Responses of Soil Labile Organic Carbon on Aggregate Stability across Different Collapsing-Gully Erosion Positions from Acric Ferralsols of South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Soil Basic-Property Analysis
2.3. Analysis of Soil-Aggregate Stability
2.4. Soil-LOC-Fraction Analysis
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Properties in Bulk Soils along Erosion Positions
3.2. Distributions of Soil-Aggregate Size and Stability along Erosion Positions
3.3. Changes in Labile OC Fraction and C Pool Management Index along Erosion Positions
3.4. Relationship among Soil Properties, Labile-OC Pool Indexes and Soil-Aggregate Stability
4. Discussion
4.1. Relationship among Soil Properties, Labile OC Pool Indexes and Aggregate Stability
4.2. Soil-Aggregate Size and Stability at Different Erosion Positions
4.3. Effects of Soil Basic Parameters and LOC Pool Indexes on Aggregate Stability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, G.Y.; Huan, W.W.; Song, H.; Lu, D.J.; Chen, X.Q.; Wang, H.Y.; Zhou, J.M. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice-wheat system. Soil Tillage Res. 2021, 209, 104958. [Google Scholar] [CrossRef]
- Alhaj Hamoud, Y.; Shaghaleh, H.; Wang, R.k.; Franz Gouertoumbo, W.; Ali Adam Hamad, A.; Salah Sheteiwy, M.; Wang, Z.C.; Guo, X.P. Wheat straw burial improves physiological traits, yield and grain quality of rice by regulating antioxidant system and nitrogen assimilation enzymes under alternate wetting and drying irrigation. Rice Sci. 2022, 29, 473–488. [Google Scholar] [CrossRef]
- Poeplau, C.; Katterer, T.; Leblans, N.I.W.; Sigurdsson, B.D. Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland. Glob. Chang. Biol. 2017, 23, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, K.; Shaghaleh, H.; Qi, Z.; Gao, C.; Chang, T.; Zhang, J.; Zia-ur-Rehman, M.; Hamoud, Y.A. Continuous cropping alters soil hydraulic and physicochemical properties in the Karst region of southwestern China. Agronomy 2023, 13, 1416. [Google Scholar] [CrossRef]
- Saha, M.; Das, M.; Sarkar, A. Distinct nature of soil organic carbon pools and indices under nineteen years of rice based crop diversification switched over from uncultivated land in eastern plateau region of India. Soil Tillage Res. 2021, 207, 104856. [Google Scholar] [CrossRef]
- Xiao, L.; Yao, K.; Li, P.; Liu, Y.; Chang, E.; Zhang, Y.; Zhu, T. Increased soil aggregate stability is strongly correlated with root and soil properties along a gradient of secondary succession on the Loess Plateau. Ecol. Eng. 2020, 143, 105671. [Google Scholar] [CrossRef]
- Haynes, R.J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Adv. Agron. 2005, 85, 221–268. [Google Scholar]
- Ghorbani, M.; Neugschwandtner, R.W.; Soja, G.; Konvalina, P.; Kopecký, M. Carbon Fixation and Soil Aggregation Affected by Biochar Oxidized with Hydrogen Peroxide: Considering the Efficiency of Pyrolysis Temperature. Sustainability 2023, 15, 7158. [Google Scholar] [CrossRef]
- Li, H.Q.; Zhu, H.S.; Liang, C.L.; Wei, X.R.; Yao, Y.F. Soil erosion significantly decreases aggregate-associated OC and N in agricultural soils of Northeast China. Agric. Ecosyst. Environ. 2022, 323, 107677. [Google Scholar] [CrossRef]
