Homoeologous Chromosome Pairing and Alien Introgression in Backcrossing Progenies Derived from Hybrids Solanum tuberosum (+) Mexican 2x (1 EBN) B-Genome Potato Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
- (a)
- (tbr+trn)–somatic hybrids were obtained through protoplast fusion between S. tuberosum cv. Delikat and accession GLKS 2870 of the wild Mexican species S. tarnii [29,56]; two fertile somatic hybrids, 838/2 and 838/7, were selected for the present study. BC1–BC5 progenies were produced in sexual crosses between selected hybrid genotypes as female and potato cultivars as a male parent. Somatic hybrids and their backcrossing derivatives have been tested in previous research mainly for resistance to PVY and aphids, as well as to late blight, and have been characterized for agronomic characters [21,29,46,57,58].
- (b)
- (tbr+pnt)–somatic hybrids were obtained using protoplast fusion between S. tuberosum cv. Rasant and accession GLKS 31607 of the wild Mexican species S. pinnatisectum [21,57]. Resistant to PVY and aphids and/or resistance to late blight genotypes were selected in the subsequent BC generations [21,57,58].
- (c)
- (tbr+blb)–somatic hybrids were produced through protoplast fusion between potato cultivars and accession GLKS 31741 of the wild Mexican species S. bulbocastanum and backcross progenies were obtained in subsequent crosses of selected hybrid genotypes with different potato cultivars [16,39,57]. Parental clones, somatic hybrids, and their backcross derivatives were characterized for resistance to late blight and agronomic characters in previous studies [16,57].
2.2. In Situ Hybridization
2.3. Marker-Assisted Selection
3. Results
3.1. GISH Analysis of the Genomic Composition and Alien Chromosome Introgression in the Somatic Hybrids and their Backcross Progenies
3.1.1. Genomic Constitution of the Somatic Hybrids, S. tuberosum (+) S. tarnii, and Their Introgression Lines from Backcross Progenies BC1–BC5
3.1.2. Genomic Constitution of the Introgression Lines from Backcross Progenies BC3–BC4 of the Interspecific Somatic Hybrids S. tuberosum (+) S. pinnatisectum
3.1.3. Genomic constitution of the Introgression Lines from Backcross Progenies BC1–BC3 of Interspecific Somatic Hybrids S. tuberosum (+) S. bulbocastanum
3.2. Detection of Alien Chromatin Introgression in Recombinant Chromosomes of Selected BC Genotypes
3.3. Homoeologous Chromosome Pairing Behavior in Hybrid Genotypes from Three Interspecific Combinations Analyzed using In Situ Hybridization
3.4. Marker-Assisted Selection of the Somatic Hybrids and Introgression Lines
3.4.1. Molecular Screening with Markers of the RMc1(blb) Gene Conferring Resistance to M. chitwoodi
3.4.2. Molecular Screening with Markers of the Genes Conferring Resistance to Late Blight Diseases
4. Discussion
4.1. Genomic Composition of Interspecific Hybrids and Transmission of Alien B-Genome Chromosomes through Backcrossing
4.2. Meiotic Pairing of A/B Homoeologous Chromosomes, Detection of Recombinant Chromosomes
4.3. Marker–Assisted Selection (MAS) of the Somatic Hybrids and the Backcrossing Derivatives
4.4. Strategy for Introgressive Breeding
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hawkes, J.G. The Potato: Evolution, Biodiversity and Genetic Resources; Belhaven Press: London, UK, 1990; p. 259. [Google Scholar]
- Dionne, L.A. Studies on the use of Solanum acaule as a bridge between Solanum tuberosum and species in the series Bulbocastana, Cardiophylla and Pinnatisecta. Euphytica 1963, 12, 263–269. [Google Scholar] [CrossRef]
- Hermsen, J.G.T.; Ramanna, M.S. Double-bridge hybrids of Solanum bulbocastanum and cultivars of Solanum tuberosum. Euphytica 1973, 22, 457–466. [Google Scholar] [CrossRef]
- Hanneman, R.E. The potato germplasm resource. Am. Potato J. 1989, 66, 655–667. [Google Scholar] [CrossRef]
- Sanetomo, R.; Akino, S.; Suzuki, N.; Hosaka, K. Breakdown of a hybridization barrier between Solanum pinnatisectum Dunal and potato using the S locus inhibitor gene (Sli). Euphytica 2014, 197, 119–132. [Google Scholar] [CrossRef]
- Sanetomo, R.; Habe, I.; Hosaka, K. Sexual Introgression of the Late Blight Resistance Gene Rpi-Blb3 from a Mexican wild diploid species Solanum pinnatisectum Dunal into potato varieties. Mol. Breed. 2019, 39, 13. [Google Scholar] [CrossRef]
