Mitigation of the Ratio of Soil Dissolved Organic Carbon to Available Phosphorus Effectively Improves Crop Productivity under Mulching Measures on the Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sampling
2.2. Analysis of Soil Properties
2.3. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties and Stoichiometric Ratios
3.2. Soil Stoichiometric Imbalance
3.3. Effect of Soil Stoichiometric Characteristics on Yield Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Wu, X.; Yu, X.; Gao, Y.; Wang, G. Different Impacts of Rainfall Intensity on Surface Runoff and Sediment Loss between Huang-mian Soil and Brown Soil. J. Environ. Sci. Manag. 2017, 20, 1–8. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Panagos, P.; Vanwalleghem, T.; Hayas, A.; Foerster, S.; Borrelli, P.; Rossi, M.; Torri, D.; Casali, J.; Borselli, L.; et al. Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Sci. Rev. 2021, 218, 103637. [Google Scholar] [CrossRef]
- Shi, P.; Schulin, R. Erosion-induced losses of carbon, nitrogen, phosphorus and heavy metals from agricultural soils of contrasting organic matter management. Sci. Total Environ. 2018, 618, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wen, X.; Sun, Y.; Zhang, J.; Wu, W.; Liao, Y. Mulching practices altered soil bacterial community structure and improved orchard productivity and apple quality after five growing seasons. Sci. Hortic. 2014, 172, 248–257. [Google Scholar] [CrossRef]
- Yang, H.; Wu, G.; Mo, P.; Chen, S.; Wang, S.; Xiao, Y.; Ma, H.a.; Wen, T.; Guo, X.; Fan, G. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Zheng, T.; Zhao, X.; Liu, H.; Zhang, Y. Nutrient and Stoichiometric Characteristics of Aggregates in a Sloping Farmland Area under Different Tillage Practices. Sustainability 2021, 13, 890. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Bertrand, I.; Viaud, V.; Daufresne, T.; Pellerin, S.; Recous, S. Stoichiometry constraints challenge the potential of agroecological practices for the soil C storage. A review. Agron. Sustain. Dev. 2019, 39, 54. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Wang, J.; Zhu, P.; Cui, X.; Han, X.; Xu, M.; Lu, C. The efficiency of long-term straw return to sequester organic carbon in Northeast China’s cropland. J. Integr. Agric. 2018, 17, 436–448. [Google Scholar] [CrossRef]
- Zhai, Z.; Luo, M.; Yang, Y.; Liu, Y.; Chen, X.; Zhang, C.; Huang, J.; Chen, J. Trade-off between microbial carbon use efficiency and microbial phosphorus limitation under salinization in a tidal wetland. Catena 2022, 209, 105809. [Google Scholar] [CrossRef]
- Dong, Q.g.; Yang, Y.; Yu, K.; Feng, H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agric. Water Manag. 2018, 201, 133–143. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, X.; Hossain, M.E.; Wang, S.; Dong, W.; Gopalakrishnan, S.; Liu, E. Effects of Plastic Film Mulching on Soil Enzyme Activities and Stoichiometry in Dryland Agroecosystems. Plants 2022, 11, 1748. [Google Scholar] [CrossRef]
