.N.; Parra-Saldivar, R. Soil carbon sequestration—An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef]
- Montanez, A.; Rigamonti, N.; Vico, S.; Silva, C.; Nunez, L.; Zerbino, S. Influence of aerobic treated manure application on the chemical and microbiological properties of soil. Span J. Agric. Res. 2019, 17, e1104. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, P.; Chauhan, S.; Chaudhary, O.P. Landscape position and slope aspects impacts on soil organic carbon pool and biological indicators of a fragile ecosystem in high-altitude cold arid region. J. Soil Sci. Plant Nutr. 2022, 22, 2612–2632. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, P.; Sodhi, G.P.S. Soil organic carbon and biological indicators of uncultivated vis-à-vis intensively cultivated soils under rice–wheat and cotton–wheat cropping systems in South-Western Punjab. Carbon Manag. 2020, 11, 681–695. [Google Scholar] [CrossRef]
- Galindo, F.S.; Strock, J.S.; Pagliari, P.H. Impacts of corn stover management and fertilizer application on soil nutrient availability and enzymatic activity. Sci. Rep. 2022, 12, 1985. [Google Scholar] [CrossRef]
- Bogati, K.; Walczak, M. The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy 2022, 12, 189. [Google Scholar] [CrossRef]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agric. Ecosyst. Environ. 2016, 232, 73–84. [Google Scholar] [CrossRef]
- Trasar-Capeda, C.; Leiro’s, M.C.; Gil-Sotres, F. Hydrolytic enzyme activities in agricultural and forest soils. Some implications for their use as indicators of soil quality. Soil Biol. Biochem. 2008, 40, 2146–2155. [Google Scholar] [CrossRef] [Green Version]
- Pandey, D.; Agarwal, M.; Bohra, J.S. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation. Soil Tillage Res. 2014, 136, 51–60. [Google Scholar] [CrossRef]
- De Medeiros, E.V.; De Alcantara Notaro, K.; De Barros, J.A.; Da Silva Moraes, W.; Silva, A.O.; Moreira, K.A. Absolute and specific enzymatic activities of sandy entisol from tropical dry forest, monoculture and intercropping areas. Soil Tillage Res. 2015, 145, 208–215. [Google Scholar] [CrossRef]
- Meena, A.; Rao, K.S. Assessment of soil microbial and enzyme activity in the rhizosphere zone under different land use/cover of a semi-arid ecosystem, India. Ecol. Process. 2021, 10, 16. [Google Scholar] [CrossRef]
- Farooq, T.H.; Kumar, U.; Mo, J.; Shakoor, A.; Wang, J.; Rashid, M.H.U.; Tufall, M.A.; Chen, X.; Yen, W. Intercropping of Peanut–Tea enhances soil enzymatic activity and soil nutrient status at different soil profiles in subtropical southern China. Plants 2021, 10, 881. [Google Scholar] [CrossRef]
- Pankaj; Sharma, S.; Singh, V.; Angmo, P. Changes in soil biological and chemical environment during wheat growth stages under nitrogen and straw management practices in rice-wheat system. J. Plant Nutr. 2023, 46. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, L.; Bao, J.; Firmin, K.A.; Zong, W. Attapulgite enhances methane production from anaerobic digestion of pig slurry by changing enzyme activities and microbial community. Renew. Energy 2019, 145, 222–232. [Google Scholar] [CrossRef]
- Langa, A. Characterisation of Recombinant Beta-Glucosidases from Thermomyces Lanuginosus SSBP and Investigation of Their Synergistic Potential in Cellulose Hydrolysis. Ph.D. Thesis, Durban University of Technology, Durban, South Africa, 2020. [Google Scholar]
- Bera, T.; Sharma, S.; Thind, H.S.; Yadvinder-Singh; Sidhu, H.S.; Jat, M.L. Soil biochemical changes at different wheat growth stages in response to conservation agriculture practices in a rice-wheat system of north-western India. Soil Res. 2017, 56, 91–104. [Google Scholar] [CrossRef]