- Kikuchi, S.; Ishii, H.; Hosaka, K.; Sanetomo, R. Behavior of chromosomes from the mexican wild diploid species Solanum pinnatisectum in the interspecific hybrid with cultivated potato and its backcross progenies. Euphytica 2022, 218, 56. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Struik, P.C.; Visser, R.G.F.; Jacobsen, E. Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res. 2009, 52, 249–264. [Google Scholar] [CrossRef]
- Helgeson, J.P.; Haberlach, G.T.; Pohlman, J.; Austin, S. Somatic fusions of Solanum species. Plant Cell Tissue Organ Cult. 1988, 12, 185–187. [Google Scholar] [CrossRef]
- Helgeson, J.P.; Pohlman, J.D.; Austin, S.; Haberlach, G.T.; Wielgus, S.M.; Ronis, D.; Zambolim, L.; Tooley, P.; McGrath, J.M.; James, R.V.; et al. Somatic hybrids between Solanum bulbocastanum and potato: A new source of resistance to late blight. Theor. Appl. Genet. 1998, 96, 738–742. [Google Scholar] [CrossRef]
- Austin, S.; Pohlman, J.D.; Brown, C.R.; Mojtahedi, H.; Santo, G.S.; Douches, D.S.; Helgeson, J.P. Interspecific somatic hybridization between Solanum tuberosum L. and S. bulbocastanum Dun. as a means of transferring nematode resistance. Am. Potato J. 1993, 70, 485–495. [Google Scholar] [CrossRef]
- Thieme, R.; Darsow, U.; Gavrilenko, T.; Dorokhov, D.; Tiemann, H. Production of somatic hybrids between S. tuberosum L. and late blight resistant Mexican wild potato species. Euphytica 1997, 97, 189–200. [Google Scholar] [CrossRef]
- Greplova, M.; Polzerova, H.; Vlastnikova, H. Electrofusion of protoplasts from Solanum tuberosum, S. bulbocastanum and S. pinnatisectum. Acta Physiol. Plant 2008, 30, 787–796. [Google Scholar] [CrossRef]
- Davis, J.A.; Radcliffe, E.B.; Thill, C.A.; Ragsdale, D.W. Resistance to aphids, late blight and viruses in somatic fusions and crosses of Solanum tuberosum L. and Solanum bulbocastanum Dun. Am. J. Potato Res. 2012, 89, 489–500. [Google Scholar] [CrossRef]
- Iovene, M.; Aversano, R.; Savarese, S.; Caruso, I.; Di Matteo, A.; Cardi, T.; Frusciante, L.; Carputo, D. Interspecific somatic hybrids between Solanum bulbocastanum and S. tuberosum and their haploidization for potato breeding. Biol. Plant. 2012, 56, 1–8. [Google Scholar] [CrossRef]
- Rakosy-Tican, E.; Thieme, R.; König, J.; Nachtigall, M.; Hammann, T.; Denes, T.-E.; Kruppa, K.; Molnar-Lang, M. Introgression of two broad-spectrum late blight resistance genes, Rpi-Blb1 and Rpi-Blb3, from Solanum bulbocastanum Dun. plus race-specific R genes into potato pre-breeding lines. Front Plant Sci. 2020, 11, 699. [Google Scholar] [CrossRef]
- Sedlak, P.; Sedlakova, V.; Vasek, J.; Zeka, D.; Cilova, D.; Melounova, M.; Orsak, M.; Domkarova, J.; Dolezal, P.; Vejl, P. phenotypic, molecular and biochemical evaluation of somatic hybrids between Solanum tuberosum and S. bulbocastanum. Sci. Rep. 2022, 12, 4484. [Google Scholar] [CrossRef]
- Sidorov, V.A.; Zubko, M.K.; Kuchko, A.A.; Komarnitsky, I.K.; Gleba, Y.Y. Somatic hybridization in potato: Use of γ-irradiated protoplasts of Solanum pinnatisectum in genetic reconstruction. Theor. Appl. Genet. 1987, 74, 364–368. [Google Scholar] [CrossRef]
- Ward, A.C.; Phelpstead, J.S.-J.; Gleadle, A.E.; Blackhall, N.W.; Cooper-Bland, S.; Kumar, A.; Powell, W.; Power, J.B.; Davey, M.R. Interspecific somatic hybrids between dihaploid Solanum tuberosum L. and the wild species, S. pinnatisectum Dun. J. Exp. Bot. 1994, 45, 1433–1440. [Google Scholar] [CrossRef]
- Menke, U.; Schilde-Rentschler, L.; Ruoss, B.; Zanke, C.; Hemleben, V.; Ninnemann, H. Somatic hybrids between the cultivated potato Solanum tuberosum L. and the 1EBN wild species Solanum pinnatisectum Dun.: Morphological and molecular characterization. Theor. Appl. Genet. 1996, 92, 617–626. [Google Scholar] [CrossRef]
- Thieme, R.; Schubert, J.; Nachtigall, M.; Hammann, T.; Truberg, B.; Heimbach, U.; Thieme, T. Wild potato species of the series Pinnatisecta—Progress in their utilisation in potato breeding. In Crop Plant Resistance to Biotic and Abiotic Factors: Current Potential and Future Demands, Proceedings of the International Symposium on Plant Protection and Plant Health in Europe, DPG, Berlin/Heidelberg, Germany, 14–16 May 2009; Deutsche Phytomedizinische Gesellschaft eV Verlag: Braunschweig, Germany, 2009; pp. 428–436. [Google Scholar]