- Jat, S.L.; Parihara, C.M.; Singha, A.K.; Nayak, H.S.; Meena, B.R.; Kumara, B.; Pariharc, M.D.; Jat, M.L. Differential response from nitrogen sources with and without residue management under conservation agriculture on crop yields, water-use and economics in maize-based rotations. Field Crops Res. 2019, 236, 96–110. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. Eur. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- Wei, Y.J.; Liu, Z.; Wu, X.L.; Zhang, Y.; Cui, T.T.; Cai, C.F.; Guo, Z.L.; Wang, J.G.; Cheng, D.B. Can benggang be regarded as gully erosion? Catena 2021, 207, 105648. [Google Scholar] [CrossRef]
- Müller-Nedebock, D.; Chaplot, V. Soil carbon losses by sheet erosion: A potentially critical contribution to the global carbon cycle. Earth Surf. Proc. Land. 2015, 40, 1803–1813. [Google Scholar] [CrossRef]
- Nie, X.D.; Li, Z.W.; He, J.J.; Huang, J.Q.; Zhang, Y.; Huang, B.; Ma, W.M.; Lu, Y.M.; Zeng, G.M. Enrichment of organic carbon in sediment under field simulated rainfall experiments. Environ. Earth Sci. 2015, 74, 5417–5425. [Google Scholar] [CrossRef]
- Lützow, M.V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions- a review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Wang, X.; Cammeraat, L.H.; Wang, Z.; Zhou, J.; Govers, G.; Kalbitz, K. Stability of organic matter in soils of the Belgian Loess Belt upon erosion and deposition. Eur. J. Soil Sci. 2013, 64, 219–228. [Google Scholar] [CrossRef]
- Deng, Y.S.; Duan, X.Q.; Ding, S.W.; Cai, C.F. Effect of joint structure and slope direction on the development of collapsing gully in tuffaceous sandstone area in South China. Int. Soil Water Conse. 2020, 8, 131–140. [Google Scholar] [CrossRef]
- Ji, X.; Thompson, A.; Lin, J.S.; Jiang, F.S.; Ge, H.L.; Yu, M.M.; Huang, Y.H. Modeling spatial distribution of rainfall infiltration amounts in South China using cellular automata and its relationship with the occurrence of collapsing gullies. Catena 2020, 194, 104676. [Google Scholar] [CrossRef]
- Xia, D.; Deng, Y.S.; Wang, S.L.; Ding, S.W.; Cai, C.F. Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China. Nat. Hazards 2015, 79, 455–478. [Google Scholar] [CrossRef]
- Chen, J.L.; Zhou, M.; Lin, J.S.; Jiang, F.S.; Huang, B.F.; Xu, T.T. Comparison of soil physicochemical properties and mineralogical compositions between noncollapsible soils and collapsed gullies. Geoderma 2018, 317, 56–66. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, R.S.; Wiesmeier, M.; Cherubin, M.R.; Oliveira, D.M.S.; Locatelli, J.L.; Holzschuh, M.; Cerri, C.E.P. Consequences of land-use change in Brazil’s new agricultural frontier: A soil physical health assessment. Geoderma 2021, 400, 115149. [Google Scholar] [CrossRef]
- Smith, R.W.; Bianchi, T.S.; Allison, M.; Savage, C.; Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 2015, 8, 450–453. [Google Scholar] [CrossRef]
