Regional Monitoring of Leaf ChlorophyII Content of Summer Maize by Integrating Multi-Source Remote Sensing Data
Abstract
:1. Introduction
2. Data Sets and Methodology
2.1. Study Area
2.2. Data Acquisition
2.3. Remote Sensing Feature Selection
2.4. Selection of Machine Learning Methods
3. Results
3.1. Correlation Analysis between UAV Remote Sensing Features (RSF) and LCC
3.2. Optimal Model of UAV Multi-Spectral LCC Inversion
3.3. Correlation Analysis between RSFs of Sentinel-2 and LCC
3.4. Sentinel-2 LCC Inversion Optimal Model
3.5. Regional LCC Inversion Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, N.; Bélec, C. Adapting Nitrogen Fertilization to Unpredictable Seasonal Conditions with the Least Impact on the Environment. Horttechnology 2006, 16, 408–412. [Google Scholar] [CrossRef] [Green Version]
- Schröder, J.J.; Neeteson, J.J.; Oenema, O.; Struik, P.C. Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crop. Res. 2000, 66, 151–164. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Kitchen, N.R.; Raun, W.R.; Schepers, J.S. Responsive in-season nitrogen management for cereals. Comput. Electron. Agric. 2008, 61, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011, 3, 307. [Google Scholar] [CrossRef] [Green Version]
- Michez, A.; Bauwens, S.; Brostaux, Y.; Hiel, M.-P.; Garré, S.; Lejeune, P.; Dumont, B. How Far Can Consumer-Grade UAV RGB Imagery Describe Crop Production? A 3D and Multitemporal Modeling Approach Applied to Zea mays. Remote Sens. 2018, 10, 1798. [Google Scholar] [CrossRef] [Green Version]
- Longchamps, L.; Khosla, R. Precision maize cultivation techniques. In Burleigh Dodds Series in Agricultural Science; CGIAR Maize Research Program Manager, C.M., Watson, D., Eds.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2017; pp. 107–148. [Google Scholar]
- Tischler, Y.K.; Thiessen, E.; Hartung, E. Early optical detection of infection with brown rust in winter wheat by Chlorophyll fluorescence excitation spectra. Comput. Electron. Agric. 2018, 146, 77–85. [Google Scholar] [CrossRef]
- Pinardi, M.; Bresciani, M.; Villa, P.; Cazzaniga, I.; Laini, A.; Tóth, V.; Fadel, A.; Austoni, M.; Lami, A.; Giardino, C. Spatial and temporal dynamics of primary producers in shallow lakes as seen from space: Intra-annual observations from Sentinel-2A. Limnologica 2018, 72, 32–43. [Google Scholar] [CrossRef]
- Dou, Z.; Cui, L.; Li, J.; Zhu, Y.; Gao, C.; Pan, X.; Lei, Y.; Zhang, M.; Zhao, X.; Li, W. Hyperspectral Estimation of the Chlorophyll Content in Short-Term and Long-Term Restorations of Mangrove in Quanzhou Bay Estuary, China. Sustainability 2018, 10, 1127. [Google Scholar] [CrossRef] [Green Version]
- Reyes, J.F.; Correa, C.; Zúñiga, J. Reliability of different color spaces to estimate nitrogen SPAD values in maize. Comput. Electron. Agric. 2017, 143, 14–22. [Google Scholar] [CrossRef]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K. Evaluating the relationship between leaf Chlorophyll concentration and SPAD-502 Chlorophyll meter readings. Photosynth Res. 2007, 91, 37–46. [Google Scholar] [CrossRef]
- Li, J.; Feng, Y.; Mou, J.; Xu, G.; Luo, Q.; Luo, K.; Huang, S.; Shi, X.; Guan, Z.; Ye, Y.; et al. Construction and Application Effect of the Leaf Value Model Based on SPAD Value in Rice. Sci. Agric. Sin. 2017, 50, 4714–4724. [Google Scholar]