- Szczerbakowa, A.; Bołtowicz, D.; Lebecka, R.; Radomski, P.; Wielgat, B. Characteristics of the interspecific somatic hybrids Solanum pinnatisectum (+) S. tuberosum H-8105. Acta Physiol. Plant 2005, 27, 265–273. [Google Scholar] [CrossRef]
- Chen, Q.; Li, H.Y.; Shi, Y.Z.; Beasley, D.; Bizimungu, B.; Goettel, M.S. Development of an effective protoplast fusion system for production of new potatoes with disease and insect resistance using Mexican wild potato species as gene pools. Can. J. Plant Sci. 2008, 88, 611–619. [Google Scholar] [CrossRef]
- Sarkar, D.; Tiwari, J.K.; Sharma, S.; Poonam; Sharma, S.; Gopal, J.; Singh, B.P.; Luthra, S.K.; Pandey, S.K.; Pattanayak, D. Production and characterization of somatic hybrids between Solanum tuberosum L. and S. pinnatisectum Dun. Plant Cell Tissue Organ Cult. 2011, 107, 427–440. [Google Scholar] [CrossRef]
- Polzerova, H.; Patzak, J.; Greplova, M. Early characterization of somatic hybrids from symmetric protoplast electrofusion of Solanum pinnatisectum Dun. and Solanum tuberosum L. Plant Cell Tissue Organ Cult. 2011, 104, 163–170. [Google Scholar] [CrossRef]
- Tiwari, J.; Poonam; Kumar, V.; Sharma, S.; Luthra, S.; Bhardwaj, V. Evaluation of potato somatic hybrids of dihaploid S. tuberosum (+) S. Ppinnatisectum for late blight resistance. Potato J. 2013, 40, 176–179. [Google Scholar]
- Tiwari, J.; Luthra, S.; Devi, S.; Kumar, V.; Ali, N.; Zinta, R.; Chakrabarti, S. Development of advanced back-cross progenies of potato somatic hybrids and linked ISSR markers for late blight resistance with diverse genetic base- First ever produced in Indian potato breeding. Potato J. 2018, 45, 17–27. [Google Scholar]
- Tiwari, J.K.; Rawat, S.; Luthra, S.K.; Zinta, R.; Sahu, S.; Varshney, S.; Kumar, V.; Dalamu, D.; Mandadi, N.; Kumar, M.; et al. Genome sequence analysis provides insights on genomic variation and late blight resistance genes in potato somatic hybrid (parents and progeny). Mol. Biol. Rep. 2021, 48, 623–635. [Google Scholar] [CrossRef]
- Thieme, R.; Rakosy-Tican, E.; Gavrilenko, T.; Antonova, O.; Schubert, J.; Nachtigall, M.; Heimbach, U.; Thieme, T. Novel somatic hybrids (Solanum tuberosum L. + Solanum tarnii) and their fertile BC1 progenies express extreme resistance to Potato Virus Y and late blight. Theor. Appl. Genet. 2008, 116, 691–700. [Google Scholar] [CrossRef]
- Thieme, R.; Rakosy-Tican, E.; Nachtigall, M.; Schubert, J.; Hammann, T.; Antonova, O.; Gavrilenko, T.; Heimbach, U.; Thieme, T. Characterization of the multiple resistance traits of somatic hybrids between Solanum cardiophyllum Lindl. and two commercial potato cultivars. Plant Cell Rep. 2010, 29, 1187–1201. [Google Scholar] [CrossRef]
- Chandel, P.; Tiwari, J.; Ali, N.; Devi, S.; Sharma, S.; Sharma, S.; Luthra, S.; Singh, B. Interspecific potato somatic hybrids between Solanum tuberosum and S. cardiophyllum, potential sources of late blight resistance breeding. Plant Cell Tissue Organ Cult. 2015, 123, 579–589. [Google Scholar] [CrossRef]
- Smyda, P.; Jakuczun, H.; Debski, K.; Sliwka, J.; Thieme, R.; Nachtigall, M.; Wasilewicz-Flis, I.; Zimnoch-Guzowska, E. Development of somatic hybrids Solanum × michoacanum Bitter. (Rydb.) (+) S. tuberosum L. and autofused 4x S. × michoacanum plants as potential sources of late blight resistance for potato breeding. Plant Cell Rep. 2013, 32, 1231–1241. [Google Scholar] [CrossRef] [Green Version]
- Smyda-Dajmund, P.; Sliwka, J.; Wasilewicz-Flis, I.; Jakuczun, H.; Zimnoch-Guzowska, E. Genetic composition of interspecific potato somatic hybrids and autofused 4x plants evaluated by DArT and cytoplasmic DNA Markers. Plant Cell Rep. 2016, 35, 1345–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, J.O.; Nepper, J.P.; Kirk, H.-G.; Tolstrup, K.; Rasmussen, O.S. Combination of resistance to potato late blight in foliage and tubers by intraspecific dihaploid protoplast fusion. Euphytica 1998, 102, 363–370. [Google Scholar] [CrossRef]
- Szczerbakowa, A.; Tarwacka, J.; Oskiera, M.; Jakuczun, H.; Wielgat, B. Somatic hybridization between the diploids of S. × michoacanum and S. tuberosum. Acta Physiol. Plant. 2010, 32, 867–873. [Google Scholar] [CrossRef]