- Mendonça, R.; Müller, R.A.; Clow, D.; Verpoorter, C.; Raymond, P.; Tranvik, L.J.; Sobek, S. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 2017, 8, 1694. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Moure, N.; Gracia, R.; Bielsa, A.C.; Lopez, M.V. Soil organic matter fractions as affected by tillage and soil texture under semiarid Mediterranean conditions. Soil Tillage Res. 2016, 155, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Li, T.T.; Zhang, Y.L.; Bei, S.K.; Li, X.L.; Reinsch, S.; Zhang, H.Y.; Zhang, J.L. Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates. Catena 2020, 194, 104739. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.W.; Chang, X.F.; He, J.J.; Nie, X.D.; Liu, L.; Xiao, H.B.; Wang, D.Y.; Peng, H.; Zeng, G.M. Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: A case study in a loess hilly-gully catchment, China. Agric. Ecosyst. Environ. 2018, 253, 11–22. [Google Scholar] [CrossRef]
- Zhang, K.L.; Yu, Y.; Dong, J.; Yang, Q.; Xu, X. Adapting & testing use of USLE K factor for agricultural soils in China. Agric. Ecosyst. Environ. 2019, 269, 148–155. [Google Scholar] [CrossRef]
- Chen, S.Q.; Zhang, G.H.; Luo, Y.F.; Zhou, H.; Wang, K.W.; Wang, C.S. Soil erodibility indicators as affected by water level fluctuations in the Three Gorges Reservoir area, China. Catena 2021, 207, 105693. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.H.; Li, N.N.; Zhang, B.J.; Yang, H.Y. Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China. Catena 2019, 174, 24–35. [Google Scholar] [CrossRef]
- Abbas, F.; Zhu, Z.L.; An, S.S. Evaluating aggregate stability of soils under different plant species in Ziwuling Mountain area using three renowned methods. Catena 2021, 207, 105616. [Google Scholar] [CrossRef]
- Krausea, L.; Klumpp, E.; Nofz, I.; Missong, A.; Amelung, W.; Siebers, N. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols. Geoderma 2020, 374, 11421. [Google Scholar] [CrossRef]
- Franz Gouertoumbo, W.; Alhaj Hamoud, Y.; Guo, X.; Shaghaleh, H.; Ali Adam Hamad, A.; Elsadek, E. Wheat Straw Burial Enhances the Root Physiology, Productivity, and Water Utilization Efficiency of Rice under Alternative Wetting and Drying Irrigation. Sustainability 2022, 14, 16394. [Google Scholar] [CrossRef]
- Zhaoqing Municipal Bureau of Statistics. Zhaoqing Statistical Yearbook 2022; Zhaoqing Municipal Bureau of Statistics: Zhaoqing, China, 2022. [Google Scholar]
- Zhou, H.Y.; Li, H.X.; Ye, Q.; Wu, G.W. Simulation of morphological development of soil cracks in the collapsing hill region of southern China. Res. Soil Water Conserv. 2016, 23, 338–342. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 2010.
- Tang, X.; Qiu, J.C.; Xu, Y.Q.; Li, J.H.; Chen, J.H.; Li, B.; Lu, Y. Responses of soil aggregate stability to organic C and total N as controlled by land-use type in a region of south China affected by sheet erosion. Catena 2022, 218, 106543. [Google Scholar] [CrossRef]
- Forster, J.C. Soil sampling, handling, storage and analysis. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: Pittsburgh, CA, USA, 1995; Part 3; pp. 49–121. [Google Scholar] [CrossRef]
