Responses of Physiological Traits and Grain Yield to Short Heat Stress during Different Grain-Filling Stages in Summer Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Field Management
2.3. Sampling and Measurements
2.3.1. Temperature Measurement
2.3.2. Dry-Matter Change
dry matter of organ after heat treating
dry matter of organ before heat treating
2.3.3. Leaf Photosynthesis
2.3.4. Correlative Enzyme Activities
2.3.5. SPAD and Chlorophyll Content
2.3.6. Kernel Growth Dynamics
2.3.7. Grain Yield
2.4. Statistical Analyses
3. Results
3.1. Temperature Change during the Heat-Treatment Process
3.2. Yield as Affected by Heat Stress during the Lag and Effective-Filling Stage
3.3. Dry-Matter Accumulation after Silking and Dry-Matter Change during and after Heat Treatment
3.4. The Effects of High Temperature on Leaf Photosynthesis
3.5. Effect of High Temperature on Sink Activity and Grain Filling
3.6. Principal Component Analysis
4. Discussion
4.1. Short Heat Stress during the Lag Stage Reduced the Kernel Number by Inhibiting Photosynthesis
4.2. Short Heat Stress Affected Kernel Weight by Reducing Assimilates and AGPase Activity but Not Filling Duration
4.3. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siebers, M.H.; Slattery, R.A.; Yendrek, C.R.; Locke, A.M.; Drag, D.; Ainsworth, E.A.; Bernacchi, C.J.; Ort, D.R. Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agric. Ecosyst. Environ. 2017, 240, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Lizaso, J.I.; Ruiz, R.M.; Rodríguez, L.; Gabaldon-Leal, C.; Oliveria, J.A.; Lorite, I.J.; Sánchez, D.; García, E.; Rodríguez, A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Res. 2018, 216, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sheng, D.; Zhang, P.; Dong, X.; Yan, Y.; Hou, X.; Wang, P.; Huang, S.B. High temperature sensitivity of kernel formation in different short periods around silking in maize. Environ. Exp. Bot. 2021, 183, 104343. [Google Scholar] [CrossRef]
- Lobell, D.B.; Hammer, G.L.; McLean, G.; Messina, C.; Roberts, M.J.; Schlenker, W. The critical role of extreme heat for maize production in the United States. Nat. Clim. Chang. 2013, 3, 497–501. [Google Scholar] [CrossRef]
- Gourdji, S.M.; Sibley, A.M.; Lobell, D.B. Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environ. Res. Lett. 2013, 8, 024041. [Google Scholar] [CrossRef]
- Gao, Z.; Feng, H.; Liang, X.; Lin, S.; Zhao, X.; Shen, S.; Du, X.; Cui, Y.; Zhou, S.L. Adjusting the sowing date of spring maize did not mitigate against heat stress in the North China Plain. Agric. For. Meteorol. 2021, 298, 108274. [Google Scholar] [CrossRef]
- van der Velde, M.; Wriedt, G.; Bouraoui, F. Estimating irrigation use and effects on maize yield during the 2003 heatwave in France. Agric. Ecosyst. Environ. 2010, 135, 90–97. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, H.; Tian, B.; Sheng, D.; Xu, C.; Zhou, H.; Huang, S.B.; Wang, P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environ. Exp. Bot. 2019, 158, 80–88. [Google Scholar] [CrossRef]
- Lu, D.L.; Yang, H.; Shen, X.; Lu, W.P. Effects of high temperature during grain filling on physicochemical properties of waxy maize starch. J. Integr. Agric. 2016, 15, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Bewley, J.D.; Black, M. Seeds: Physiology of Development and Germination; Plenum: New York, NY, USA, 1985. [Google Scholar]