- Shi, X.; Cai, H. Estimation of nitrogen nutrition index of greenhouse tomato under different water and nitrogen fertilizer treatments based on leaf SPAD. Trans. Chin. Soc. Agric. Eng. 2018, 34, 116–126. [Google Scholar]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yang, Y.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Verhoef, W.; van der Tol, C.; Middleton, E.M. Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX—Sentinel3 tandem mission multi-sensor data. Remote Sens. Environ. 2018, 204, 942–963. [Google Scholar] [CrossRef]
- Walker, D.A.; Dani¨els, F.J.A.; Alsos, I.; Bhatt, U.S.; Breen, A.L.; Buchhorn, M.; Bültmann, H.; Druckenmiller, L.A.; Edwards, M.E.; Ehrich, D.; et al. Circumpolar Arctic vegetation: A hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data. Environ. Res. Lett. 2016, 11, 055005. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Riihimaki, H.; Luoto, M.; Heiskanen, J. Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data. Remote Sens. Environ. 2019, 224, 119–132. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Zhang, Y.; Simic, A.; Noland, T.L.; Nesbitt, N.; Arabian, J. Evaluating leaf Chlorophyll content prediction from multispectral remote sensing data within a physically-based modelling framework. Isprs J. Photogramm. Remote Sens. 2015, 102, 85–95. [Google Scholar] [CrossRef]
- Sun, J.; Shi, S.; Yang, J.; Chen, B.; Gong, W. Estimating leaf Chlorophyll status using hyperspectral lidar measurements by PROSPECT model inversion. Remote Sens. Environ. Interdiscip. J. 2018, 212, 1–7. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Camacho, F. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sens. Environ. 2011, 115, 415–426. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Wang, X.; Ji, J.; Ma, H.; Cui, H.; Shi, Y.; Zhao, S. Synchronous Retrieval of LAI and Cab from UAV Remote Sensing: Development of Optimal Estimation Inversion Framework. Agronomy 2023, 13, 1119. [Google Scholar] [CrossRef]
- Tuia, D.; Verrelst, J.; Alonso, L.; Perez-Cruz, F.; Camps-Valls, G. Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation. IEEE Geosci. Remote Sens. Lett. 2011, 8, 804–808. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Gitelson, A.; Delegido, J.; Moreno, J.; Camps-Valls, G. Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 554–567. [Google Scholar] [CrossRef]
- Yang, L.; Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Zhang, X. A Robust Algorithm for Estimating Surface Fractional Vegetation Cover from Landsat Data. Remote Sens. 2017, 9, 857. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; Mccabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef] [Green Version]
- Kumar, C.; Mubvumba, P.; Huang, Y.; Dhillon, J.; Reddy, K. Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models. Agronomy 2023, 13, 1277. [Google Scholar] [CrossRef]