- Datta, A.; Gujre, N.; Gupta, D.; Agnihotri, R.; Mitra, S. Application of enzymes as a diagnostic tool for soils as affected by municipal solid wastes. J. Environ. Manag. 2021, 286, 112169. [Google Scholar] [CrossRef]
- Bhaduri, D.; Saha, A.; Desai, D.; Meena, H.N. Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere 2016, 148, 86–98. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, K.; Li, K.; Zheng, C.; Li, B. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Soil Tillage Res. 2017, 165, 302–314. [Google Scholar] [CrossRef]
- Kumar, K.A.; Swain, D.K.; Bhadoria, P.B.S. Split application of organic nutrient improved productivity, nutritional quality and economics of rice-chickpea cropping system in lateritic soil. Field Crop. Res. 2018, 223, 125–136. [Google Scholar] [CrossRef]
- Margida, M.G.; Lashermes, G.; Moorhead, D.L. Estimating relative cellulolytic and ligninolytic enzyme activities as functions of lignin and cellulose content in decomposing plant litter. Soil Biol. Biochem. 2020, 141, 107689. [Google Scholar] [CrossRef]
- Lazicki, P.; Geisseler, D.; Lloyd, M. Nitrogen mineralization from organic amendments is variable but predictable. J. Environ. Qual. 2020, 49, 483–495. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Decomposition as a process. In Plant Litter: Decomposition, Humus Formation, Carbon Sequestration; Springer: Berlin/Heidelberg, Germany, 2008; pp. 11–33. [Google Scholar]
- Wang, Y.; Liu, L.; Yang, J.; Duan, Y.; Luo, Y.; Taherzadeh, M.J.; Li, Y.; Li, H.; Awasthi, M.K.; Zhao, Z. The diversity of microbial community and function varied in response to different agricultural residues composting. Sci. Total Environ. 2020, 715, 136983. [Google Scholar] [CrossRef]
- Domínguez, A.; Gabbarini, L.A.; Rodriguez, M.P.; Escudero, H.J.; Wall, L.G.; Bedano, J.C. Crop residues used as food drive enzyme activation and enzymatic stoichiometry in casts of the earthworm Aporrectodea caliginosa (Savigny, 1826). Appl. Soil Ecol. 2021, 166, 104000. [Google Scholar] [CrossRef]
- Mathew, I.; Shimelis, H.; Mutema, M.; Chaplot, V. What crop type for atmospheric carbon sequestration: Results from a global data analysis. Agric. Ecosyst. Environ. 2017, 243, 34–46. [Google Scholar] [CrossRef]
- Stewart, C.E.; Moturi, P.; Follett, R.F.; Halvorson, A.D. Lignin biochemistry and soil N determine crop residue decomposition and soil priming. Biogeochemistry 2015, 124, 335–351. [Google Scholar] [CrossRef] [Green Version]
- Martens, D.A. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol. Biochem. 2000, 32, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, J.R.; Singh, B.P.; Cowie, A.L.; Fang, Y.; Collins, D.; Doughtery, W.J.; Singh, B.K. Carbon and nutrient mineralisation dynamics in aggregate-size classes from different tillage systems after input of canola and wheat residues. Soil Biol. Biochem. 2018, 116, 22–38. [Google Scholar] [CrossRef]
- Xu, X.; Shi, Z.; Li, D.; Rey, A.; Ruan, H.; Craine, J.M.; Liang, J.; Zhou, J.; Luo, Y. Soil properties control decomposition of soil organic carbon: Results from data-assimilation analysis. Geoderma 2016, 262, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Dutta, A.; Bhattacharyya, R.; Jiménez-Ballesta, R.; Dey, A.; Saha, N.D.; Kumar, S.; Nath, C.P.; Prakash, V.; Jatav, S.S.; Patra, A. Conventional and zero tillage with residue management in rice–wheat system in the Indo-Gangetic plains: Impact on thermal sensitivity of soil organic carbon respiration and enzyme activity. Int. J. Environ. Res. Public Health 2023, 20, 810. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Saikia, R.; Thind, S.S.; Singh, Y.; Jat, M.L. Tillage, green manure and residue management accelerate soil carbon pools and hydrolytic enzymatic activities for conservation agriculture based rice-wheat systems. Commun. Soil Sci. Plant Anal. 2021, 52, 470–486. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for estimation of available nitrogen in soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, I.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture Circle: Washington, DC, USA, 1954; Volume 939, pp. 1–19. [Google Scholar]