- Zhao, J.S.; Chen, S.; Hui, R.G.; Li, Y.Y. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil Tillage Res. 2017, 167, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Elliott, E.T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Lu, J.; Zheng, F.L.; Li, G.F.; Bian, F.; An, J. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the Mollisol region of Northeast China. Soil Tillage Res. 2016, 161, 79–85. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Shang-Guan, Z.P.; Deng, L. Soil aggregate stability and aggregate-associated carbon and nitrogen in natural restoration grassland and Chinese red pine plantation on the Loess Plateau. Catena 2017, 149, 253–260. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Zhao, J.S.; Shi, Z.H.; Wang, L. Soil aggregates are key factors that regulate erosion-related carbon loss in citrus orchards of southern China: Bare land vs. grass-covered land. Agric. Ecosyst. Environ. 2021, 309, 107254. [Google Scholar] [CrossRef]
- Tagar, A.A.; Adamowski, J.; Memon, M.S.; Do, M.C.; Mashori, A.S.; Soomro, A.S.; Bhayo, W.A. Soil fragmentation and aggregate stability as affected by conventional tillage implements and relations with fractal dimensions. Soil Tillage Res. 2020, 197, 104494. [Google Scholar] [CrossRef]
- Wei, Y.J.; Cai, C.F.; Guo, Z.L.; Wang, J.G. Linkage between aggregate stability of granitic soils and the permanent gully erosion in subtropical China. Soil Tillage Res. 2022, 221, 105411. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Zhang, K.L.; Shu, A.P.; Xu, X.L.; Yang, Q.K.; Yu, B. Soil erodibility and its estimation for agricultural soils in China. J. Arid Environ. 2008, 72, 1002–1011. [Google Scholar] [CrossRef]
- Lefroy, R.D.B.; Blair, G.; Strong, W.M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant Soil 1993, 155–156, 399–402. [Google Scholar] [CrossRef]
- Xu, M.; Lou, Y.; Sun, X.; Wang, W.; Baniyamuddin, M.; Zhao, K. Soil organic carbon active fractions as early indicators for total carbon change under straw incorporation. Biol. Fert. Soils 2011, 47, 745–752. [Google Scholar] [CrossRef]
- Yang, X.; Drury, C.F.; Wander, M.M. A wide view of no-tillage practices and soil organic carbon sequestration. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2013, 63, 523–530. [Google Scholar] [CrossRef]
- Murphy, R.P.; Montes-Molina, J.A.; Govaerts, B.; Six, J.; Kessel, C.; Fonte, S.J. Crop residue retention enhances soil properties and nitrogen cycling in smallholder maize systems of Chiapas, Mexico. Appl. Soil Ecol. 2016, 103, 110–116. [Google Scholar] [CrossRef]
- Blair, G.; Lefroy, R.; Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Li, Y.; Mo, Y.Q.; Are, K.S.; Huang, Z.G.; Guo, H.; Tang, C.; Abegunrin, T.P.; Qin, Z.H.; Kang, Z.W.; Wang, X. Sugarcane planting patterns control ephemeral gully erosion and associated nutrient losses: Evidence from hillslope observation. Agric. Ecosys. Environ. 2021, 309, 107289. [Google Scholar] [CrossRef]
- Vieira, F.C.B.; Bayer, C.; Zanatta, J.A.; Dieckow, J.; Mielniczuk, J.; He, Z.L. Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. Soil Tillage Res. 2007, 96, 195–204. [Google Scholar] [CrossRef]
- Wang, W.; Lai, D.Y.F.; Wang, C.; Pan, T.; Zeng, C. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil Tillage Res. 2015, 152, 8–16. [Google Scholar] [CrossRef]
- Doetterl, S.; Six, J.; Van-Wesemael, B.; Van-Oost, K. Carbon cycling in eroding landscapes: Geomorphic controls on soil organic C pool composition and C stabilization. Glob. Chang. Biol. 2012, 18, 2218–2232. [Google Scholar] [CrossRef]