- Wang, J.; Lv, S.; Zhang, M.; Chen, G.; Zhu, T.; Zhang, S.; Teng, Y.; Christie, P.; Luo, Y. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 2016, 151, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Chen, L.D.; Fu, B.J.; Wei, W. Integrated effects of slope aspect and land use on soil nutrients in a small catchment in a hilly loess area, China. Int. J. Sustain. Dev. World Ecol. 2007, 14, 307–316. [Google Scholar] [CrossRef]
- Duchicela, J.; Sullivan, T.S.; Bontti, E.; Bever, J.D. Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano. J. Appl. Ecol. 2013, 50, 1266–1273. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources; International Union of Soil Sciences: Vienna, Austria, 2022. [Google Scholar]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Persson, J.; Fink, P.; Goto, A.; Hood, J.M.; Jonas, J.; Kato, S. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 2010, 119, 741–751. [Google Scholar] [CrossRef]
- Wang, W.; Hou, Y.; Pan, W.; Vinay, N.; Mo, F.; Liao, Y.; Wen, X. Continuous application of conservation tillage affects in situ N2O emissions and nitrogen cycling gene abundances following nitrogen fertilization. Soil Biol. Biochem. 2021, 157, 108239. [Google Scholar] [CrossRef]
- Tan, C.; Cao, X.; Yuan, S.; Wang, W.; Feng, Y.; Qiao, B. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion. Sci. Rep. 2015, 5, 17592. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, S.; Crohn, D.; Downer, J. Nitrogen mineralization from eucalyptus yardwaste mulch applied to young avocado trees. Biol. Fert. Soils 2005, 41, 38–45. [Google Scholar] [CrossRef]
- Yang, F.; He, B.; Zhang, L.; Zhang, G.; Gao, Y. An Approach to Improve Soil Quality: A Case Study of Straw Incorporation with a Decomposer Under Full Film-Mulched Ridge-Furrow Tillage on the Semiarid Loess Plateau, China. J. Soil Sci. Plant Nut. 2020, 20, 125–138. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.G.; Lv, J.; Fu, T.; Ma, Q.; Song, W.; Wang, Y.P.; Li, F.-M. Continuous plastic-film mulching increases soil aggregation but decreases soil pH in semiarid areas of China. Soil Till. Res. 2017, 167, 46–53. [Google Scholar] [CrossRef]
- Hao, J.; Lin, Y.; Ren, G.; Yang, G.; Han, X.; Wang, X.; Ren, C.; Feng, Y. Comprehensive benefit evaluation of conservation tillage based on BP neural network in the Loess Plateau. Soil Till. Res. 2021, 205, 104784. [Google Scholar] [CrossRef]
- Li, F.-M.; Wang, J.; Xu, J.-Z.; Xu, H.-L. Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid Loess Plateau of China. Soil Tillage Res. 2004, 78, 9–20. [Google Scholar] [CrossRef]
- Miki, T. Microbe-mediated plant–soil feedback and its roles in a changing world. Ecol. Res. 2012, 27, 509–520. [Google Scholar] [CrossRef]
- Soong, J.L.; Marañon-Jimenez, S.; Cotrufo, M.F.; Boeckx, P.; Bodé, S.; Guenet, B.; Peñuelas, J.; Richter, A.; Stahl, C.; Verbruggen, E.; et al. Soil microbial CNP and respiration responses to organic matter and nutrient additions: Evidence from a tropical soil incubation. Soil Biol. Biochem. 2018, 122, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Mo, F.; Zhu, Y.; Wang, Z.Y.; Deng, H.L.; Li, P.F.; Sun, S.K.; Xiong, Y.C. Polyethylene film mulching enhances the microbial carbon-use efficiency, physical and chemical protection of straw-derived carbon in an Entisol of the Loess Plateau. Sci. Total Environ. 