- Orczyk, W.; Przetakiewicz, J.; Nadolska-Orczyk, A. Somatic hybrids of Solanum tuberosum—Application to genetics and breeding. Plant Cell Tissue Organ Cult. 2003, 74, 1–13. [Google Scholar] [CrossRef]
- Smyda-Dajmund, P.; Śliwka, J.; Villano, C.; Janiszewska, M.; Aversano, R.; Bednarek, P.T.; Carputo, D.; Zimnoch-Guzowska, E. Analysis of cytosine methylation in genomic DNA of Solanum × michoacanum (+) S. tuberosum somatic hybrids. Agronomy 2021, 11, 845. [Google Scholar] [CrossRef]
- Masuelli, R.W.; Tanimoto, E.Y.; Brown, C.R.; Comai, L. Irregular meiosis in a somatic hybrid between S. bulbocastanum and S. tuberosum detected by species-specific PCR markers and cytological analysis. Theor. Appl. Genet. 1995, 91, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Rakosy-Tican, E.; Thieme, R.; Nachtigall, M.; Molnar, I.; Denes, T.-E. The recipient potato cultivar influences the genetic makeup of the somatic hybrids between five potato cultivars and one cloned accession of sexually incompatible species Solanum bulbocastanum Dun. Plant Cell Tissue Organ Cult. 2015, 122, 395–407. [Google Scholar] [CrossRef]
- Naess, S.K.; Bradeen, J.M.; Wielgus, S.M.; Haberlach, G.T.; McGrath, J.M.; Helgeson, J.P. Analysis of the introgression of Solanum bulbocastanum DNA into potato breeding lines. Mol. Genet. Genom. 2001, 265, 694–704. [Google Scholar] [CrossRef]
- Brown, C.R.; Yang, C.-P.; Mojtahedi, H.; Santo, G.S.; Masuelli, R. RFLP analysis of resistance to Columbia Root-knot nematode derived from Solanum bulbocastanum in a BC2 population. Theor. Appl. Genet. 1996, 92, 572–576. [Google Scholar] [CrossRef]
- Brown, C.; Mojtahedi, H.; James, S.; Novy, R.; Love, S. Development and evaluation of potato breeding lines with introgressed resistance to Columbia root-knot nematode (Meloidogyne chitwoodi). Am. J. Potato Res. 2006, 83, 1–8. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Mojtahedi, H.; Kuang, H.; Baker, B.; Brown, C.R. Marker-assisted selection of Columbia root-knot nematode resistance introgressed from Solanum bulbocastanum. Crop Sci. 2007, 47, 2021–2026. [Google Scholar] [CrossRef]
- Iovene, M.; Savarese, S.; Cardi, T.; Frusciante, L.; Scotti, N.; Simon, P.W.; Carputo, D. Nuclear and cytoplasmic genome composition of Solanum bulbocastanum (+) S. tuberosum somatic hybrids. Genome 2007, 50, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Bradeen, J.M.; Naess, S.K.; Raasch, J.A.; Wielgus, S.M.; Haberlach, G.T.; Liu, J.; Kuang, H.; Austin-Phillips, S.; Buell, C.R.; et al. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc. Nat. Acad. Sci. USA 2003, 100, 9128–9133. [Google Scholar] [CrossRef] [PubMed]
- Hühnlein, A. Quantitative Detection of Potato Virus Y and Potato Leaf Roll Virus by Real Time PCR—A Molecular Approach with Numerous Applications in Potato Research. Doctoral Thesis, Julius Kühn-lnstitut, Quedlinburg, Germany, 2016. [Google Scholar] [CrossRef]
- Smyda-Dajmund, P.; Śliwka, J.; Wasilewicz-Flis, I.; Jakuczun, H.; Zimnoch-Guzowska, E. BC1 and F1 progeny from Solanum × Michoacanum (+) S. tuberosum somatic hybrids, autofused 4× S. michoacanum and cultivated potato. Am. J. Potato Res. 2017, 94, 323–333. [Google Scholar] [CrossRef]
- Gaiero, P.; Speranza, P.; de Jong, H. Introgressive hybridization in potato revealed by novel cytogenetic and genomic technologies. Am. J. Potato Res. 2018, 95, 607–621. [Google Scholar] [CrossRef] [Green Version]
- Lou, Q.; Iovene, M.; Spooner, D.M.; Buell, C.R.; Jiang, J. Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma 2010, 119, 435–442. [Google Scholar] [CrossRef]
- Szinay, D.; Wijnker, E.; van den Berg, R.; Visser, R.G.F.; de Jong, H.; Bai, Y. Chromosome evolution in Solanum traced by cross-species BAC-FISH. New Phytol. 2012, 195, 688–698. [Google Scholar] [CrossRef]
- Braz, G.T.; He, L.; Zhao, H.; Zhang, T.; Semrau, K.; Rouillard, J.-M.; Torres, G.A.; Jiang, J. Comparative oligo-FISH mapping: An efficient and powerful methodology to reveal karyotypic and chromosomal evolution. Genetics 2018, 208, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Traini, A.; Iorizzo, M.; Mann, H.; Bradeen, J.M.; Carputo, D.; Frusciante, L.; Chiusano, M.L. Genome microscale heterogeneity among wild potatoes revealed by diversity arrays technology marker sequences. Int. J. Genom. 2013, 2013, 257218. [Google Scholar] [CrossRef] [Green Version]