- Artlip, T.S.; Madison, J.T.; Setter, T.L. Water deficit in developing endosperm of maize: Cell division and nuclear DNA endoreduplication. Plant Cell Environ. 1995, 18, 1034–1040. [Google Scholar] [CrossRef]
- Borrás, L.; Gambín, B.L. Trait dissection of maize kernel weight: Towards integrating hierarchical scales using a plant growth approach. Field Crops Res. 2010, 118, 1–12. [Google Scholar] [CrossRef]
- Niu, S.; Du, X.; Wei, D.; Liu, S.; Tang, Q.; Bian, D.; Zhang, Y.; Cui, Y.; Gao, Z. Heat stress after pollination reduces kernel number in maize by insufficient assimilates. Front. Genet. 2021, 12, 728166. [Google Scholar] [CrossRef] [PubMed]
- Commuri, P.D.; Jones, R.J. Ultrastructural characterization of maize (Zea mays L.) kernels exposed to high temperature during endosperm cell division. Plant Cell Environ. 1999, 22, 375–385. [Google Scholar] [CrossRef]
- Edreira, J.I.R.; Budakli, C.E.; Sammarro, D.; Otegui, M.E. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Res. 2011, 123, 62–73. [Google Scholar] [CrossRef]
- Lu, D.; Sun, X.; Yan, F.; Wang, X.; Xu, R.; Lu, W. Effects of high temperature during grain filling under control conditions on the physicochemical properties of waxy maize flour. Carbohydr. Polym. 2013, 98, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, X.P.; Liu, Q.; Liu, J.; Chen, Y.Q.; Sui, P. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review. J. Integr. Agr. 2022, 21, 2465–2476. [Google Scholar] [CrossRef]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H.M. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 2011, 30, 491–507. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Wang, X.; Gao, J.; Luo, N.; Meng, Q.; Wang, P. Dissecting the critical stage in the response of maize kernel set to individual and combined drought and heat stress around flowering. Environ. Exp. Bot. 2020, 179, 104213. [Google Scholar] [CrossRef]
- Wang, E.; Wang, J.; Zhu, X.D.; Hao, W.; Wang, L.Y.; Li, Q.; Zhang, L.X.; He, W.; Lu, B.R.; Lin, H.X.; et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat. Genet. 2008, 40, 1370–1374. [Google Scholar] [CrossRef]
- McLaughlin, J.E.; Boyer, J.S. Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. Ann. Bot. 2004, 94, 675–689. [Google Scholar] [CrossRef]
- Yang, H.; Gu, X.; Ding, M.; Lu, W.; Lu, D. Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Sci. Rep. 2018, 8, 15665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Han, J.; Yang, Z. Hazard assessment of extreme heat during summer maize growing season in Haihe Plain, China. Int. J. Climatol. 2021, 41, 4794–4803. [Google Scholar] [CrossRef]
- Ren, J.H.; Tang, Q.; Niu, S.D.; Liu, S.S.; Wei, D.J.; Zhang, Y.R.; Gao, Z. High dose of plant growth regulator enhanced lodging resistance without grain yield reduction of maize under high density. Int. J. Plant Prod. 2022, 16, 329–339. [Google Scholar] [CrossRef]
- Gao, Z.; Liang, X.G.; Zhang, L.; Lin, S.; Zhao, X.; Zhou, L.L.; Shen, S.; Zhou, S.L. Spraying exogenous 6-benzyladenine and brassinolide at tasseling increases maize yield by enhancing source and sink capacity. Field Crops Res. 2017, 211, 1–9. [Google Scholar] [CrossRef]
