Open-Field Agrivoltaic System Impacts on Photothermal Environment and Light Environment Simulation Analysis in Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Photothermal Environment Measurement and Daylighting Rate Calculation
2.3. Simulation of Light Environment
2.3.1. Model Construction
2.3.2. Setting of Numerical Simulation
2.4. Data Analysis
3. Results
3.1. Analysis of Photothermal Environment in OAVS
3.1.1. Solar Radiation Intensity
3.1.2. Air Temperature
3.1.3. Soil Temperature
3.2. Validation of ECOTECT Simulation
3.3. Results of OAVS Light Environment Simulation Analysis
3.3.1. Average Daily Solar Radiation
3.3.2. Average Daily Sunshine Hours
3.3.3. Average Daily Shading Rate
4. Discussion
4.1. Temporal Variation in Light Environment in OAVS
4.2. Spatial Variation in Light Environment in OAVS
4.3. Limitations and Future Research Directions of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xue, J.L. Photovoltaic agriculture—New opportunity for photovoltaic applications in China. Renew. Sustain. Energy Rev. 2017, 73, 1–9. [Google Scholar] [CrossRef]
- Muñoz-García, M.A.; Hernández-Callejo, L. Photovoltaics and electrification in agriculture. Agronomy 2021, 12, 44. [Google Scholar] [CrossRef]
- Havrysh, V.; Kalinichenko, A.; Szafranek, E.; Hruban, V. Agricultural land: Crop production or photovoltaic power plants. Sustainability 2022, 14, 5099. [Google Scholar] [CrossRef]
- Sarr, A.; Soro, Y.M.; Tossa, A.K.; Diop, L. Agrivoltaic, a synergistic co-location of agricultural and energy production in perpetual mutation: A comprehensive review. Processes 2023, 11, 948. [Google Scholar] [CrossRef]
- Zhou, W.D.; Zhuang, G.Y.; Liu, L.B. Comprehensive assessment of energy supply-side and demand-side coordination on pathways to carbon neutrality of the yangtze river delta in China. J. Clean. Prod. 2023, 404, 136904. [Google Scholar] [CrossRef]
- Miao, Q.Q.; Shi, C.Y.; Zhang, X.P. Photovoltaic technology under carbon neutrality. Huagong Jinzhan 2022, 41, 1125–1131. [Google Scholar]
- Jing, R.; He, Y.; He, J.J.; Liu, Y.; Yang, S.B. Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China. Renew. Energy 2022, 194, 1048–1059. [Google Scholar] [CrossRef]
- China’s Photovoltaic Power Generation Construction and Operation in 2022. Available online: http://www.nea.gov.cn/2023-02/17/c_1310698128.htm (accessed on 12 June 2023).
- Wang, W.Y.; Zang, M.W.; Zhang, H.; Bai, Y.C.; Li, J.H.; Wang, D.Y.; Yuan, K.; Li, D. Current status of and development suggestions for food science and technology innovation power layout in China. Sci. Food 2022, 43, 336–341. [Google Scholar]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Geng, S.Q.; Wang, L. Planning of qianyan modern photovoltaic agricultural demonstration park basing on the photovoltaic model of medicinal materials. Tianjin Agric. Sci. 2021, 27, 75–79. [Google Scholar]
- Campana, P.E.; Stridh, B.; Amaducci, S.; Colauzzi, M. Optimisation of vertically mounted agrivoltaic systems. J. Clean. Prod. 2021, 325, 129091. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Yoon, C.Y. An efficient structure of an agrophotovoltaic system in a temperate climate region. Agronomy 2021, 11, 1584. [Google Scholar] [CrossRef]
- Schulz, V.S.; Munz, S.; Stolzenburg, K.; Hartung, J.; Weisenburger, S.; Graeff-Hönninger, S. Impact of Different Shading Levels on Growth, Yield and Quality of Potato (Solanum tuberosum L.). Agronomy 2019, 9, 330. [Google Scholar] [CrossRef] [Green Version]
- Edouard, S.; Combes, D.; Van Iseghem, M.; Tin, M.N.W.; Escobar-Gutierrez, A.J. Increasing land productivity with agriphotovoltaics: Application to an alfalfa field. Appl. Energy 2023, 329, 120207. [Google Scholar] [CrossRef]
- Valle, B.; Simonneau, T.; Sourd, F.; Pechier, P.; Hamard, P.; Frisson, T.; Ryckewaert, M.; Christophe, A. Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl. Energy 2017, 206, 1495–1507. [Google Scholar] [CrossRef]
- Huang, K.; Shu, L.; Li, K.L.; Yang, F.; Han, G.J.; Wang, X.C.; Pearson, S. Photovoltaic agricultural internet of things towards realizing the next generation of smart farming. IEEE Access 2020, 8, 76300–76312. [Google Scholar] [CrossRef]
