Quantitative Trait Locus (QTL) Mapping for Common Wheat Plant Heights Based on Unmanned Aerial Vehicle Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials and Design
2.2. Image and Ground Data Acquisition
2.3. Plant Height Data Extraction
2.4. Plant Height Data Modeling
2.5. QTL Mapping
2.6. Candidate Genes
3. Results
3.1. Phenotypic Evaluation
3.2. Plant Height Model Analysis
3.3. QTL Mapping for Plant Height
3.4. Candidate Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DOM | Digital orthophoto map |
DSM | Digital surface model |
GCP | Ground control points |
hB2 | Broad-sense heritability |
ICIM-ADD | Inclusive composite interval mapping |
LOD | Logarithm of odds |
PH | Plant height |
POS | Position and orientation system |
PVE | Phenotypic variance explained |
QTL | Quantitative trait loci |
RIL | Recombinant inbred line |
SNP | Single nucleotide polymorphism |
UAV | Unmanned aerial vehicle |
References
- Ma, F.F.; Xu, Y.F.; Wang, R.F.; Tong, Y.P.; Zhang, A.M.; Liu, D.C.; An, D.G. Identification of major QTLs for yield-related traits with improved genetic map in wheat. Front. Plant Sci. 2023, 14, 1138696. [Google Scholar] [CrossRef]
- Edae, E.A.; Byrne, P.F.; Haley, S.D.; Lopes, M.S.; Reynolds, M.P. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor. Appl. Genet. 2014, 127, 791–807. [Google Scholar] [CrossRef]
- Yang, Y.H.; Zhang, J.Q.; Wu, K.G.; Zhang, X.X.; Sun, J.; Peng, S.B.; Li, J.; Wang, M.T. 3D Point Cloud on Semantic Information for Wheat Reconstruction. Agriculture 2021, 11, 450. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Jang, G.; Kim, D.W.; WonPyo, P.; HakJin, K.; Chung, Y.S. Heterogeneity Assessment of Kenaf Breeding Field through Spatial Dependence Analysis on Crop Growth Status Map Derived by Unmanned Aerial Vehicle. Plants 2023, 12, 1638. [Google Scholar] [CrossRef]
- Yang, G.J.; Liu, J.G.; Zhao, C.J.; Li, Z.H.; Huang, Y.B.; Yu, H.Y.; Xu, B. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Y.X.; Zhang, L.Y.; Han, W.T.; Shao, G.M. Fractional vegetation cover extraction method of winter wheat based on UAV remote sensing and vegetation index. Trans. Chin. Soc. Agric. Mach. 2018, 49, 212–221. [Google Scholar]
- Jin, X.L.; Zarco-Tejada, P.J.; Schmidhalter, U.; Reynolds, M.P.; Hawkesford, M.J.; Varshney, R.K.; Yang, T.; Nie, C.W.; Li, Z.H.; Ming, B.; et al. High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geosci. Remote Sens. Mag. 2020, 9, 200–231. [Google Scholar] [CrossRef]
- Chen, Z.X.; Ren, J.Q.; Tang, H.J.; Tang, H.J.; Shi, Y.; Leng, P.; Liu, J.; Wang, L.M.; Wu, W.B.; Yao, Y.M. Progress and perspectives on agricultural remote sensing research and applications in China. J. Remote Sens. 2016, 20, 748–767. [Google Scholar]
- Watanabe, K.; Guo, W.; Arai, K.; Takanashi, H.; Kajiya-Kanegae, H.; Kobayashi, M.; Yano, K.; Tokunaga, T.; Fujiwara, T.; Tsutsumi, N.; et al. High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Front. Plant Sci. 2017, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Law, C.N.; Snape, J.W.; Worland, A.J. The genetical relationship between height and yield in wheat. Heredity 1978, 40, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.K.; Guo, W.S.; Li, C.Y.; Feng, C.N.; Peng, Y.X. Relationship of plant height component indexes with grain yield and quality in wheat. J. Triticeae Crops 2009, 29, 1034–1038. [Google Scholar]