- Tang, Q.; Ren, J.; Du, X.; Niu, S.; Liu, S.; Wei, D.; Zhang, Y.; Bian, D.; Cui, Y.; Gao, Z. Reduced stem nonstructural carbohydrates caused by plant growth retardant had adverse effects on maize yield under low density. Fron. Plant Sci. 2022, 13, 1035254. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, L.; Liang, X.G.; Zhao, X.; Lin, S.; Qu, L.H.; Gao, Z.; Ruan, Y.L.; Zhou, S.L. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. J. Exp. Bot. 2018, 69, 1599–1613. [Google Scholar] [CrossRef]
- Boyer, J.S.; McLaughlin, J.E. Functional reversion to identify controlling genes in multigenic responses: Analysis of floral abortion. J. Exp. Bot. 2007, 58, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Gustin, J.L.; Boehlein, S.K.; Shaw, J.R.; Junior, W.; Settles, A.M.; Webster, A.; William, W.F.; Hannah, L.C. Ovary abortion is prevalent in diverse maize inbred lines and is under genetic control. Sci. Rep. 2018, 8, 13032. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.Q.; Li, Y.; Shi, Y.H.; Cui, Z.Y.; Luo, Y.L.; Zheng, M.J.; Chen, J.; Li, Y.X.; Yin, Y.P.; Wang, Z.L. Exogenous cytokinins increase grain yield of winter wheat cultivars by improving stay−green characteristics under heat stress. PLoS ONE 2016, 11, e0155437. [Google Scholar] [CrossRef] [Green Version]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [Green Version]
- Basu, P.S.; Pratap, A.; Gupta, S.; Sharma, K.; Tomar, R.; and Singh, N.P. Physiological traits for shortening crop duration and improving productivity of greengram (Vigna radiata L. Wilczek) under high temperature. Front. Plant Sci. 2019, 10, 1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Asher, J.; Garcia y Garcia, A.; Hoogenboom, G. Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. Var. Rugosa). Photosynthetica 2008, 46, 595–603. [Google Scholar] [CrossRef]
- Zhu, X.C.; Song, F.B.; Liu, S.Q. Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 2011, 346, 189–199. [Google Scholar] [CrossRef]
- Crafts-Brandner, S.J.; Law, R.D. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta 2000, 212, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.A.; Fracheboud, Y.; Stamp, P. Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves. Physiol. Plantarum. 1999, 105, 685–693. [Google Scholar] [CrossRef]
- Sinsawat, V.; Leipner, J.; Stamp, P.; Fracheboud, Y. Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ. Exp. Bot. 2004, 52, 123–129. [Google Scholar] [CrossRef]
- Abendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marlay, S.K. Corn Growth and Development; Iowa State University: Ames, IA, USA, 2011. [Google Scholar]
- Vega, C.R.C.; Andrade, F.H.; Sadras, V.O.; Uhart, S.A.; Valentinuz, O.R. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci. 2001, 41, 748–754. [Google Scholar] [CrossRef] [Green Version]
- Gambín, B.L.; Borrás, L.; Otegui, M.E. Source-sink relations and kernel weight differences in maize temperate hybrids. Field Crop Res. 2006, 95, 316–326. [Google Scholar] [CrossRef]
- Borrás, L.; Otegui, M.E. Maize kernel weight response to postflowering source-sink ratio. Crop Sci. 2001, 41, 1816–1822. [Google Scholar] [CrossRef]