- Iorizzo, M.; Gao, L.; Mann, H.; Traini, A.; Chiusano, M.L.; Kilian, A.; Aversano, R.; Carputo, D.; Bradeen, J.M. A DArT marker-based linkage map for wild potato Solanum bulbocastanum facilitates structural comparisons between Solanum A and B genomes. BMC Genet. 2014, 15, 123. [Google Scholar] [CrossRef] [Green Version]
- Ramanna, M.S.; Hermsen, J.G.T. Somatic chromosome elimination and meiotic chromosome pairing in the triple hybrid 6x-(Solanum acaule × S. bulbocastanum) × 2×-S. phureja. Euphytica 1971, 20, 470–481. [Google Scholar] [CrossRef]
- Hermsen, J.G.T.; Ramanna, M.S. Meiosis in different f-l-hybrids of Solanum acaule Bitt x Solanum bulbocastanum Dun. and its bearing on genome relationship, fertility and breeding behaviour. Euphytica 1969, 18, 27–35. [Google Scholar] [CrossRef]
- Thieme, R.; Darsow, U.; Rakosy-Tican, L.; Kang, Z.; Gavrilenko, T.; Antonova, O.; Heimbach, U.; Thieme, T. Use of somatic hybridisation to transfer resistance to late blight and Potato virus Y (PVY) into cultivated potato. Plant Breed. Seed Sci. 2004, 50, 113–118. [Google Scholar]
- Thieme, R.; Hammann, T.; Nachtigall, M. Genetische Diversität für die Widerstandsfähigkeit gegen Schaderreger bei Kartoffel. In 436 Julius-Kühn-Archiv; Biological Diversity in Agricultural Landscapes: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Thieme, R.; Nachtigall, M.; König, J.; Hühnlein, A.; Lindner, K.; Antonova, O.; Pendinen, G.; Gavrilenko, T. Evaluating the potential of Solanum tarnii as a genetic resource of PVY resistance in potato breeding; EAPR Triennial Conference Paper. In Proceedings of the 20th EAPR Triennial Conference, Versailles, France, 9–14 July 2017. [Google Scholar]
- Bernatzky, R.; Tanksley, S.D. Genetics of actin-related sequences in tomato. Theor. Appl. Genet. 1986, 72, 314–321. [Google Scholar] [CrossRef]
- Leitch, A.R.; Schwarzacher, T.; Jackson, D.; Leitch, I.J. In Situ Hybridization: A Practical Guide; Bios Scientific Publishers: Oxford, UK, 1994. [Google Scholar]
- Pendinen, G.; Gavrilenko, T.; Jiang, J.; Spooner, D.M. Allopolyploid speciation of the mexican tetraploid potato species Solanum stoloniferum and S. hjertingii revealed by genomic in situ hybridization. Genome 2008, 51, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Yakura, K.; Tanifuji, S. Molecular cloning and restriction analysis of EcoRI-fragments of vicia faba rDNA. Plant Cell Physiol. 1983, 24, 1327–1330. [Google Scholar] [CrossRef]
- Gavrilenko, T.; Antonova, O.; Shuvalova, A.; Krylova, E.; Alpatyeva, N.; Spooner, D.M.; Novikova, L. Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genet. Resour. Crop Evol. 2013, 60, 1997–2015. [Google Scholar] [CrossRef]
- Jo, K.-R.; Arens, M.; Kim, T.-Y.; Jongsma, M.A.; Visser, R.G.F.; Jacobsen, E.; Vossen, J.H. Mapping of the S. demissum late blight resistance gene R8 to a new locus on chromosome IX. Theor. Appl. Genet. 2011, 123, 1331–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colton, L.M.; Groza, H.I.; Wielgus, S.M.; Jiang, J. Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato Species. Crop. Sci. 2006, 46, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Allefs, S.; van den Berg, R.G.; Vleeshouwers, V.G.A.A.; van der Vossen, E.A.G.; Vosman, B. Allele mining in Solanum: Conserved homologues of Rpi-Blb1 are identified in Solanum stoloniferum. Theor. Appl. Genet. 2008, 116, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Lokossou, A.A.; Rietman, H.; Wang, M.; Krenek, P.; van der Schoot, H.; Henken, B.; Hoekstra, R.; Vleeshouwers, V.G.A.A.; van der Vossen, E.A.G.; Visser, R.G.F.; et al. Diversity, distribution, and evolution of Solanum bulbocastanum late blight resistance genes. Mol. Plant Microbe Interact. 2010, 23, 1206–1216. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Li, Y.; Vossen, J.H.; Visser, R.G.F.; Jacobsen, E. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res. 2012, 21, 89–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dialat Ltd. Available online: http://dialat.ru (accessed on 31 May 2023).