- Lu, Y.; Xing, L.P.; Xing, S.J.; Hu, P.; Cui, C.F.; Zhang, M.Y.; Xiao, J.; Wang, H.Y.; Zhang, R.Q.; Wang, X.E.; et al. Characterization of a putative new semi-dominant reduced height gene, Rht_NM9, in wheat (Triticum aestivum L.). J. Genet. Genom. 2015, 42, 685–698. [Google Scholar] [CrossRef]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.L.; Benoît, M.; Cao, Z.; Paul, K.; Guo, L.F.; Yao, H.X.; Cheng, Q. Improving wheat yield prediction accuracy using LSTM-RF framework based on uav thermal infrared and multispectral imagery. Agriculture 2022, 12, 892. [Google Scholar] [CrossRef]
- Wang, P.; Luo, X.W.; Zhou, Z.Y.; Zang, Y.; Hu, L. Key technology for remote sensing information acquisition based on micro UAV. Trans. Chin. Soc. Agric. Eng. 2014, 30, 1–12. [Google Scholar]
- Du, M.M.; Noguchi, N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s within-Field Spatial Variations Using Color Images Acquired from UAV-camera System. J. Remote Sens. 2017, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.J.; Li, C.C.; Yu, H.Y.; Xu, B.; Feng, H.K.; Gao, L.; Zhu, D.M. UAV based multi-load remote sensing technologies for wheat breeding information acquirement. Trans. Chin. Soc. Agric. Eng. 2015, 31, 184–190. [Google Scholar]
- Salah, E.H.; Nasser, A.S.; Salah, E.; Yahya, R.; Majed, A.; Hassan, D.Y.; Wael, H. Combining biophysical parameters, spectral indices and multivariate hyperspectral models for estimating yield and water productivity of spring wheat across different agronomic practices. PLoS ONE 2019, 14, e0225294. [Google Scholar]
- Wang, W.; Gao, X.; Cheng, Y.; Ren, Y.; Zhang, Z.; Wang, R.; Cao, J.; Geng, H. QTL Mapping of Leaf Area Index and Chlorophyll Content Based on UAV Remote Sensing in Wheat. Agriculture 2022, 12, 595. [Google Scholar] [CrossRef]
- Forsmoo, J.; Anderson, K.; Macleod, C.A.; Wilkinson, M.E.; Brazier, R. Drone-based structure-from-motion photogrammetry captures grassland sward height variability. Appl. Ecol. 2018, 55, 2587–2599. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.J.; Fu, L.P.; Rasheed, A.; Zheng, B.Y.; Xia, X.C.; Xiao, Y.G.; He, Z.H. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Plant Methods 2019, 15, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Q.L.; Feng, H.K.; Yang, G.J.; Li, C.C.; Yang, H.; Xu, B.; Zhao, Y.X. Monitoring plant height and leaf area index of maize breeding material based on UAV digital images. Trans. Chin. Soc. Agric. Eng. 2018, 34, 73–82. [Google Scholar]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Luo, S.Z.; Wang, C.; Pan, F.F.; Xi, X.H.; Li, G.C.; Nie, S.; Xia, S.B. Estimation of wetland vegetation height and leaf area index using airborne laser scanning data. Ecol. Indic. 2015, 48, 550–559. [Google Scholar] [CrossRef]