- Boehlein, S.K.; Liu, P.; Webster, A.; Ribeiro, C.; Suzuki, M.; Wu, S.; Guan, J.C.; Stewart, J.D.; Tracy, W.F.; Settles, A.M.; et al. Effects of long-term exposure to elevated temperature on Zea mays endosperm development during grain fill. Plant J. 2019, 99, 23–40. [Google Scholar] [CrossRef]
- Zhang, X.P. Mechanism of Changing Sowing Date of Maize Sole Cropping System to Resist and Avoid the Heat Stress in Heilonggang Region. Ph.D. Thesis, China Agricultural University, Beijing, China, 2019. [Google Scholar]
- Yang, H.; Huang, T.; Ding, M.; Lu, D.; Lu, W. High temperature during grain filling impacts on leaf senescence in waxy maize. Agron. J. 2017, 109, 906–916. [Google Scholar] [CrossRef]
- Cabrera, F.J.; Baille, A.; López, J.C.; González-Real, M.M.; Pérez-Parra, J. Effects of cover diffusive properties on the components of greenhouse solar radiation. Biosyst. Eng. 2009, 103, 344–356. [Google Scholar] [CrossRef]
- Soar, C.J.; Collins, M.J.O.; Sadras, V.O. Irrigated Shiraz vines (Vitis vinifera) upregulate gas exchange and maintain berry growth in response to short spells of high maximum temperature in the field. Funct. Plant Biol. 2009, 36, 801–814. [Google Scholar] [CrossRef] [PubMed]
Year | Treatment | Ear Number | TKW (g) | KNE | Grain Yield (t ha−1) |
---|---|---|---|---|---|
2019 | CK | 7.51 ± 0.01 a | 307.6 ± 2.4 a | 532.3 ± 1.3 a | 14.8 ± 0.3 a |
LSH | 7.50 ± 0.03 a | 316.5 ± 4.8 a | 465.3 ± 3.7 b | 12.6 ± 0.0 b | |
FSH | 7.50 ± 0.03 a | 276.6 ± 5.7 b | 529.4 ± 17.7 a | 12.2 ± 0.2 b | |
2020 | CK | 7.48 ± 0.04 a | 351.8 ± 7.4 a | 437.0 ± 27.6 a | 11.8 ± 0.3 a |
LSH | 7.51 ± 0.01 a | 331.7 ± 1.6 a | 412.3 ± 2.9 a | 11.0 ± 0.0 a | |
FSH | 7.51 ± 0.02 a | 337.6 ± 8.7 a | 395.3 ± 14.6 a | 11.4 ± 0.1 a | |
2021 | CK | 7.50 ± 0.03 a | 297.8 ± 3.0 b | 541.7 ± 3.3 a | 13.8 ± 0.2 a |
LSH | 7.48 ± 0.05 a | 315.1 ± 4.8 a | 499.3 ± 8.6 b | 12.6 ± 0.1 b | |
FSH | 7.48 ± 0.05 a | 282.5 ± 1.9 c | 520.7 ± 5.5 ab | 12.2 ± 0.1 b | |
ANOVA | Y | NS | *** | *** | *** |
T | NS | *** | ** | *** | |
Y × T | NS | ** | NS | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Niu, S.; Yao, J.; Zhang, Y.; Li, X.; Dong, H.; Si, S.; Li, H.; Li, X.; Ren, J.; et al. Responses of Physiological Traits and Grain Yield to Short Heat Stress during Different Grain-Filling Stages in Summer Maize. Agronomy 2023, 13, 2126. https://doi.org/10.3390/agronomy13082126
Zhang W, Niu S, Yao J, Zhang Y, Li X, Dong H, Si S, Li H, Li X, Ren J, et al. Responses of Physiological Traits and Grain Yield to Short Heat Stress during Different Grain-Filling Stages in Summer Maize. Agronomy. 2023; 13(8):2126. https://doi.org/10.3390/agronomy13082126
Chicago/Turabian StyleZhang, Wanlu, Shiduo Niu, Jiaxin Yao, Yipeng Zhang, Xiao Li, Huixin Dong, Shuang Si, Hang Li, Xuelei Li, Jianhong Ren, and et al. 2023. "Responses of Physiological Traits and Grain Yield to Short Heat Stress during Different Grain-Filling Stages in Summer Maize" Agronomy 13, no. 8: 2126. https://doi.org/10.3390/agronomy13082126
APA StyleZhang, W., Niu, S., Yao, J., Zhang, Y., Li, X., Dong, H., Si, S., Li, H., Li, X., Ren, J., & Gao, Z. (2023). Responses of Physiological Traits and Grain Yield to Short Heat Stress during Different Grain-Filling Stages in Summer Maize. Agronomy, 13(8), 2126. https://doi.org/10.3390/agronomy13082126