- Evrogen. Available online: https://evrogen.ru/ (accessed on 31 May 2023).
- SibEnzyme. Available online: www.russia.sibenzyme.com (accessed on 31 May 2023).
- Gavrilenko, T. Potato Cytogenetics. In Potato Biology and Biotechnology: Advances and Perspectives; Vruegdenhil, D., Bradshaw, J., Gebhardt, C., Govers, F., Ross, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 203–216. [Google Scholar] [CrossRef]
- Jiang, J.; Gill, B.S. Nonisotopic in situ hybridization and plant genome mapping: The first 10 years. Genome 1994, 37, 717–725. [Google Scholar] [CrossRef]
- Ramzan, F.; Younis, A.; Lim, K.-B. Application of genomic in situ hybridization in horticultural science. Int. J. Genom. 2017, e7561909. [Google Scholar] [CrossRef] [Green Version]
- Gavrilenko, T. Application of molecular cytogenetics in fundamental and applied research of potato. In Genetics, Genomics and Breeding of Potato; Bradeen, J., Kole, C., Eds.; Science Publishers: New York, NY, USA, 2011; pp. 184–206. [Google Scholar]
- Pendinen, G.; Spooner, D.M.; Jiang, J.; Gavrilenko, T. Genomic in situ hybridization reveals both auto- and allopolyploid origins of different north and central american hexaploid potato (Solanum sect. Petota) species. Genome 2012, 55, 407–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavrilenko, T.A.; Pendinen, G.I.; Yermishin, A.P. GISH analysis of the introgression of the B subgenome genetic material of wild allotetraploid species Solanum stoloniferum into backcrossing progenies with potato. Agronomy 2022, 12, 787. [Google Scholar] [CrossRef]
- Garriga-Calderé, F.; Huigen, D.J.; Angrisano, A.; Jacobsen, E.; Ramanna, M.S. Transmission of alien tomato chromosomes from BC1 to BC2 progenies derived from backcrossing potato (+) tomato fusion hybrids to potato: The selection of single additions for seven different tomato chromosomes. Theor. Appl. Genet. 1998, 96, 155–163. [Google Scholar] [CrossRef]
- Haider Ali, S.N.; Ramanna, M.S.; Jacobsen, E.; Visser, R.G.F. Establishment of a Complete Series of a monosomic tomato chromosome addition lines in the cultivated potato using RFLP and GISH analyses. Theor. Appl. Genet. 2001, 103, 687–695. [Google Scholar] [CrossRef]
- Dong, F.; Tek, A.L.; Frasca, A.B.L.; McGrath, J.M.; Wielgus, S.M.; Helgeson, J.P.; Jiang, J. Development and Characterization of potato-Solanum brevidens chromosomal addition/substitution lines. Cytogenet. Genome Res. 2005, 109, 368–372. [Google Scholar] [CrossRef]
- Hermsen, J.G.T.; Ramanna, M.S. Barriers to hybridization of Solanum bulbocastanum Dun. and S. verrucosum Schlechtd. and structural hybridity in their Fl Plants. Euphytica 1976, 25, 1–10. [Google Scholar] [CrossRef]
- Ortiz, R.; Mihovilovich, E. Genetics and cytogenetics of the potato. In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Campos, H., Ortiz, O., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 219–247. [Google Scholar] [CrossRef]
- Bradshaw, J.E. A brief history of the impact of potato genetics on the breeding of tetraploid potato cultivars for tuber propagation. Potato Res. 2022, 65, 461–501. [Google Scholar] [CrossRef]
- Dong, F.; Novy, R.G.; Helgeson, J.P.; Jiang, J. Cytological Characterization of potato—Solanum etuberosum somatic hybrids and their backcross progenies by genomic in situ hybridization. Genome 1999, 42, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Gavrilenko, T.; Thieme, R.; Heimbach, U.; Thieme, T. Fertile somatic hybrids of Solanum etuberosum (+) dihaploid Solanum tuberosum and their backcrossing progenies: Relationships of genome dosage with tuber development and resistance to potato virus Y. Euphytica 2003, 131, 323–332. [Google Scholar] [CrossRef]