2021, 792, 148357. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Liu, S.; Xiang, Y.; Tang, X.; Liu, H.; Yao, B.; Luo, X. Impact of living mulch on soil C:N:P stoichiometry in orchards across China: A meta-analysis examining climatic, edaphic, and biotic dependency. Pedosphere 2020, 30, 181–189. [Google Scholar] [CrossRef]
- Hao, X.; Liu, S.; Wu, J.; Hu, R.; Tong, C.; Su, Y. Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutr. Cycl. Agroecosys. 2007, 81, 17–24. [Google Scholar] [CrossRef]
- Xiao, M.; Zang, H.; Liu, S.; Ye, R.; Zhu, Z.; Su, Y.; Wu, J.; Ge, T. Nitrogen fertilization alters the distribution and fates of photosynthesized carbon in rice–soil systems: A 13C-CO2 pulse labeling study. Plant Soil 2019, 445, 101–112. [Google Scholar] [CrossRef]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Peñuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Li, W.; Lu, X.; Gu, Y.; Wu, S.; Shen, Z.; Han, X.; Yang, G.; Ren, C. Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, China. Soil Biol. Biochem. 2020, 151, 108048. [Google Scholar] [CrossRef]
- Appelhans, S.C.; Barbagelata, P.A.; Melchiori, R.J.M.; Gutierrez Boem, F. Assessing soil P fractions changes with long-term phosphorus fertilization related to crop yield of soybean and maize. Soil Use Manag. 2020, 36, 524–535. [Google Scholar] [CrossRef]
- Nget, R.; Aguilar, E.A.; Cruz, P.C.S.; Reano, C.E.; Sanchez, P.B.; Reyes, M.R.; Prasad, P.V.V. Responses of Soybean Genotypes to Different Nitrogen and Phosphorus Sources: Impacts on Yield Components, Seed Yield, and Seed Protein. Plants 2022, 11, 298. [Google Scholar] [CrossRef]
Stage | Index | NM | SM | PM | RM | p |
---|---|---|---|---|---|---|
V4 | pH | 8.26 (0.02) | 8.16 (0.08) | 8.20 (0.06) | 8.15 (0.04) | 0.087 |
SMC (%) | 5.84 (0.44) | 6.64 (0.37) | 7.43 (0.20) | 7.94 (0.67) | 0.002 | |
ST (°C) | 21.40 (0.35) | 21.67 (0.42) | 22.08 (0.88) | 21.93 (1.10) | 0.706 | |
SOC (g/kg) | 4.12 (0.36) | 4.52 (0.51) | 3.50 (0.48) | 3.80 (0.06) | 0.062 | |
TN (g/kg) | 0.35 (0.03) | 0.42 (0.02) | 0.38 (0.02) | 0.43 (0.02) | 0.016 | |
TP (g/kg) | 0.43 (0.03) | 0.50 (0.06) | 0.52 (0.03) | 0.54 (0.03) | 0.036 | |
DOC (mg/kg) | 51.51 (1.97) | 52.21 (9.64) | 45.03 (3.69) | 41.21 (3.83) | 0.117 | |
AN (mg/kg) | 6.35 (0.72) | 6.74 (0.48) | 5.89 (0.21) | 7.39 (1.10) | 0.140 | |
AP (mg/kg) | 1.21 (0.18) | 2.72 (0.40) | 1.15 (0.21) | 1.98 (0.11) | <0.001 | |
R4 | pH | 7.67 (0.10) | 7.78 (0.01) | 7.83 (0.03) | 7.81 (0.04) | 0.029 |
SMC (%) | 8.5 1(0.49) | 8.22 (0.18) | 8.56 (0.16) | 7.58 (0.21) | 0.013 | |
ST (°C) | 25.16 (0.23) | 24.71 (0.25) | 25.33 (0.57) | 26.53 (0.48) | 0.003 | |
SOC (g/kg) | 3.35 (0.42) | 4.19 (0.36) | 3.61 (0.44) | 3.55 (0.48) | 0.173 | |
TN (g/kg) | 0.30 (0.01) | 0.34 (0.04) | 0.31 (0.03) | 0.31 (0.01) | 0.295 | |
TP (g/kg) | 0.46 (0.04) | 0.53 (0.05) | 0.53 (0.03) | 0.52 (0.06) | 0.290 | |
DOC (mg/kg) | 38.44 (4.73) | 38.06 (5.71) | 32.62 (2.05) | 51.25 (7.34) | 0.015 | |