- Leon, A.; Ishihara, K.N. Influence of allocation methods on the lc-co2 emission of an agrivoltaic system. Resour. Conserv. Recy. 2018, 138, 110–117. [Google Scholar] [CrossRef]
- Hassanpour Adeh, E.; Selker, J.S.; Higgins, C.W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef] [Green Version]
- Ali Abaker Omer, A.; Liu, W.; Li, M.; Zheng, J.; Zhang, F.; Zhang, X.; Osman Hamid Mohammed, S.; Fan, L.; Liu, Z.; Chen, F.; et al. Water evaporation reduction by the agrivoltaic systems development. Sol. Energy 2022, 247, 13–23. [Google Scholar] [CrossRef]
- Feuerbacher, A.; Laub, M.; Högy, P.; Lippert, C.; Pataczek, L.; Schindele, S.; Wieck, C.; Zikeli, S. An analytical framework to estimate the economics and adoption potential of dual land-use systems: The case of agrivoltaics. Agr. Syst. 2021, 192, 103193. [Google Scholar] [CrossRef]
- Giri, N.C.; Mohanty, R.C. Agrivoltaic system: Experimental analysis for enhancing land productivity and revenue of farmers. Energy Sustain. Dev. 2022, 70, 54–61. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.P.; Wang, L.J. Research on coupling coordination development for photovoltaic agriculture system in China. Sustainability 2019, 11, 1065. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Sun, X.; Zhou, J.W.; Wu, L.H.; Bi, D.; Zhao, J.; Zhu, R.F.; Christie, P. Sustainable phytoextraction of metal-polluted agricultural land used for commercial photovoltaic power generation. J. Clean. Prod. 2023, 391, 136093. [Google Scholar] [CrossRef]
- Santra, P.; Meena, H.M.; Yadav, O.P. Spatial and temporal variation of photosynthetic photon flux density within agrivoltaic system in hot arid region of india. Biosyst. Eng. 2021, 209, 74–93. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Gao, X.Q.; Yang, L.W.; Lyu, F.; Ma, L.Y.; Hui, X.Y.; Hou, X.Y.; Li, H.L. Observational study on the impact of the large solar farm on air temperature and humidity in desert areas of golmud. Acta Energiae Solaris Sin. 2016, 37, 2905–2919. [Google Scholar]
- Chang, R.; Shen, Y.B.; Luo, Y.; Wang, B.; Yang, Z.B.; Guo, P. Observed surface radiation and temperature impacts from the large-scale deployment of photovoltaics in the barren area of gonghe, China. Renew. Energy 2018, 118, 131–137. [Google Scholar] [CrossRef]
- Sailor, D.J.; Anand, J.; King, R.R. Photovoltaics in the built environment: A critical review. Energy Build. 2021, 253, 111479. [Google Scholar] [CrossRef]
- Ezzaeri, K.; Fatnassi, H.; Bouharroud, R.; Gourdo, L.; Bazgaou, A.; Wifaya, A.; Demrati, H.; Bekkaoui, A.; Aharoune, A.; Poncet, C.; et al. The effect of photovoltaic panels on the microclimate and on the tomato production under photovoltaic canarian greenhouses. Sol. Energy 2018, 173, 1126–1134. [Google Scholar] [CrossRef]
- Ayoub, M.; Elseragy, A. Parameterization of traditional domed-roofs insolation in hot-arid climates in aswan, Egypt. Energy Environ. 2017, 29, 109–130. [Google Scholar] [CrossRef]
- Wu, Q.; Jo, H.K. A study on ecotect application of local climate at a residential area in chuncheon, korea. J. Environ. Eng. Landsc. 2015, 23, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; He, B.J.; Ye, M. Application research of ecotect in residential estate planning. Energy Build. 2014, 72, 195–202. [Google Scholar] [CrossRef]
- Akbari, H.; Cherati, S.M.; Monazam, N.H.; Noguchi, M. Effect of courtyards’ geometrical parameters on climate adaptability and shading performance in hot-arid climate of yazd (Iran). Sustain. Energy Technol. Assess. 2021, 48, 101594. [Google Scholar] [CrossRef]
- Li, H.L.; Wu, D.; Zhou, J.Z. Effects of tubular daylight guidance systems on the daylighting performance and energy savings in office buildings under different climate zones. J. Renew. Sustain. Energy 2021, 13, 065102. [Google Scholar] [CrossRef]
- Ahriz, A.; Mesloub, A.; Djeffal, L.; Alsolami, B.M.; Ghosh, A.; Abdelhafez, M.H.H. The use of double-skin façades to improve the energy consumption of high-rise office buildings in a mediterranean climate (csa). Sustainability 2022, 14, 6004. [Google Scholar] [CrossRef]