- Huang, S.; van der Vossen, E.A.G.; Kuang, H.; Vleeshouwers, V.G.A.A.; Zhang, N.; Borm, T.J.A.; van Eck, H.J.; Baker, B.; Jacobsen, E.; Visser, R.G.F. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J. 2005, 42, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Huang, S.; Guo, X.; Li, Y.; Yang, Y.; Guo, Z.; Kuang, H.; Rietman, H.; Bergervoet, M.; Vleeshouwers, V.G.G.A.; et al. Cloning and characterization of R3b; members of the R3 superfamily of late blight resistance genes show sequence and functional divergence. Mol. Plant Microbe Interact 2011, 24, 1132–1142. [Google Scholar] [CrossRef] [Green Version]
- Nachtigall, M.; König, J.; Thieme, R. Mapping of a novel, major late blight resistance locus in the diploid (1EBN) Mexican Solanum pinnatisectum Dunal on chromosome VII. Plant Breed. 2018, 137, 433–442. [Google Scholar] [CrossRef] [Green Version]
Hybrid Genotype | 2n | Number of Chromosomes of the | |
---|---|---|---|
A-Genome | B-Genome | ||
(a) Fusion combination: S. tarnii, GLKS 2870 (+) S. tuberosum, cv. Delikat | |||
SH 838/2 | 72 | 48 | 24 |
SH 838/7 | 72 | 48 | 24 |
BC1 838/2/25 | 60 | 48 | 12 |
BC1 838/2/80 | 60 | 48 | 12 |
BC1 838/7/18 | 60 | 48 | 12 |
BC1 838/7/53 | 60 | 48 | 12 |
BC2 838/2/25/1 | 50 | 48 | 2 |
BC2 838/2/80/5 | 52 | 48 | 4 |
BC2 838/7/18/3 | 53 | 48 | 5 |
BC2 838/7/53/3 | 56 | 48 | 8 |
SBC3 838/2/25/1/3/13 (self-pollinated BC3) | 48 | 48 | 0 |
SBC3 838/2/25/1/3/15 (self-pollinated BC3) | 48 | 48 | 0 |
BC4 838/7/53/3/23/6 | 51 | 48 one of them with the B-genome fragment | 3 |
BC4 838/7/53/3/23/7 | 49 | 48 | 1 |
BC4 838/7/53/3/23/9 | 50 | 48 | 2 one of them with the A-genome fragment |
BC4 838/7/53/3/23/4 | 54 | 48 | 6 |
BC5 838/7/53/3/23/4/15 | 48 | 48 | 0 |
BC5 838/7/53/3/23/4/7 | 48 | 47 | 1 |
BC5 838/7/53/3/23/1/18 | 48 | 48 | 0 |
BC5 838/7/53/3/23/1/3 | 48 | 48 | 0 |
BC5 838/7/53/3/23/19/14 | 48 | 48 | 0 |
BC5 838/7/53/3/23/19/5 | 48 | 48 | 0 |
BC5 838/7/53/3/23/19/6 | 48 | 48 | 0 |
(b) Fusion combination: S. pinnatisectum, GLKS 31607 (+) S. tuberosum, cv. Rasant | |||
BC3 2045/2/7/17/7 | 49 | 48 | 1 |
BC4 2045/2/7/17/7/1 | 49 | 48 | 1 |
BC4 2045/2/7/17/7/26 | 49 | 48 | 1 |
(c′) Fusion combination: S. bulbocastanum, GLKS 31741 (+) S. tuberosum, cv. Delikat | |||
BC1: 82/4/43 | 60 | 48 | 12 one of them with terminal A-genome fragment |
BC1: 83/9/11 | 60 | 48 | 12 one of them with terminal A-genome fragment |
BC1: 83/9/35 | 60 | 48 | 12 |
BC1: 83/9/44 | 58 | 48 | 10 |
BC2: 82/4/46/14 | 53 | 48 | 5 |
BC2 82/4/68/2 | 52 | 48 | 4 |
BC2 82/4/68/7 | 52 | 48 | 4 |
BC2: 95/1/4/59 | 53 | 48 two of them with the B-genome fragments | 5 |
(c″) Fusion combination: S. bulbocastanum, GLKS 31741 (+) S. tuberosum, cv. Rasant | |||
BC2 08/5/1/10 | 53 | 48 | 5 |
BC2 08/5/1/13 | 51 | 48 | 3 |
BC2 08/5/1/20 | 50 | 48 | 2 |
BC2 08/5/1/24 | 52 | 48 | 4 |
BC3 82/4/68/32/27 | 48 | 48 | 0 |
Hybrid Genotype (Interspecific Combination) | No. of PMCs | No. of Chromosomes of the Genome | Chromosomal Associations on Average per Cell | A-B Associations on Average Per cell X | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I * | II ** | III *** | IV **** | V ***** | ||||||||||||
