Cross-Platform Wheat Ear Counting Model Using Deep Learning for UAV and Ground Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.1.1. Data Sources
2.1.2. Data Annotation
2.1.3. Dataset Construction
2.2. CA-MobileNetV3
2.3. CARAFE Upsampling
2.4. LWDNet Model
2.5. Regression Count of Wheat Ear Density Map Based on Lwdnet Model
2.5.1. Overall Technical Route
2.5.2. Design of Loss Function
2.5.3. Generation of Ground Truth Density Maps
2.5.4. The Evaluation Index of The Model
3. Results
3.1. Model Training
3.2. Counting Results of Wheat Ears for Ground System
3.3. Counting Results of Wheat Ears for UAV Platform
4. Discussion
4.1. Comparison of Counting Results for Ground System Based on Different Models
4.2. Counting Results of High-Density Wheat Ears for UAV Platform
4.3. Existing Counting Challenges and Visualization of Existing Techniques
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hasan, M.M.; Chopin, J.P.; Laga, H.; Miklavcic, S.J. Detection and analysis of wheat spikes using convolutional neural networks. Plant Methods 2018, 14, 100. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Li, Y.; Yao, M.; Ding, Q.; He, R. Counting method of grain number based on wheat ear spikelet image segmentation. J. Nanjing Agric. Univ. 2018, 41, 742–751. [Google Scholar]
- Wang, D.; Fu, Y.; Yang, G.; Yang, X.; Zhang, D. Combined use of FCN and Harris corner detection for counting wheat ears in field conditions. IEEE Access 2019, 7, 178930–178941. [Google Scholar] [CrossRef]
- Madec, S.; Jin, X.; Lu, H.; De, S.; Liu, S.; Duyme, F.; Heritier, E.; Baret, F. Ear density estimation from high resolution RGB imagery using deep learning technique. Agric. For. Meteorol. 2019, 264, 225–234. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, Y.; Cui, J. Occlusion robust wheat ear counting algorithm based on deep learning. Front. Plant Sci. 2021, 12, 1139. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, X.; Cao, L.; Chen, L.; Huang, K. Field wheat ears count based on YOLOv3. In Proceedings of the IEEE 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), Dublin, Ireland, 16–18 October 2019; pp. 444–448. [Google Scholar]
- Yang, B.; Gao, Z.; Gao, Y.; Zhu, Y. Rapid Detection and Counting of Wheat Ears in the Field Using YOLOv4 with Attention Module. Agronomy 2021, 11, 1202. [Google Scholar] [CrossRef]
- Dandrifosse, S.; Ennadifi, E.; Carlier, A.; Gosselin, B.; Dumont, B.; Mercatoris, B. Deep learning for wheat ear segmentation and ear density measurement: From heading to maturity. Comput. Electron. Agric. 2022, 199, 107161. [Google Scholar] [CrossRef]
- Zang, H.; Wang, Y.; Ru, L.; Zhou, M.; Chen, D.; Zhao, Q.; Zhang, J.; Li, G.; Zheng, G. Detection method of wheat spike improved YOLOv5s based on the attention mechanism. Front. Plant Sci. 2022, 13, 993244. [Google Scholar] [CrossRef]
- Pound, M.P.; Atkinson, J.A.; Wells, D.M.; Pridmore, T.P.; French, A.P. Deep learning for multi-task plant phenotyping. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 2055–2063. [Google Scholar]
- Lempitsky, V.; Zisserman, A. Learning to count objects in images. In Proceedings of the 23rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 6–9 December 2010; Curran Associates Inc.: Red Hook, NY, USA, 2010; pp. 1324–1332. [Google Scholar]
- Sindagi, V.A.; Patel, V.M. A survey of recent advances in cnn-based single image crowd counting and density estimation. Pattern Recognit. Lett. 2018, 107, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Li, Y.; Du, K.; Zheng, F.; Zhang, L.; Gong, Z.; Jiao, W. Segmenting ears of winter wheat at flowering stage using digital images and deep learning. Comput. Electron. Agric. 2021, 168, 105159. [Google Scholar] [CrossRef]