- Black, C.A. Mrthods of soil analsis. In Chemical and Minerological Properties; Part-II; American Society of Agronomy: Madison, WI, USA, 1965. [Google Scholar]
- Van Soest, P.J. Use of detergents in the analysis of fibrous feeds I: Preparation of fiber residues of low nitrogen content. J. AOAC Int. 1963, 46, 825–835. [Google Scholar] [CrossRef]
- Zhang, X. Research Method in Crop Physiology; High Education Press: Bejing, China, 2000; pp. 193–197. [Google Scholar]
- Zhaofan, H. Analysis Techniques for Grain Quality of Cereals and Oils; Chinese Agric, Press: Bejing, China, 1985; pp. 151–152. [Google Scholar]
- Camina, F.; Trasar, A.C.C.; Sotres, G.F.; Leiros, C. Measurement of dehydrogenase activity in acid soil rich in organic matter. Soil Biol. Biochem. 1998, 33, 1005–1011. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-Nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Ames, B.N. Assay of inorganic phosphate, total phosphate and phosphatases. Meth. Enzymol. 1966, 8, 115–118. [Google Scholar]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Kong, A.Y.Y.; Six, J. Tracing cover crop root versus residue carbon into soils from conventional, low-input, and organic cropping systems. Soil Sci. Soc. Am. J. 2010, 74, 1201–1210. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Li, J.; Liang, A.; Duan, Y.; Chen, H.; Yu, Z.; Fan, R.; Liu, H.; Pan, H. Chemical compositions of plant residues regulate soil organic carbon turnover in typical soils with contrasting textures in northeast China plain. Agronomy 2022, 12, 747. [Google Scholar] [CrossRef]
- Onet, A.; Dincă, L.C.; Grenni, P.; Laslo, V.; Teusdea, A.C.; Vasile, D.L.; Enescu, R.E.; Crisan, V.E. Biological indicators for evaluating soil quality improvement in a soil degraded by erosion processes. J. Soils Sediments 2019, 19, 2393–2404. [Google Scholar] [CrossRef]
- Sekaran, U.; Kumar, S.; Hernandez, J.L.G. Integration of crop and livestock enhanced soil biochemical properties and microbial community structure. Geoderma 2021, 381, 114686. [Google Scholar] [CrossRef]
- Behesti, M.; Etesami, H.; Alikhani, H.A. Effect of different biochars amendment on soil biological indicators in a calcareous soil. Environ. Sci. Pollut. Res. 2018, 25, 14752–14761. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Meena, V.S.; Pandey, S.C.; Mondal, T.; Yadav, R.P.; Mishra, P.K.; Bisht, J.K.; Pattanayak, A. Long-term effects of organic manure and inorganic fertilization on biological soil quality indicators of soybean-wheat rotation in the Indian mid-Himalaya. Appl. Soil Ecol. 2021, 157, 103754. [Google Scholar] [CrossRef]
- Almagro, M.; Ruiz-Navarro, A.; Diaz-Pereira, E.; Albaladejo, J.; Martinez-Mana, M. Plant residue chemical quality modulates the soil microbial response related to decomposition and soil organic carbon and nitrogen stabilization in a rainfed Mediterranean agroecosystem. Soil Biol. Biochem. 2021, 156, 108198. [Google Scholar] [CrossRef]
- Srinivas, D.; Bharatha Lakshmi, M.; Bhattacharyya, P. Carbon pools and associated soil enzymatic activities as influenced by long-term application of fertilizers and manure in lowland rice soil. J. Indian Soc. Soil Sci. 2015, 63, 310–319. [Google Scholar] [CrossRef]
- Curtright, A.J.; Tiemann, L.K. Intercropping increases soil extracellular enzyme activity: A meta-analysis. Agric. Ecosyst. Environ. 2021, 321, 107489. [Google Scholar] [CrossRef]