AN (mg/kg) | 3.84 (0.15) | 4.22 (0.10) | 3.80 (0.18) | 4.53 (1.13) | 0.422 | |
AP (mg/kg) | 2.16 (0.77) | 3.92 (0.86) | 2.98 (0.18) | 4.35 (1.08) | 0.039 | |
R8 | pH | 7.92 (0.04) | 7.96 (0.02) | 8.01 (0.06) | 7.97 (0.03) | 0.106 |
SMC (%) | 11.64 (0.15) | 11.74 (0.34) | 12.14 (0.44) | 12.44 (0.84) | 0.271 | |
ST (°C) | 15.73 (0.23) | 15.85 (0.23) | 15.11 (0.69) | 17.02 (0.85) | 0.020 | |
SOC (g/kg) | 3.56 (0.12) | 4.40 (0.35) | 3.76 (0.19) | 3.83 (0.07) | 0.006 | |
TN (g/kg) | 0.35 (0.04) | 0.37 (0.04) | 0.30 (0.01) | 0.34 (0.02) | 0.088 | |
TP (g/kg) | 0.44 (0.01) | 0.47 (0.02) | 0.50 (0.04) | 0.51 (0.05) | 0.150 | |
DOC (mg/kg) | 50.03 (2.57) | 47.72 (4.02) | 31.12 (4.98) | 35.10 (2.93) | 0.001 | |
AN (mg/kg) | 3.77 (0.44) | 5.27 (1.22) | 4.14 (0.10) | 6.06 (1.36) | 0.060 | |
AP (mg/kg) | 1.01 (0.34) | 1.89 (0.53) | 1.20 (0.44) | 1.75 (0.49) | 0.127 |
Index | ln(Resource) | ln(Microbe) | |1/H| | p | Homeostasis |
---|---|---|---|---|---|
Total nutrient | C:N | C:N | 0.869 | 0.023 | Plastic |
C:P | C:P | 0.632 | 0.212 | Strictly homeostatic | |
N:P | N:P | 0.420 | 0.377 | Strictly homeostatic | |
Available nutrient | C:N | C:N | 0.359 | 0.049 | Weakly homeostatic |
C:P | C:P | 0.038 | 0.782 | Strictly homeostatic | |
N:P | N:P | 0.106 | 0.382 | Strictly homeostatic |
Mulch | Plants/hm2 | Pods/Plant | Seeds/Plant | 100-Seed Weight (g) | Yield (kg/hm2) |
---|---|---|---|---|---|
NM | 245,000 (15,000) | 21.83 (0.64) | 59.69 (0.33) | 9.78 (0.11) | 814.58 (92.18) |
SM | 270,000 (20,000) | 28.31 (1.89) | 80.48 (7.72) | 11.65 (0.16) | 1254.95 (0.24) |
PM | 285,000 (5000) | 23.85 (0.54) | 61.60 (2.90) | 10.92 (0.12) | 962.71 (46.06) |
RM | 255,000 (5000) | 29.45 (0.95) | 94.15 (2.78) | 11.30 (0.25) | 1323.09 (27.48) |
p | 0.025 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.-Q.; Song, J.-J.; Gao, G.-X.; Xu, W.; Bai, J.-Z.; Feng, Y.-Z.; Wang, X. Mitigation of the Ratio of Soil Dissolved Organic Carbon to Available Phosphorus Effectively Improves Crop Productivity under Mulching Measures on the Loess Plateau. Agronomy 2023, 13, 1810. https://doi.org/10.3390/agronomy13071810
Hao J-Q, Song J-J, Gao G-X, Xu W, Bai J-Z, Feng Y-Z, Wang X. Mitigation of the Ratio of Soil Dissolved Organic Carbon to Available Phosphorus Effectively Improves Crop Productivity under Mulching Measures on the Loess Plateau. Agronomy. 2023; 13(7):1810. https://doi.org/10.3390/agronomy13071810
Chicago/Turabian StyleHao, Jia-Qi, Jia-Jie Song, Guo-Xi Gao, Wen Xu, Jin-Ze Bai, Yong-Zhong Feng, and Xing Wang. 2023. "Mitigation of the Ratio of Soil Dissolved Organic Carbon to Available Phosphorus Effectively Improves Crop Productivity under Mulching Measures on the Loess Plateau" Agronomy 13, no. 7: 1810. https://doi.org/10.3390/agronomy13071810
APA StyleHao, J. -Q., Song, J. -J., Gao, G. -X., Xu, W., Bai, J. -Z., Feng, Y. -Z., & Wang, X. (2023). Mitigation of the Ratio of Soil Dissolved Organic Carbon to Available Phosphorus Effectively Improves Crop Productivity under Mulching Measures on the Loess Plateau. Agronomy, 13(7), 1810. https://doi.org/10.3390/agronomy13071810