Using Fluorescence Spectroscopy to Assess Compost Maturity Degree during Composting
Abstract
:1. Introduction
2. Methods and Materials
2.1. Composting and Sampling
2.2. Monitoring and Analyses
2.3. Seed Germination Test
2.4. Statistical Analysis
3. Results and Discussion
3.1. Moisture and Temperature of the Composts
3.2. Electrical Conductivity (EC) of the Compost Extracts
3.3. pH Values of the Composts
3.4. Carbon and Nitrogen in the Composts
3.5. Humic Acid (HA) and Fulvic Acid (FA) in the Composts
3.6. The Optical Indices during Composting
3.7. Germination Rate of the Composting Substances
3.8. Evaluation of Fluorescence Indices of Compost Maturity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marhuenda-Egea, F.C.; Martínez-Sabater, E.; Jordá, J.; Moral, R.; Bustamante, M.A.; Paredes, C.; Pérez-Murcia, M.D. Dissolved organic matter fractions formed during composting of winery and distillery residues: Evaluation of the process by fluorescence excitation-emission matrix. Chemosphere 2007, 68, 301–309. [Google Scholar] [CrossRef]
- Fuentes, M.; Baigorri, R.; Garcia-Mina, J.M. Maturation in composting process, an incipient humification-like step as multivariate statistical analysis of spectroscopic data shows. Environ. Res. 2020, 189, 109981. [Google Scholar] [CrossRef]
- Garcia, C.; Hernandez, T.; Costa, F.; Pascual, J.A. Phytotoxicity due to the agricultural use of urban wastes: Germination experiments. J. Sci. Food Agric. 1992, 59, 313–319. [Google Scholar] [CrossRef]
- Miikki, V.; Senesi, N.; Hanninen, K. Characterization of humic material formed by composting of domestic and industrial biowastes. Part 2. Spectroscopic evaluation of humic acid structures. Chemosphere 1997, 34, 1639–1651. [Google Scholar] [CrossRef]
- Li, P.; Liu, J.; Jiang, C.; Wu, M.; Liu, M.; Li, Z. Distinct successions of common and rare bacteria in soil under humic acid amendment—A microcosm study. Front. Microbiol. 2019, 10, 2271. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, F. Solid Waste Composting and Organic Compound Fertilizer Production (Revised Edition); Chemical Industry Press: Beijing, China, 2005. [Google Scholar]
- Chai, X.; Zhang, H.; Zhao, Y. Principles and Techniques of Solid Waste Composting; Chemical Industry Press: Beijing, China, 2005. [Google Scholar]
- Bünemann, E.K.; Bongiorno, G.L.; Bai, Z.G.; Creamer, R.E.; Deyn, G.D.; Goede, R.D.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Jones, D.L.; Simfukwe, P.; Hill, P.W.; Mills, R.T.E.; Emmett, B.A. Evaluation of dissolved organic carbon as a soil quality indicator in national monitoring schemes. PLoS ONE 2014, 9, e90882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.P.; Martínez, C.E. The influence of tillage on dissolved organic matter dynamics in a Mid-Atlantic agroecosystem. Geoderma 2019, 344, 63–73. [Google Scholar] [CrossRef]
- Chefetz, B.; Hatcher, P.G.; Hadar, Y.; Chen, Y. Chemical and biological characterization of organic matter during composting of municipal solid waste. J. Environ. Qual. 1996, 25, 776–785. [Google Scholar] [CrossRef]
- Wei, Z.; Zhao, X.Y.; Zhu, C.W.; Xi, B.D.; Zhao, Y.; Yu, X. Assessment of humification degree of dissolved organic matter from different composts using fluorescence spectroscopy technology. Chemosphere 2014, 95, 261–267. [Google Scholar] [CrossRef]
- Nelson, A.J.; Sommers, L.E. Total carbon, organic carbon aand organic matter. In Method of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; Agronomy SSSA and ASA: Madison, WI, USA, 1982; Volume 9, pp. 539–579. [Google Scholar]
- Bremner, J.M. Nitrogen Total. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks, D.L., Ed.; SSSA Book Series 5; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1122. [Google Scholar]
- He, X.S.; Xi, B.D.; Wei, Z.M.; Guo, X.J.; Li, M.X.; An, D.; Liu, H.L. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere 2011, 82, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.R.; Butler, K.D.; Spencer, R.G.M.; Stedmon, C.A.; Boehme, J.R.; Aiken, G.R. Measurement of dissolved organic matter fluorescence in aquatic environments: An interlaboratory comparison. Environ. Sci. Technol. 2010, 44, 9405–9412. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Monedero, M.A.; Roig, A.; Paredes, C.; Bernal, M.P. Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour. Technol. 2001, 78, 301–308. [Google Scholar] [CrossRef]