- Wiatrowska, K.; Komisarek, J.; Olejnik, J. Variations in organic carbon content and dehydrogenases activity in post-agriculture forest soils: A case study in south-western Pomerania. Forests 2021, 12, 459. [Google Scholar] [CrossRef]
- Herrero-Hernández, E.; Andrades, M.S.; Eguren, G.B.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S.; Marín-Benito, J.M. Organic amendment for the recovery of vineyard soils: Effects of a single application on soil properties over two years. Processes 2022, 10, 317. [Google Scholar] [CrossRef]
- Parihar, C.M.; Yadav, M.R.; Jat, S.L.; Singh, A.K.; Kumar, B.; Pradhan, S.; Chakraborty, D.; Jat, M.L.; Jat, R.K.; Saharawat, Y.S.; et al. Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains. Soil Till. Res. 2016, 161, 116–128. [Google Scholar] [CrossRef]
- Saikia, R.; Sharma, S.; Thind, H.S.; Sidhu, H.S.; Yadvinder-Singh. Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system. Ecol. Indic. 2019, 103, 383–394. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, S.; Zhou, X.; Xia, Q.; Liu, X.; Zhang, S.; Zhang, J.; Cai, Z.; Huang, X. Reductive soil disinfestation incorporated with organic residue combination significantly improves soil microbial activity and functional diversity than sole residue incorporation. Appl. Microbiol. Biotechnol. 2020, 104, 7573–7588. [Google Scholar] [CrossRef]
- Lundgren, B. Fluorescein diacetate as a stain of metabolically active bacteria in soil. Oikas 1981, 36, 17–22. [Google Scholar] [CrossRef]
- Saini, A.; Aggarwal, N.; Sharma, A.; Yadav, A. Actinomycetes: A source of lignocellulolytic enzymes. Enzyme Res. 2015, 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Kamimura, N.; Takahashi, K.; Mori, K.; Araki, T.; Fujita, M.; Higuchi, Y.; Masai, E. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. Environ. Microbiol. 2017, 9, 679–705. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Kaur, J.; Thind, H.S.; Singh, Y.; Sharma, N.; Kirandip. A framework for refining soil microbial indices as bioindicators during decomposition of various organic residues in a sandy loam soil. J. Appl. Nat. Sci. 2015, 7, 700–708. [Google Scholar] [CrossRef] [Green Version]
- Stegarescu, G.; Reintam, E.; Tontutare, T. Cover crop residues effect on soil structural stability and phosphatase activity. Acta Agric. Scand. B. Soil Plant Sci. 2021, 71, 992–1005. [Google Scholar] [CrossRef]
- Carlson, J.; Saxena, J.; Basta, N.; Hundal, L.; Busalachi, D.; Dick, R.P. Application of organic amendments to restore degraded soil: Effects on soil microbial properties. Environ. Monit. Assess. 2015, 187, 109. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. Glob. Chang. Biol. Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Jindo, K.; Audette, Y.; Olivares, F.L.; Canellas, L.P.; Smith, D.S.; Vorony, R.P. Biotic and abiotic effects of soil organic matter on the phytoavailable phosphorus in soils: A review. Chem. Biol. Technol. Agric. 2023, 10, 29. [Google Scholar] [CrossRef]
- Liu, X.; Han, R.; Cao, Y.; Turner, B.L.; Ma, L.Q. Enhancing phytate availability in soils and phytate-P acquisition by plants: A review. Environ. Sci. Technol. 2022, 56, 9196–9219. [Google Scholar] [CrossRef]
- Sharma, S.; Dhaliwal, S.S. Effect of sewage sludge and rice straw compost on yield, micronutrient availability and soil quality under rice–wheat system. Commun. Soil Sci. Plant Anal. 2019, 50, 1943–1954. [Google Scholar] [CrossRef]
- Zeng, D.H.; Mao, R.; Chang, S.X. Carbon mineralization of tree leaf litter and crop residues from poplar-based agroforestry systems in Northeast China: A laboratory study. Appl. Soil Ecol. 2010, 44, 133–137. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Cheng, X.; Liu, G. Nitrogen addition stimulates litter decomposition rate: From the perspective of the combined effect of soil environment and litter quality. Soil Biol. Biochem. 2023, 179, 108992. [Google Scholar] [CrossRef]