- Khaki, S.; Safaei, N.; Pham, H.; Wang, L. Wheatnet: A lightweight convolutional neural network for high-throughput image-based wheat head detection and counting. Neurocomputing 2022, 489, 78–89. [Google Scholar] [CrossRef]
- Sadeghi-Tehran, P.; Sabermanesh, K.; Virlet, N.; Hawkesford, M.J. Automated method to determine two critical growth stages of wheat: Heading and flowering. Front. Plant Sci. 2017, 8, 252. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Liang, D.; Yang, X.; Xu, B.; Yang, G. Recognition of wheat spike from field based phenotype platform using multi-sensor fusion and improved maximum entropy segmentation algorithms. Remote Sens. 2018, 10, 246. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Cao, Z.; Lu, H.; Li, Y.; Xiao, Y. In-field automatic observation of wheat heading stage using computer vision. Biosyst. Eng. 2016, 143, 28–41. [Google Scholar] [CrossRef]
- Zhaosheng, Y.; Tao, L.; Tianle, Y.; Chengxin, J.; Chengming, S. Rapid Detection of Wheat Ears in Orthophotos from Unmanned Aerial Vehicles in Fields Based on YOLOX. Front. Plant Sci. 2022, 13, 1272. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yang, K.; Chen, C.; Shen, J.; Yang, Y.; Wu, X.; Norton, T. Wheat head counting in the wild by an augmented feature pyramid networks-based convolutional neural network. Comput. Electron. Agric. 2022, 193, 106705. [Google Scholar] [CrossRef]
- Fernandez-Gallego, J.A.; Lootens, P.; Borra-Serrano, I.; Derycke, V.; Haesaert, G.; oldán-Ruiz, I.; Araus, J.L.; Kefauver, S.C. Automatic wheat ear counting using machine learning based on RGB UAV imagery. Plant J. 2020, 103, 1603–1613. [Google Scholar] [CrossRef] [PubMed]
- Petti, D.; Li, C. Weakly-supervised learning to automatically count cotton flowers from aerial imagery. Comput. Electron. Agric. 2022, 194, 106734. [Google Scholar] [CrossRef]
- Tarek, H.; Aly, H.; Eisa, S.; Abul-Soud, M. Optimized Deep Learning Algorithms for Tomato Leaf Disease Detection with Hardware Deployment. Electronics 2022, 11, 140. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, L.; Zheng, X.; Li, F. Deeper multi-column dilated convolutional network for congested crowd understanding. Neural Comput. Appl. 2022, 34, 1407–1422. [Google Scholar] [CrossRef]
- He, J.; Liu, Y.; Qiao, Y.; Dong, C. Conditional sequential modulation for efficient global image retouching. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 679–695. [Google Scholar]
- Wang, B.; Liu, H.; Samaras, D.; Nguyen, M.H. Distribution matching for crowd counting. Adv. Neural Inf. Process. Syst. 2020, 33, 1595–1607. [Google Scholar]
- Cao, J.; Zhang, Z.; Luo, Y.; Zhang, L.; Zhang, J.; Li, Z.; Tao, F. Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine. Eur. J. Agron. 2021, 123, 126204. [Google Scholar] [CrossRef]
- Zeng, L.; Xu, X.; Cai, B.; Qiu, S.; Zhang, T. Multi-scale convolutional neural networks for crowd counting. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 465–469. [Google Scholar]
- Ma, J.; Li, Y.; Liu, H.; Wu, Y.; Zhang, L. Towards improved accuracy of UAV-based wheat ears counting: A transfer learning method of the ground-based fully convolutional network. Expert Syst. Appl. 2022, 191, 116226. [Google Scholar] [CrossRef]
- Sadeghi-Tehran, P.; Virlet, N.; Ampe, E.M.; Reyns, P.; Hawkesford, M.J. DeepCount: In-Field Automatic Quantification of Wheat Spikes Using Simple Linear Iterative Clustering and Deep Convolutional Neural Networks. Front. Plant Sci. 2019, 10, 1176. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Yang, G.; Xu, B.; Luo, Y.; Yang, X. SSRNet: In-field counting wheat ears using multi-stage convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Misra, T.; Arora, A.; Marwaha, S.; Chinnusamy, V.; Rao, A.R.; Jain, R.; Sahoo, R.N.; Ray, M.; Kumar, S.; Raju, D. SpikeSegNet: A deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging. Plant Methods 2020, 16, 40. [Google Scholar] [CrossRef] [Green Version]