- Verhoeven, G. Taking computer vision aloft—Archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeol. Prospect. 2011, 18, 67–73. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. Using 3D point clouds derived from UAV RGB imagery to describe vineyard 3D macro- structure. Remote Sens. 2017, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.; Yang, M.J.; Rasheed, A.; Jin, X.L.; Xia, X.C.; Xiao, Y.G.; He, Z.H. Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sens. 2018, 10, 809. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Q.; Zhang, R.Y.; Song, W.; Han, L.; Liu, X.L.; Sun, X.; Luo, M.J.; Chen, K.; Zhang, Y.X.; Yang, H.; et al. Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV). Sci. Rep. 2019, 9, 3458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.H.; Wu, X.S.; Ren, Q.; Chang, X.P.; Li, R.Z.; Jing, R.L. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 2010, 174, 447–458. [Google Scholar] [CrossRef]
- Xu, Y.H.; Yang, Y.Z.; Wu, S.; Liu, D.C.; Ren, Y.Z. QTL Mapping for Root Traits and Their Effects on Nutrient Uptake and Yield Performance in Common Wheat (Triticum aestivum L.). Agriculture 2023, 13, 210. [Google Scholar] [CrossRef]
- Roncallo, P.F.; Akkiraju, P.C.; Cervigni, G.L.; Echenique, V.C. QTL mapping and analysis of epistatic interactions for grain yield and yield-related traits in Triticum turgidum L. var. durum. Euphytica 2017, 213, 277. [Google Scholar] [CrossRef]
- Liu, D.C.; Gao, M.Q.; Guan, R.X.; Li, R.Z.; Cao, S.H.; Guo, X.L.; Zhang, A.M. Mapping quantitative trait loci for plant height in wheat (Triticum aestivum L.) using a F2:3 population. Acta Genet. Sin. 2002, 29, 706–711. [Google Scholar] [PubMed]
- Börner, A.; Schumann, E.; Fürste, A.; Cöster, H.; Leithold, B.; Röder, S.; Weber, E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 2002, 105, 921–936. [Google Scholar] [CrossRef]
- Hasan, U.; Sawut, M.; Chen, S. Estimating the leaf area index of winter wheat based on unmanned aerial vehicle RGB-image parameters. Sustainability 2019, 11, 6829. [Google Scholar] [CrossRef] [Green Version]
- Panday, U.S.; Shrestha, N.; Maharjan, S.; Pratihast, A.K.; Shahnawaz; Shrestha, K.L.; Aryal, J. Correlating the plant height of wheat with above-ground biomass and crop yield using drone imagery and crop surface model, a case study from Nepal. Drones 2020, 4, 28. [Google Scholar] [CrossRef]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Yang, G.; Yang, X.; Fan, L. Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images. Sensors 2020, 20, 1231. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Li, R.; Zhu, B.; Liu, T.; Sun, C.; Guo, W. Estimation of wheat plant height and biomass by combining uav imagery and elevation data. Agriculture 2023, 13, 9. [Google Scholar] [CrossRef]
- Xie, C.; Yang, C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput. Electron. Agric. 2020, 178, 105731. [Google Scholar] [CrossRef]
- Feng, L.; Chen, S.; Zhang, C.; Zhang, Y.C.; He, Y. A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping. Comput. Electron. Agric. 2021, 182, 106033. [Google Scholar] [CrossRef]
- Li, T.; Deng, G.B.; Su, Y.; Yang, Z.; Tang, Y.Y.; Wang, J.H.; Qiu, X.B.; Pu, X.; Li, J.; Liu, Z.H.; et al. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor. Appl. Genet. 2021, 134, 3625–3641. [Google Scholar] [CrossRef]
- Chen, S.L.; Gao, R.H.; Wang, H.Y.; Wen, M.X.; Xiao, J.; Bian, N.F.; Zhang, R.Q.; Hu, W.J.; Cheng, S.H.; Bie, T.D.; et al. Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica 2015, 203, 583–594. [Google Scholar] [CrossRef]