- Hadas, A.; Kautsky, L.; Goek, M.; Kara, E.E. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol. Biochem. 2004, 36, 255–266. [Google Scholar] [CrossRef]
- Wagner, G.H.; Wolf, D.C. Carbon Transformations and Soil Organic Matter Formation. In Principles and Applications of Soil Microbiology; Sylvia, D.M., Fuhrman, J.J., Hartel, R.G., Zuberer, D.A., Eds.; Prentice-Hall: New York, NY, USA, 1998; pp. 218–258. [Google Scholar]
- Kalbitz, K.; Kaiser, K.; Bargholz, J.; Dardenne, P. Lignin degradation controls the production of dissolved organic matter in decomposing folia litter. Eur. J. Soil Sci. 2006, 57, 504–516. [Google Scholar] [CrossRef]
- Pastorelli, R.; Costagil, V.; Forte, C.; Viti, C.; Rompato, B.; Nannini, G.; Certini, G. Litter decomposition: Little evidence of the “home-field advantage” in a mountain forest in Italy. Soil Biol. Biochem. 2021, 159, 108300. [Google Scholar] [CrossRef]
Treatments | Latin Name | English Name | Family |
---|---|---|---|
T0 | - | Control | - |
T1 | Melia azedarach | Dek | Meliaceae |
T2 | Azadirachta indica | Neem | Meliaceae |
T3 | Populus alba | Poplar | Salicaceae |
T4 | Avena sativa | Oat | Poaceae |
T5 | Zea mays | Maize | Poaceae |
T6 | Triticum aestivum | Wheat straw | Poaceae |
T7 | Oryza sativa | Rice straw | Poaceae |
T8 | Hordeum vulgare | Barley | Poaceae |
T9 | Lens culinaris | Masar | Fabaceae |
T10 | Saccharum officinarum | Sugarcane Trash | Poaceae |
T11 | Brassica juncea | Mustard | Brassicaceae |
Crop Residues | CEL (%) | HEM (%) | LIG (%) | TSS (mg/L) | ST (mg/L) | C (%) | N (%) | C/N |
---|---|---|---|---|---|---|---|---|
Tree residues | ||||||||
Melia azedarach | 17.6 | 7.80 | 9.50 | 0.58 | 0.17 | 44.6 | 4.82 | 9 |
Azadirachta indica | 39.6 | 16.5 | 23.9 | 0.55 | 0.14 | 39.8 | 2.19 | 18 |
Populus alba | 45.4 | 10.8 | 30.3 | 0.46 | 0.11 | 27.3 | 0.912 | 30 |
Cereals | ||||||||
Avena sativa | 27.1 | 21.3 | 14.8 | 0.84 | 0.16 | 42.0 | 1.32 | 32 |
Zea mays | 39.5 | 22.5 | 18.9 | 0.78 | 0.12 | 38.2 | 0.62 | 62 |
Triticum aestivum | 38.5 | 20.7 | 15.0 | 0.79 | 0.10 | 38.3 | 0.81 | 48 |
Oryza sativa | 35.1 | 23.5 | 18.2 | 0.67 | 0.17 | 42.0 | 0.39 | 106 |
Hordeum vulgare | 33.7 | 20.1 | 30.6 | 0.70 | 0.08 | 35.6 | 0.71 | 50 |
Other crop residues | ||||||||
Lens culinaris | 18.4 | 22.3 | 11.1 | 0.66 | 0.18 | 34.1 | 1.71 | 20 |
Saccharum officinarum | 23.9 | 20.3 | 20.0 | 0.62 | 0.11 | 37.3 | 0.914 | 41 |
Brassica juncea | 21.4 | 15.6 | 19.5 | 0.60 | 0.10 | 40.5 | 1.18 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Sharma, N.; Gupta, N.; Angmo, P.; Siddiqui, M.H.; Rahman, M.A. Impact of Chemically Diverse Organic Residue Amendment on Soil Enzymatic Activities in a Sandy Loam Soil. Agronomy 2023, 13, 1719. https://doi.org/10.3390/agronomy13071719
Sharma S, Sharma N, Gupta N, Angmo P, Siddiqui MH, Rahman MA. Impact of Chemically Diverse Organic Residue Amendment on Soil Enzymatic Activities in a Sandy Loam Soil. Agronomy. 2023; 13(7):1719. https://doi.org/10.3390/agronomy13071719
Chicago/Turabian StyleSharma, Sandeep, Neha Sharma, Nihar Gupta, Padma Angmo, Manzer H. Siddiqui, and Md Atikur Rahman. 2023. "Impact of Chemically Diverse Organic Residue Amendment on Soil Enzymatic Activities in a Sandy Loam Soil" Agronomy 13, no. 7: 1719. https://doi.org/10.3390/agronomy13071719
APA StyleSharma, S., Sharma, N., Gupta, N., Angmo, P., Siddiqui, M. H., & Rahman, M. A. (2023). Impact of Chemically Diverse Organic Residue Amendment on Soil Enzymatic Activities in a Sandy Loam Soil. Agronomy, 13(7), 1719. https://doi.org/10.3390/agronomy13071719