- Van Oostt, K.; Quineg, T.A.; Goverss, G.; De Gryzej, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; Mccarty, G.W.; Heckrath, G.; Kosmas, C.; et al. The impact of agricultural soil erosion on the global carbon cycle. Science 2007, 318, 626–629. [Google Scholar] [CrossRef]
- Deng, Y.S.; Cai, C.F.; Xia, D.; Ding, S.W.; Chen, J.Z.; Wang, T.W. Soil atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of Southern China. Solid Earth 2017, 8, 499–513. [Google Scholar] [CrossRef] [Green Version]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Quine, T.A.; Yu, H.Q.; Govers, G.; Six, J.; Gong, D.Z.; Van-Oost, K. Sustained high magnitude erosional forcing generates an organic carbon sink: Test and implications in the Loess Plateau, China. Earth Planet. Sci. Lett. 2015, 411, 281–289. [Google Scholar] [CrossRef]
- Fink, J.R.; Inda, A.V.; Bavaresco, J.; Barrón, V.; Torrent, J.; Bayer, C. Phosphorus adsorption and desorption in undisturbed samples from subtropical soils under conventional tillage or no-tillage. J. Plant Nutr. Soil Sc. 2016, 179, 198–205. [Google Scholar] [CrossRef]
- Paradelo, R.; Van-Oort, F.; Chenu, C. Water-dispersible clay in bare fallow soils after 80 years of continuous fertilizer addition. Geoderma 2013, 200–201, 40–44. [Google Scholar] [CrossRef]
- Xue, B.; Huang, L.; Huang, Y.N.; Zhou, F.L.; Li, F.; Ali-Kubar, K.; Li, X.K.; Lu, J.W.; Zhu, J. Roles of soil organic carbon and iron oxides on aggregate formation and stability in two paddy soils. Soil Tillage Res. 2019, 187, 161–171. [Google Scholar] [CrossRef]
- Ghosh, B.N.; Meena, V.S.; Alam, N.M.; Dogra, P.; Bhattacharyya, R.; Sharma, N.K.; Mishra, P.K. Impact of conservation practices on soil aggregation and the carbon management index after seven years of maize-wheat cropping system in the Indian Himalayas. Agric. Ecosys. Environ. 2016, 216, 247–257. [Google Scholar] [CrossRef]
- Šimanskýa, V.; Juriga, M.; Jonczak, J.; Uzarowicz, Ł.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 342, 75–84. [Google Scholar] [CrossRef]
- Gong, W.; Yan, X.; Wang, J.; Hu, T.; Gong, Y. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in northern China. Geoderma 2009, 149, 318–324. [Google Scholar] [CrossRef]
Erosion Position | BD (g cm−3) | CP (%) | Clay (%) | Silt (%) | Sand (%) | SOC (g kg−1) | TN (g kg−1) | Fef (g kg−1) | Fea (g kg−1) |
---|---|---|---|---|---|---|---|---|---|
UC | 1.07 ± 0.10b | 36.0 ± 1.5c | 49.9 ± 0.50a | 9.38 ± 0.36c | 40.8 ± 0.39d | 26.2 ± 0.3a | 0.36 ± 0.01a | 56.4 ± 0.2a | 2.50 ± 0.08b |
CW | 0.99 ± 0.03c | 45.4 ± 5.0b | 11.5 ± 0.19c | 17.2 ± 0.6b | 71.3 ± 0.6c | 2.36 ± 0.06b | 0.06 ± 0.00b | 32.1 ± 1.03b | 6.14 ± 0.13a |
CD | 1.40 ± 0.05a | 38.5 ± 1.0b | 7.63 ± 0.15e | 6.67 ± 0.09d | 85.7 ± 0.2a | 1.69 ± 0.09c | 0.03 ± 0.01c | 29.2 ± 0.1c | 2.23 ± 0.03c |
SC | 1.36 ± 0.02a | 38.8 ± 0.1b | 9.15 ± 0.22d | 9.09 ± 0.51c | 81.8 ± 0.3b | 1.26 ± 0.03d | 0.02 ± 0.00c | 28.7 ± 0.1d | 2.74 ± 0.07b |
AF | 1.03 ± 0.00c | 62.9 ± 0.7a | 21.3 ± 0.2b | 54.5 ± 0.5a | 24.3 ± 0.6e | 1.67 ± 0.04c | 0.03 ± 0.00c | 23.9 ± 0.1e | 1.08 ± 0.04d |
Variables | BD | CP | Sand | Silt | Clay | TN | Fef | Fea |
---|---|---|---|---|---|---|---|---|
MWD | 0.441 | −0.948 ** | 0.730 ** | −0.989 ** | 0.008 | 0.308 | 0.470 | 0.396 |
GMD | 0.465 | −0.969 ** | 0.682 ** | −0.984 ** | 0.075 | 0.362 | 0.509 | 0.265 |