- Zhang, S.M.; Zhao, G.X.; Lang, K.; Su, B.W.; Chen, X.N.; Xi, X.; Zhang, H.B. Integrated Satellite, Unmanned Aerial Vehicle (UAV) and Ground Inversion of the SPAD of Winter Wheat in the Reviving Stage. Sensors 2019, 19, 1485. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Niu, B.B.; Li, X.J.; Min, X.Y. Unmanned aerial vehicle (UAV) remote sensing estimation of wheat Chlorophyll in subsidence area of coal mine with high phreatic level. Earth Sci. Inform. 2021, 14, 2171–2181. [Google Scholar] [CrossRef]
- Lou, P.; Fu, B.; He, H.; Chen, J.; Wu, T.H.; Lin, X.C.; Liu, L.L.; Fan, D.L.; Deng, T.D. An Effective Method for Canopy Chlorophyll Content Estimation of Marsh Vegetation Based on Multi-scale Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 99, 1. [Google Scholar]
- Zhou, X.; Zhang, J.; Chen, D.; Huang, Y.; Kong, W.; Yuan, L.; Ye, H.; Huang, W. Assessment of Leaf Chlorophyll Content Models for Winter Wheat Using Landsat-8 Multispectral Remote Sensing Data. Remote Sens. 2020, 12, 2574. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel-2 and Deep Learning. In Proceedings of the IGARSS 2021–2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 1–16 July 2021. [Google Scholar]
- Liu, M.; Feng, R.; Ji, R.; Wu, J.; Wang, H.; Yu, W. Estimation of Leaf Area Index and Above-Ground Biomass of Spring Maize based on MODIS-NDVI. Chin. Agric. Sci. Bull. 2015, 31, 80–87. [Google Scholar]
- Wang, Z.; Liu, C. HUETE, A Research Progress of Vegetation Index: From AVHRR-NDVI to MODIS-EVI. J. Ecol. 2003, 23, 979–987. [Google Scholar]
- Guo, N. Vegetation Index and its Research Progress. Drought Meteorol. 2003, 21, 71–75. [Google Scholar]
- Jia, X.; Feng, M.; Yang, W.; Wang, C. Hyperspectral Estimation of Above Ground Biomass of Winter Wheat based on Multi-Vegetation Index Combination. J. Ecol. 2018, 37, 424–429. [Google Scholar]
- Liu, T.; Huan, Z.; Wang, Z.; He, C.; Zhang, Q.; Jiao, Y. Estimation of Leaf Area Index and Chlorophyll Content of Winter Wheat by Multi-spectrum of Unmanned Aerial Vehicle. J. Agric. Eng. 2021, 37, 65–72. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learnming in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Drucker, H. Improving Regressors Using Boosting Techniques; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1997. [Google Scholar]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Leo, B. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar]
- National Bureau of Statistics Henan Survey Corps. Henan Survey Yearbook 2022; China Statistics Publishing House: Beijing, China, 2022.
- Wu, Q.; Zhang, Y.; Zhao, Z.; Xie, M.; Hou, D. Estimation of Relative Chlorophyll Content in Spring Wheat Based on Multi-Temporal UAV Remote Sensing. Agronomy 2023, 13, 211. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, F.; Xiao, X.; Hu, L.; Wang, X.; Yan, Y.; Zhang, S.; Tian, B.; Yu, H.; Lan, Y. Summer Maize Growth Estimation Based on Near-Surface Multi-Source Data. Agronomy 2023, 13, 532. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, S.; Jia, X.; Qi, L.; Liu, S.; Lu, H.; Wang, C.; Liu, W.; Zhao, X.; He, L.; et al. Estimating Relative Chlorophyll Content in Rice Leaves Using Unmanned Aerial Vehicle Multi-Spectral Images and Spectral–Textural Analysis. Agronomy 2023, 13, 1541. [Google Scholar] [CrossRef]
- Ban, S.; Liu, W.; Tian, M.; Wang, Q.; Yuan, T.; Chang, Q.; Li, L. Rice Leaf Chlorophyll Content Estimation Using UAV-Based Spectral Images in Different Regions. Agronomy 2022, 12, 2832. [Google Scholar] [CrossRef]