- Shi, Y.; Ji, S.P.; Shao, X.W.; Tang, H.J.; Wu, W.B.; Yang, P.; Zhang, Y.J.; Ryosuke, S. Framework of SAGI agriculture remote sensing and its perspectives in supporting national food security. J. Integr. Agric. 2014, 13, 1443–1450. [Google Scholar] [CrossRef]
- Hu, P.C.; Chapman, S.C.; Wang, X.M.; Potgieter, A.; Duan, T.; Jordan, D.; Guo, Y.; Zheng, B.Y. Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. Eur. J. Agron. 2018, 95, 24–32. [Google Scholar] [CrossRef]
- Sukumaran, S.; Dreisigacker, S.; Lopes, M.; Chavez, P.; Reynolds, M.P. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor. Appl. Genet. 2015, 128, 353–363. [Google Scholar] [CrossRef]
- Sun, C.W.; Zhang, F.Y.; Yan, X.F.; Zhang, X.F.; Dong, Z.D.; Cui, D.Q.; Chen, F. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol. J. 2017, 15, 953–969. [Google Scholar] [CrossRef] [Green Version]
Main Parameter | Value |
---|---|
Maximum takeoff weight | 1368 g |
Duration of flight | 25–30 min |
Flying height | 20 m |
Horizontal and vertical overlapping rate | 80% |
Ground resolution | 1 cm |
Parent | RIL Population | ||||||||
---|---|---|---|---|---|---|---|---|---|
Berkut | Worrakatta | Mean | Minimum | Maximum | Standard Deviation | Standard Error | Kurtosis | Skewness | |
Measured | 68.0 cm | 56.0 cm | 61.2 cm | 49.4 cm | 78.3 cm | 5.92 | 0.34 | −0.27 | 0.45 |
UAV | 69.4 cm | 60.0 cm | 64.3 cm | 54.5 cm | 76.5 cm | 4.42 | 0.26 | −0.27 | 0.45 |
Index | Mean Square | Heritability | Correlation Coefficient (r) | ||
---|---|---|---|---|---|
Genotype (G) | Replicate | Error | (h2) | ||
Measured | 70.19 *** | 3.47 | 15.74 | 0.76 | 0.92 |
UAV | 39.03 *** | 1.91 | 8.75 | 0.76 |
Treatment | QTL a | Chr b | Position | Left Marker | Right Marker | LOD c | PVE (%) d | AE e |
---|---|---|---|---|---|---|---|---|
Measured | QPH.xjau-6A | 6A | 44 | AX-109447932 | AX-95023286 | 8.91 | 13.12 | −2.16 |
UAV | QPH.xjau-6A | 6A | 44 | AX-109447932 | AX-95023286 | 6.39 | 9.62 | −1.50 |
Marker a | Chr b | Position (Mb) | Gene | Candidate Gene |
---|---|---|---|---|
AX-109447932AX-95023286 | 6A | 287.31 | TraesCS6A01G196400 | Protein kinase family protein |
377.86 | TraesCS6A01G208900 | NAC domain-containing protein | ||
381.53 | TraesCS6A01G210500 | Cytochrome P450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, A.; Ning, S.; Geng, H.; Guo, T.; Xiao, S. Quantitative Trait Locus (QTL) Mapping for Common Wheat Plant Heights Based on Unmanned Aerial Vehicle Images. Agronomy 2023, 13, 2088. https://doi.org/10.3390/agronomy13082088
Yan A, Ning S, Geng H, Guo T, Xiao S. Quantitative Trait Locus (QTL) Mapping for Common Wheat Plant Heights Based on Unmanned Aerial Vehicle Images. Agronomy. 2023; 13(8):2088. https://doi.org/10.3390/agronomy13082088
Chicago/Turabian StyleYan, An, Songrui Ning, Hongwei Geng, Tao Guo, and Shuting Xiao. 2023. "Quantitative Trait Locus (QTL) Mapping for Common Wheat Plant Heights Based on Unmanned Aerial Vehicle Images" Agronomy 13, no. 8: 2088. https://doi.org/10.3390/agronomy13082088
APA StyleYan, A., Ning, S., Geng, H., Guo, T., & Xiao, S. (2023). Quantitative Trait Locus (QTL) Mapping for Common Wheat Plant Heights Based on Unmanned Aerial Vehicle Images. Agronomy, 13(8), 2088. https://doi.org/10.3390/agronomy13082088