A | B | A | B | AA | BB | A-B | AAA | AA-B | A-BB | AAAA | AAA-B | AA-BB | AAAA-B | |||
SH 838/7 trn(+)tbr, Delikat | 20 | 48 | 24 | 6.15 (3–11) | 4.90 (2–9) | 17.80 (13–21) | 7.55 (5–10) | 3.45 (0–6) | 0.3 (0–2) | 0.15 (0; 1) | 0.05 (0; 1) | 0.2 (0; 1) | 0.15 (0; 1) | 0.05 (0; 1) | 0.05 (0; 1) | 4.75 (0–6; 8; 10; 14) |
BC1 82/4/43 blb(+)tbr, Delikat | 59 | 48 | 12 | 5.77 (2–11) | 8.71 (6–12) | 18.79 (15–21) | 0 | 3.02 (0–5) | 0.14 (0–2) | 0.17 (0–2) | 0 | 0.12 (0; 1) | 0.12 (0; 1) | 0 | 0 | 3.63 (0–8) |
BC1 83/9/11 blb(+)tbr, Delikat | 27 | 48 | 12 | 5.18 (2–12) | 9.41 (7–12) | 19.34 (16–22) | 0 | 2.48 (1–5) | 0.22 (0; 1) | 0.11 (0; 1) | 0 | 0.19 (0; 1) | 0 | 0 | 0 | 3.05 (1–6) |
BC1 83/9/35 blb(+)tbr, Delikat | 16 | 48 | 12 | 5.44 (2–9) | 8.38 (3–12) | 18.94 (12–22) | 0 | 3.19 (0–6) | 0 | 0.44 (0–2) | 0 | 0.13 (0; 1) | 0 | 0 | 0 | 3.56 (0–8) |
BC1 83/9/44 blb(+)tbr, Delikat | 30 | 48 | 10 | 6.33 (2–10; 14) | 7.30 (5–8; 10) | 18.73 (16–22) | 0 | 2.57 (0–4) | 0.1 (0; 1) | 0.07 (0; 1) | 0 | 0.23 (0; 1) | 0.1 (0; 1) | 0 | 0 | 3.20 (0–6) |
BC2 82/4/46/14 blb(+)tbr, Delikat | 31 | 48 | 5 | 3.71 (0–7) | 2.65 (1–5) | 20.77 (18–23) | 0 | 2.09 (0–4) | 0.03 (0; 1) | 0.26 (0–3) | 0 | 0 | 0 | 0 | 0 | 2.38 (0–4) |
BC2 95/1/4/59 blb(+)tbr, Delikat | 25 | 48 | 5 | 5.48 (3–9) | 3.08 (1–5) | 18.80 (15–21) | 0 | 1.85 (0–4) | 0.71 (0–2) | 0.13 (0; 1) | 0 | 0.21 (0; 1) | 0.08 (0; 1) | 0 | 0 | 2.16 (0–5) |
BC3 2045/2/7/17/7 pnt(+)tbr, Rasant | 60 | 48 | 1 | 3.13 (0–8; 11) | 0.38 (0; 1) | 21.33 (17–24) | 0 | 0.50 (0; 1) | 0.10 (0; 1) | 0.05 (0; 1) | 0 | 0.29 (0; 1) | 0.05 (0; 1) | 0 | 0 | 0.65 (0–2) |
BC4 2045/2/7/17/7/1 pnt(+)tbr, Rasant | 5 | 48 | 1 | 4 (3; 5; 6) | 0.20 (0; 1) | 21.00 (19; 21; 22) | 0 | 0.80 (0; 1) | 0.40 (0; 1) | 0 | 0 | 0 | 0 | 0 | 0 | 0.80 (0; 1) |
BC4 2045/2/7/17/7/26 pnt(+)tbr, Rasant | 29 | 48 | 1 | 4.48 (0; 2–8) | 0.55 (0; 1) | 20.55 (17–23) | 0 | 0.31 (0; 1) | 0.24 (0; 1) | 0.07 (0; 1) | 0 | 0.24 (0; 1) | 0.07 (0; 1) | 0 | 0 | 0.55 (0–2) |
BC5 838/7/53/3/23/4/7 trn(+)tbr, Delikat | 5 | 47 | 1 | 9.00 (8; 9; 11) | 0.80 (0; 1) | 18.40 (18; 19) | 0 | 0.20 (0; 1) | 0.20 (0; 1) | 0 | 0 | 0 | 0 | 0 | 0 | 0.20 (0; 1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilenko, T.; Pendinen, G.; Antonova, O.; Makarova, T.; Thieme, R. Homoeologous Chromosome Pairing and Alien Introgression in Backcrossing Progenies Derived from Hybrids Solanum tuberosum (+) Mexican 2x (1 EBN) B-Genome Potato Species. Agronomy 2023, 13, 1809. https://doi.org/10.3390/agronomy13071809
Gavrilenko T, Pendinen G, Antonova O, Makarova T, Thieme R. Homoeologous Chromosome Pairing and Alien Introgression in Backcrossing Progenies Derived from Hybrids Solanum tuberosum (+) Mexican 2x (1 EBN) B-Genome Potato Species. Agronomy. 2023; 13(7):1809. https://doi.org/10.3390/agronomy13071809
Chicago/Turabian StyleGavrilenko, Tatjana, Galina Pendinen, Olga Antonova, Tamara Makarova, and Ramona Thieme. 2023. "Homoeologous Chromosome Pairing and Alien Introgression in Backcrossing Progenies Derived from Hybrids Solanum tuberosum (+) Mexican 2x (1 EBN) B-Genome Potato Species" Agronomy 13, no. 7: 1809. https://doi.org/10.3390/agronomy13071809
APA StyleGavrilenko, T., Pendinen, G., Antonova, O., Makarova, T., & Thieme, R. (2023). Homoeologous Chromosome Pairing and Alien Introgression in Backcrossing Progenies Derived from Hybrids Solanum tuberosum (+) Mexican 2x (1 EBN) B-Genome Potato Species. Agronomy, 13(7), 1809. https://doi.org/10.3390/agronomy13071809