Vegetation Index | Formula | Reference |
---|---|---|
Difference Environmental Vegetation Index (DVI) | DVI = NIR − R | [35] |
Enhanced Vegetation Index (EVI) | 2.5 × (NIR − RED)/(NIR + 6.0 × RED − 7.5 × BLUE + 1) | [36] |
Green Passage Vegetation Index (GNDVI) | (NIR − Green)/(NIR+ Green) | [35] |
Green ChlorophyII Index (GCI) | NIR/GREEN − 1 | [37] |
Modified Normalized Vegetation Index (MNLI) | (1.5 × (NIR2 − Red))/(NIR2 + Red + 0.5) | [38] |
Modified Soil-Adjusted Vegetation Index (MSAVI) | 0.5 × [2 × NIR + 1 − ((2 × NIR + 1)2 − 8 × (NIR − R))0.5] | [39] |
Modified Simple Ratio (MSR) | (NIR/Red − 1)/(NIR/Red)0.5 + 1) | [38] |
Modified Triangular Vegetation Index (MTVI) | 1.5 × [1.2 × (NIR − GREEN) − 2.5(RED − GREEN)]/{[(2 × NIR + 1)2 − (6 × NIR − 5 × RED0.5)]0.5 − 0.5} | [37] |
Normalized Difference Vegetation Index (NDVI) | NDVI = (NIR − R)/(NIR + R) | [39] |
Nonlinear Vegetation Index (NLI) | (NIR2 − Red)/(NIR2 + Red) | [35] |
Optimizing Soil to Regulate Vegetation Index (OSAVI) | (NIR − Red)/(NIR + Red + 0.16) | [35] |
Renormalized Vegetation Index (RDVI) | (NIR − Red)/(NIR + Red)0.5 | [35] |
Red-Edge ChlorophyII Index (RECI) | NIR/RE − 1 | [37] |
Ratio Vegetation Index (RVI) | RVI = NIR/R | [35] |
Soil-Regulated Vegetation Index (SAVI) | SAVI = ((NIR − R)/(NIR + R + L))(1 + L) | [36] |
RSF | 10 Pixels | 20 Pixels | 30 Pixels | RSF | 10 Pixels | 20 Pixels | 30 Pixels |
---|---|---|---|---|---|---|---|
Blue | −0.5747 ** | −0.6138 ** | −0.6184 ** | MSAVI | −0.2962 * | −0.3895 ** | −0.4318 ** |
Green | −0.8462 ** | −0.8605 ** | −0.8629 ** | MSR | −0.0075 | −0.0147 | −0.0427 |
Red | −0.4026 ** | −0.4377 ** | −0.4324 ** | MTVI | −0.3160 ** | −0.4051 ** | −0.4431 ** |
NIR | −0.4742 ** | −0.5839 ** | −0.6240 ** | NDVI | 0.1342 | 0.1287 | 0.1069 |
Red-edge | −0.8710 ** | −0.8832 ** | −0.8845 ** | NLI | −0.0232 | −0.0788 | −0.1110 |
DVI | −0.4188 ** | −0.5256 ** | −0.5668 ** | OSAVI | −0.1703 | −0.2534 * | −0.2892 * |
EVI | −0.3615 ** | −0.4074 ** | −0.4985 ** | RDVI | −0.3067 ** | −0.4090 ** | −0.4486 ** |
GCI | 0.6444 ** | 0.6623 ** | 0.6624 ** | RECI | 0.7406 ** | 0.7597 ** | 0.7612 ** |
GNDVI | 0.6584 ** | 0.6911 ** | 0.6857 ** | RVI | −0.0582 | −0.0618 | −0.0900 |
MNLI | −0.3754 ** | −0.4758 ** | −0.5174 ** | SAVI | −0.3087 ** | −0.4131 ** | −0.4534 ** |
Regression Algorithm | Accuracy Factor | 10 Pixels | 20 Pixels | 30 Pixels | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Scheme 1 | Scheme 2 | Scheme 3 | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 1 | Scheme 2 | Scheme 3 | ||
AB | Training R | 0.9738 | 0.9691 | 0.9678 | 0.9783 | 0.9790 | 0.9822 | 0.9778 | 0.9784 | 0.9816 |
Training RMSE | 1.6743 | 1.7960 | 1.8371 | 1.5148 | 1.5040 | 1.4073 | 1.5292 | 1.5144 | 1.4324 | |
Test R | 0.8723 | 0.8812 | 0.8901 | 0.9487 | 0.9356 | 0.8925 | 0.9519 | 0.9387 | 0.9180 | |
Test RMSE | 4.2625 | 4.1582 | 3.5127 | 3.0385 | 3.1298 | 3.4663 | 2.7920 | 3.0617 | 3.0771 | |
ET | Training R | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Training RMSE | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
Test R | 0.9126 | 0.9022 | 0.8733 | 0.9265 | 0.9419 | 0.9015 | 0.9323 | 0.9316 | 0.9118 | |