WSA | 0.440 | −0.944 ** | 0.739 ** | −0.993 ** | −0.001 | 0.307 | 0.473 | 0.444 |
K | −0.386 | 0.921 ** | −0.756 ** | 0.980 ** | 0.044 | −0.270 | −0.443 | −0.546 * |
St | −0.169 | −0.543 | −0.245 | −0.441 | 0.878 ** | 0.977 ** | 0.985 ** | −0.058 |
SOC | −0.297 | −0.406 | −0.416 | −0.276 | 0.953 ** | 0.996 ** | 0.975 ** | −0.101 |
LLOC | −0.376 | −0.369 | −0.447 | −0.217 | 0.933 ** | 0.951 ** | 0.921 ** | −0.134 |
MLOC | −0.286 | −0.362 | −0.441 | −0.239 | 0.948 ** | 0.986 ** | 0.957 ** | −0.115 |
HLOC | −0.361 | −0.402 | −0.424 | −0.261 | 0.946 ** | 0.987 ** | 0.964 ** | −0.075 |
NLOC | −0.287 | −0.407 | −0.411 | −0.280 | 0.950 ** | 0.996 ** | 0.976 ** | −0.098 |
Labile-C | −0.498 | 0.697 * | −0.726 ** | 0.832 ** | 0.166 | −0.105 | −0.243 | −0.268 |
Passive-C | 0.498 | −0.697 * | 0.726 ** | −0.832 ** | −0.166 | 0.105 | 0.243 | 0.268 |
CPI | −0.297 | −0.405 | −0.417 | −0.276 | 0.953 ** | 0.996 ** | 0.975 ** | −0.102 |
L | −0.082 | 0.562 | −0.430 | 0.711 ** | −0.151 | −0.392 | −0.507 | −0.393 |
LI | −0.058 | 0.542 | −0.434 | 0.701 ** | −0.132 | −0.370 | −0.484 | −0.401 |
CPMI | −0.381 | −0.359 | −0.453 | −0.205 | 0.929 ** | 0.943 ** | 0.910 ** | −0.141 |
Variables | Explains (%) | Pseudo-F | p |
---|---|---|---|
Silt | 82.3 | 60.4 | 0.002 |
SOC | 16.1 | 122.0 | 0.002 |
Fea | 0.80 | 10.0 | 0.002 |
Clay | 0.20 | 2.70 | 0.080 |
Fef | <0.1 | 1.30 | 0.242 |
BD | <0.1 | 0.80 | 0.432 |
MLOC | <0.1 | 0.40 | 0.650 |
HLOC | <0.1 | 0.50 | 0.584 |
CP | <0.1 | 0.60 | 0.502 |
Labile-C | <0.1 | 0.20 | 0.808 |
L | 0.10 | 1.10 | 0.348 |
TN | 0.20 | 6.80 | 0.126 |
CPMI | <0.1 | 0.40 | 0.560 |
Statistic | Axis 1 | Axis 2 | |
Eigenvalues | 0.8474 | 0.1425 | |
Explained variation (cumulative) | 84.74 | 98.98 | |
Pseudo-canonical correlation | 0.9999 | 0.9999 | |
Explained fitted variation (cumulative) | 84.78 | 99.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Alhaj Hamoud, Y.; Shaghaleh, H.; Zhao, J.; Wang, H.; Wang, J.; Zhao, T.; Li, B.; Lu, Y. Responses of Soil Labile Organic Carbon on Aggregate Stability across Different Collapsing-Gully Erosion Positions from Acric Ferralsols of South China. Agronomy 2023, 13, 1869. https://doi.org/10.3390/agronomy13071869
Tang X, Alhaj Hamoud Y, Shaghaleh H, Zhao J, Wang H, Wang J, Zhao T, Li B, Lu Y. Responses of Soil Labile Organic Carbon on Aggregate Stability across Different Collapsing-Gully Erosion Positions from Acric Ferralsols of South China. Agronomy. 2023; 13(7):1869. https://doi.org/10.3390/agronomy13071869
Chicago/Turabian StyleTang, Xian, Yousef Alhaj Hamoud, Hiba Shaghaleh, Jianrong Zhao, Hong Wang, Jiajia Wang, Tao Zhao, Bo Li, and Ying Lu. 2023. "Responses of Soil Labile Organic Carbon on Aggregate Stability across Different Collapsing-Gully Erosion Positions from Acric Ferralsols of South China" Agronomy 13, no. 7: 1869. https://doi.org/10.3390/agronomy13071869
APA StyleTang, X., Alhaj Hamoud, Y., Shaghaleh, H., Zhao, J., Wang, H., Wang, J., Zhao, T., Li, B., & Lu, Y. (2023). Responses of Soil Labile Organic Carbon on Aggregate Stability across Different Collapsing-Gully Erosion Positions from Acric Ferralsols of South China. Agronomy, 13(7), 1869. https://doi.org/10.3390/agronomy13071869