- Zhou, S.Z.; Zhang, X.Y.; Liao, X.D.; Wu, Y.B.; Mi, J.D.; Wang, Y. Effect of Different Proportions of Three Microbial Agents on Ammonia Mitigation during the Composting of Layer Manure. Molecules 2019, 24, 2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Zhao, G.; Ye, W.S.; Liu, G. Effects of UV-irradiation on Cd2+ and Pb2+ binding to humic/fulvic acids: Methodological guidance to eliminating the interference of dissolved organic matter on SWASV detection of heavy metals in soil extracts. Environ. Technol. Innov. 2023, 31, 103232. [Google Scholar] [CrossRef]
- Iglesias Jiménez, E.; Pérez García, V. Determination of maturity indices for city refuse composts. Agric. Ecosyst. Environ. 1992, 38, 331–343. [Google Scholar] [CrossRef]
- Raj, D.; Antil, R.S. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour. Technol. 2011, 102, 2868–2873. [Google Scholar] [CrossRef]
- Birdwell, J.E.; Engel, A.S. Characterization of Dissolved Organic Matter in Cave and Spring Waters Using UV–Vis Absorbance and Fluorescence Spectroscopy. Org. Geochem. 2010, 41, 270–280. [Google Scholar] [CrossRef]
- Parlanti, E.; Wörz, K.; Geoffroy, L.; Lamotte, M. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal Region submitted to anthropogenic inputs. Org. Geochem. 2000, 31, 1765–1781. [Google Scholar] [CrossRef]
- Burdige, D.J.; Kline, S.W.; Chen, W. Fluorescent Dissolved Organic Matter in Marine Sediment Pore Waters. Mar. Chem. 2004, 89, 289–311. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Shao, Z.H.; He, P.J.; Zhang, D.Q.; Shao, L.M. Characterization of water-extractable organic matter during the biostabilization of municipal solid waste. J. Hazard. Mater. 2009, 164, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Ye, W.S.; Zhao, G.; Liu, G. Release of free-state ions from fulvic acid-heavy metal complexes via VUV/H2O2 photolysis: Photodegradation of fulvic acids and recovery of Cd2+ and Pb2+ stripping voltammetry currents. Environ. Pollut. 2022, 315, 120420. [Google Scholar] [CrossRef]
- Jouraiphy, A.; Amir, S.; Winterton, P.; Gharous, M.E.; Revel, J.C.; Hafidi, M. Structural study of the fulvic fraction during composting of activated sludge-plant matter: Elemental analysis, FTIR and 13C NMR. Bioresour. Technol. 2008, 99, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Amir, S.; Jouraiphy, A.; Meddich, A.; Gharous, M.E.; Winterton, P.; Hafidi, M. Structural study of humic acids during composting of activated sludge-green waste: Elemental analysis, FTIR and 13C NMR. J. Hazard. Mater. 2010, 177, 524–529. [Google Scholar] [CrossRef] [PubMed]
Major Constituents of Compost | Hog Manure Compost (HMC) | Chicken Manure Compost (CMC) | General Compost (GC) |
---|---|---|---|
Hog manure | 50% | - | - |
Chicken manure | - | 50% | - |
Mushroom waste | 50% | - | - |
Sawdust | - | 50% | - |
Corncob | - | - | 90% |
Rice bran | - | - | 5% |
Coconut fiber | - | - | 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-T.; Lee, C.-H.; Hsieh, C.-Y.; Chen, T.-C.; Jien, S.-H. Using Fluorescence Spectroscopy to Assess Compost Maturity Degree during Composting. Agronomy 2023, 13, 1870. https://doi.org/10.3390/agronomy13071870
Chang Y-T, Lee C-H, Hsieh C-Y, Chen T-C, Jien S-H. Using Fluorescence Spectroscopy to Assess Compost Maturity Degree during Composting. Agronomy. 2023; 13(7):1870. https://doi.org/10.3390/agronomy13071870
Chicago/Turabian StyleChang, Yao-Tsung, Chia-Hsing Lee, Chi-Ying Hsieh, Ting-Chien Chen, and Shih-Hao Jien. 2023. "Using Fluorescence Spectroscopy to Assess Compost Maturity Degree during Composting" Agronomy 13, no. 7: 1870. https://doi.org/10.3390/agronomy13071870
APA StyleChang, Y. -T., Lee, C. -H., Hsieh, C. -Y., Chen, T. -C., & Jien, S. -H. (2023). Using Fluorescence Spectroscopy to Assess Compost Maturity Degree during Composting. Agronomy, 13(7), 1870. https://doi.org/10.3390/agronomy13071870