Test RMSE | 3.6804 | 3.8452 | 3.7336 | 3.3194 | 3.0968 | 3.3948 | 3.1503 | 3.1986 | 3.1842 | |
GB | Training R | 0.9997 | 0.9997 | 0.9995 | 0.9995 | 0.9996 | 0.9997 | 0.9995 | 0.9995 | 0.9996 |
Training RMSE | 0.1897 | 0.1897 | 0.2468 | 0.2286 | 0.2024 | 0.1884 | 0.2385 | 0.2379 | 0.2209 | |
Test R | 0.9145 | 0.9095 | 0.9140 | 0.9220 | 0.9183 | 0.8796 | 0.9370 | 0.9321 | 0.9017 | |
Test RMSE | 3.7272 | 3.7791 | 3.3886 | 3.2881 | 3.4188 | 3.7249 | 3.0342 | 3.0801 | 3.2882 | |
RF | Training R | 0.9200 | 0.9199 | 0.9130 | 0.9301 | 0.9301 | 0.9365 | 0.9305 | 0.9308 | 0.9359 |
Training RMSE | 2.8651 | 2.8689 | 2.9984 | 2.6893 | 2.6868 | 2.6029 | 2.6838 | 2.6762 | 2.6157 | |
Test R | 0.9158 | 0.9186 | 0.8945 | 0.9403 | 0.9400 | 0.9018 | 0.9442 | 0.9464 | 0.9091 | |
Test RMSE | 3.7898 | 3.7503 | 3.5754 | 3.0764 | 3.0821 | 3.2973 | 3.0700 | 3.0139 | 3.2076 |
RS Features | R | RS Features | R | RS Features | R | RS Features | R |
---|---|---|---|---|---|---|---|
B01 | −0.1321 ** | B08 | −0.0283 ** | GCI | 0.2548 ** | NLI | 0.1752 ** |
B02 | −0.2719 ** | B8A | −0.0283 ** | GNDVI | 0.2465 ** | OSAVI | 0.2333 ** |
B03 | −0.4577 ** | B09 | −0.0085 | MNLI | 0.1538 ** | RDVI | 0.1915 ** |
B04 | −0.4155 ** | B11 | −0.1881 ** | MSAVI | 0.1933 ** | RECI05 | 0.2447 ** |
B05 | −0.4292 ** | B12 | −0.1288 ** | MSR | 0.2611 ** | RECI06 | 0.1959 ** |
B06 | −0.1795 ** | DVI | 0.1293 ** | MTVI | 0.2032 ** | RVI | 0.2574 ** |
B07 | −0.0307 ** | EVI | 0.1964 ** | NDVI | 0.2635 ** | SAVI | 0.1993 ** |
Regression Algorithm | Accuracy Factor | Scheme 1 | Scheme 2 | Regression Algorithm | Accuracy Factor | Scheme 1 | Scheme 2 |
---|---|---|---|---|---|---|---|
AB | Training R | 0.5484 | 0.5401 | GB | Training R | 0.7738 | 0.7536 |
TrainingRMSE | 2.5960 | 2.1726 | TrainingRMSE | 1.5383 | 1.5907 | ||
Test R | 0.5214 | 0.5228 | Test R | 0.6731 | 0.6445 | ||
Test RMSE | 2.6145 | 2.2452 | Test RMSE | 1.8413 | 1.8964 | ||
ET | Training R | 1.0000 | 1.0000 | RF | Training R | 0.5401 | 0.5386 |
Training MSE | 0.0000 | 0.0000 | Training MSE | 2.0217 | 2.0231 | ||
Test R | 0.7213 | 0.6704 | Test R | 0.5575 | 0.5572 | ||
Test RMSE | 1.7198 | 1.8397 | Test RMSE | 2.0804 | 2.0804 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Cheng, L.; Wu, D.; Wei, Q.; Zhu, L. Regional Monitoring of Leaf ChlorophyII Content of Summer Maize by Integrating Multi-Source Remote Sensing Data. Agronomy 2023, 13, 2040. https://doi.org/10.3390/agronomy13082040
Tian H, Cheng L, Wu D, Wei Q, Zhu L. Regional Monitoring of Leaf ChlorophyII Content of Summer Maize by Integrating Multi-Source Remote Sensing Data. Agronomy. 2023; 13(8):2040. https://doi.org/10.3390/agronomy13082040
Chicago/Turabian StyleTian, Hongwei, Lin Cheng, Dongli Wu, Qingwei Wei, and Liming Zhu. 2023. "Regional Monitoring of Leaf ChlorophyII Content of Summer Maize by Integrating Multi-Source Remote Sensing Data" Agronomy 13, no. 8: 2040. https://doi.org/10.3390/agronomy13082040
APA StyleTian, H., Cheng, L., Wu, D., Wei, Q., & Zhu, L. (2023). Regional Monitoring of Leaf ChlorophyII Content of Summer Maize by Integrating Multi-Source Remote Sensing Data. Agronomy, 13(8), 2040. https://doi.org/10.3390/agronomy13082040