- Inbaraj, X.A.; Villavicencio, C.; Macrohon, J.J.; Jeng, J.H.; Hsieh, J.G. Object Identification and Localization Using Grad-CAM++ with Mask Regional Convolution Neural Network. Electronics 2021, 10, 1541. [Google Scholar] [CrossRef]
Data Sets | Continent | Platform | Number | Training | Validation | Test | Size | Wheat Ear Num |
---|---|---|---|---|---|---|---|---|
Set | Set | Set | ||||||
WEC (filling) | Asian | G | 313 | 219 | 63 | 31 | 1024 × 1024 | 8295 |
WEC (maturity) | Asian | G | 187 | 131 | 37 | 19 | 1024 × 1024 | 4426 |
GWHD | Asian | G | 140 | 98 | 28 | 14 | 1024 × 1024 | 6100 |
GWHD | Europe | G | 140 | 98 | 28 | 14 | 1024 × 1024 | 6947 |
GWHD | North America | G | 140 | 98 | 28 | 14 | 1024 × 1024 | 4742 |
GWHD | Oceania | G | 140 | 98 | 28 | 14 | 1024 × 1024 | 7423 |
UAV-WE | Asian | U | 24 | 14 | 6 | 4 | 4000 × 3000 | 80,274 |
Asian | U | 24 | 14 | 6 | 4 | 512 × 512 | 7682 | |
Total | 1108 | 770 | 224 | 114 | 125,889 |
Input | Operator | Output | CA | NL | S |
---|---|---|---|---|---|
1024 × 1024 × 3 | Conv2d, 3 × 3 | 3 | - | - | 1 |
1024 × 1024 × 3 | CA-MobileNetV3 | 16 | √ | RE | 2 |
512 × 512 × 16 | CA-MobileNetV3 | 24 | - | RE | 2 |
256 × 256 × 24 | CA-MobileNetV3 | 24 | - | RE | 1 |
256 × 256 × 24 | CA-MobileNetV3 | 40 | √ | HS | 2 |
128 × 128 × 40 | CA-MobileNetV3 | 40 | √ | HS | 1 |
128 × 128 × 40 | CA-MobileNetV3 | 40 | √ | HS | 1 |
128 × 128 × 40 | CA-MobileNetV3 | 48 | √ | HS | 1 |
128 × 128 × 48 | CA-MobileNetV3 | 48 | √ | HS | 1 |
128 × 128 × 48 | CA-MobileNetV3 | 96 | √ | HS | 2 |
64 × 64 × 96 | CA-MobileNetV3 | 96 | √ | HS | 1 |
64 × 64 × 96 | CA-MobileNetV3 | 96 | √ | HS | 1 |
64 × 64 × 96 | Conv2d, 1 × 1 | 512 | - | - | 1 |
64 × 64 × 512 | Upsample | 512 | - | - | - |
128 × 128 × 512 | Conv2d, 3 × 3 | 256 | - | - | 1 |
128 × 128 × 256 | Conv2d, 3 × 3 | 128 | - | - | 1 |
128 × 128 × 128 | Conv2d, 1 × 1 | 1 | - | - | 1 |
Configuration Name | Parameter |
---|---|
Operating system | Windows 10 Professional 64-bit |
Code execution Environment | Python 3.7 |
Deep Learning Framework | Pytorch 1.80 |
GPU model | NVIDIA GeForce RTX 2080 |
Processor | Intel Core i7-8700 CPU @ 3.20 GHz |
Different Data | Image Number | MAE | RMSE | R2 |
---|---|---|---|---|
WEC | 50 | 1.36 | 1.59 | 0.9672 |
GWHD | 16 | 1.82 | 2.57 | 0.9787 |
WEC + GWHD | 66 | 1.39 | 1.71 | 0.9792 |
Method | MAE | RMSE | R2 |
---|---|---|---|
MCNN | 7.09 | 12.09 | 0.1578 |
CSRNet | 5.93 | 10.08 | 0.2327 |
DM-Count | 2.05 | 2.64 | 0.9546 |
LWDNet | 1.39 | 1.71 | 0.9726 |
Method | Parameter (Million) | Model Size (MB) | FLOPs (G) | FPS |
---|---|---|---|---|
MCNN | 0.13 | 0.52 | 28.23 | 18.7 |
CSRNet | 16.26 | 62.05 | 433.36 | 6.01 |
DM-Count | 21.5 | 82.02 | 432.16 | 6.4 |
LWDNet | 2.38 | 33.58 | 9.24 | 58.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Pan, M.; Gao, Z.; Zhi, H.; Zhang, X. Cross-Platform Wheat Ear Counting Model Using Deep Learning for UAV and Ground Systems. Agronomy 2023, 13, 1792. https://doi.org/10.3390/agronomy13071792
Yang B, Pan M, Gao Z, Zhi H, Zhang X. Cross-Platform Wheat Ear Counting Model Using Deep Learning for UAV and Ground Systems. Agronomy. 2023; 13(7):1792. https://doi.org/10.3390/agronomy13071792
Chicago/Turabian StyleYang, Baohua, Ming Pan, Zhiwei Gao, Hongbo Zhi, and Xiangxuan Zhang. 2023. "Cross-Platform Wheat Ear Counting Model Using Deep Learning for UAV and Ground Systems" Agronomy 13, no. 7: 1792. https://doi.org/10.3390/agronomy13071792
APA StyleYang, B., Pan, M., Gao, Z., Zhi, H., & Zhang, X. (2023). Cross-Platform Wheat Ear Counting Model Using Deep Learning for UAV and Ground Systems. Agronomy, 13(7), 1792. https://doi.org/10.3390/agronomy13071792