- He, D.S.; Chang, J.G.; Han, X. Direct radiation model of louver shading in office building shade based on network optimization method. Comput. Intell. Neurosci. 2022, 2022, 5766448. [Google Scholar] [CrossRef]
- Chi, F.A.; Borys, I.; Jin, L.; Zhu, Z.Z.; Bart, D. The strategies and effectiveness of climate adaptation for the thousand pillars dwelling based on passive elements and passive spaces. Energy Build. 2019, 183, 17–44. [Google Scholar] [CrossRef]
- Iommi, M. Daylighting performances and visual comfort in le corbusier’s architecture. The daylighting analysis of seven unrealized residential buildings. Energy Build. 2019, 184, 242–263. [Google Scholar] [CrossRef]
- Sun, Z.P.; Huang, W.Y.; Li, T.L.; Tong, X.J.; Bai, Y.K.; Ma, J. Light and temperature performance of energy-saving solar greenhouse assembled with color plate. Trans. Chin. Soc. Agric. Eng. 2013, 29, 159–167. [Google Scholar]
- Cho, J.; Park, S.M.; Park, A.R.; Lee, O.C.; Nam, G.; Ra, I.H. Application of photovoltaic systems for agriculture: A study on the relationship between power generation and farming for the improvement of photovoltaic applications in agriculture. Energies 2020, 13, 4815. [Google Scholar] [CrossRef]
- Jiang, S.; Tang, D.; Zhao, L.; Liang, C.; Cui, N.; Gong, D.; Wang, Y.; Feng, Y.; Hu, X.; Peng, Y. Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under “agrivoltaic” system in southwest China. Agric. Water Manag. 2022, 269, 107675. [Google Scholar] [CrossRef]
- Assis, B.D.P.; Gross, E.; Pereira, N.E.; Mielke, M.S.; Júnior, G.A.G. Growth response of four conilon coffee varieties (Coffea canephora Pierre ex A. Froehner) to different shading levels. J. Agric. Sci. 2019, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Ryu, Y. Seasonal changes in vertical canopy structure in a temperate broadleaved forest in korea. Ecol. Res. 2015, 30, 821–831. [Google Scholar] [CrossRef]
- Middel, A.; Alkhaled, S.; Schneider, F.A.; Hagen, B.; Coseo, P. 50 grades of shade. Bull. Am. Meteorol. Soc. 2021, 102, E1805–E1820. [Google Scholar] [CrossRef]
Instrument Name | Manufacturer | Model | Range | Accuracy |
---|---|---|---|---|
HOBO temperature recorder | Onset Co., Ltd., Bourne, MA, USA | UX100-011A | −20~+70 °C | ±0.2 °C |
HOBO four-channel recorder | UX120-006M | −20~+70 °C | ±0.2 °C | |
HOBO temperature sensor | TMC20-HD | −20~+100 °C | ±0.15 °C | |
HOBO total solar radiation sensor | S-LIB-M003 | 0~+1280 W/m2 | ±10 W/m2 |
Season(s) | Area(s) | Measured Value/% | Simulated Value/% | Relative Error/% |
---|---|---|---|---|
Summer | Southern area | 20.5 | 22.1 | 7.8 |
Middle area | 66.6 | 60.8 | −8.7 | |
Northern area | 22.7 | 21.0 | −7.5 | |
Winter | Southern area | 26.4 | 28.6 | 8.3 |
Middle area | 24.7 | 25.5 | 3.2 | |
Northern area | 19.7 | 18.2 | −2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Yang, Z.; Wu, X.; Wang, W.; Yang, C.; Xu, G.; Wu, C.; Bao, E. Open-Field Agrivoltaic System Impacts on Photothermal Environment and Light Environment Simulation Analysis in Eastern China. Agronomy 2023, 13, 1820. https://doi.org/10.3390/agronomy13071820
Zhang L, Yang Z, Wu X, Wang W, Yang C, Xu G, Wu C, Bao E. Open-Field Agrivoltaic System Impacts on Photothermal Environment and Light Environment Simulation Analysis in Eastern China. Agronomy. 2023; 13(7):1820. https://doi.org/10.3390/agronomy13071820
Chicago/Turabian StyleZhang, Long, Zhipeng Yang, Xue Wu, Wenju Wang, Chen Yang, Guijun Xu, Cuinan Wu, and Encai Bao. 2023. "Open-Field Agrivoltaic System Impacts on Photothermal Environment and Light Environment Simulation Analysis in Eastern China" Agronomy 13, no. 7: 1820. https://doi.org/10.3390/agronomy13071820
APA StyleZhang, L., Yang, Z., Wu, X., Wang, W., Yang, C., Xu, G., Wu, C., & Bao, E. (2023). Open-Field Agrivoltaic System Impacts on Photothermal Environment and Light Environment Simulation Analysis in Eastern China. Agronomy, 13(7), 1820. https://doi.org/10.3390/agronomy13071820