GGE Biplot-Based Transcriptional Analysis of 7 Genes Involved in Steroidal Glycoalkaloid Biosynthesis in Potato (Solanum tuberosum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Microtuber Induction
2.2. Light Treatment
2.3. Total RNA Extraction and cDNA Synthesis
2.4. Real-Time PCR and Data Analysis
3. Results
3.1. The Relevance of Gene Expression and Treatments
3.2. Polygon View of Gene Expression—Treatment Interaction
3.3. The Ranking of Seven Genes for Transcriptional Expression
3.4. The Relationships among Red Light Illumination Durations and Genotypes
3.5. The Relationships among Genotypes and Illumination Durations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jared, J.J.; Murungi, L.K.; Wesonga, J.; Torto, B. Steroidal glycoalkaloids: Chemical defence of edible African nightshades against the tomato red spider mite, Tetranychus evansi (Acari: Tetranychidae). Pest Manag. Sci. 2016, 72, 828–836. [Google Scholar] [CrossRef]
- Mekapogu, M.; Sohn, H.-B.; Kim, S.-J.; Lee, Y.-Y.; Park, H.-M.; Jin, Y.-I.; Hong, S.-Y.; Suh, J.-T.; Kweon, K.; Jeong, J.-C. Effect of light quality on the expression of glycoalkaloid biosynthetic genes contributing to steroidal glycoalkaloid accumulation in potato. Am. J. Potato Res. 2016, 93, 264–277. [Google Scholar] [CrossRef]
- Dale, M.F.B.; Griffiths, D.W.; Bain, H.; Todd, D. Glycoalkaloid increase in Solanum tuberosum on exposure to light. Ann. Appl. Biol. 2008, 123, 411–418. [Google Scholar] [CrossRef]
- Cui, T.; Bai, J.; Zhang, J.; Zhang, J.; Wang, D. Transcriptional expression of seven key genes involved in steroidal glycoalkaloid biosynthesis in potato microtubers. N. Z. J. Crop Hortic. Sci. 2014, 42, 118–126. [Google Scholar] [CrossRef]
- Lee, K.-R.; Kozukue, N.; Han, J.-S.; Park, J.-H.; Chang, E.-Y.; Baek, E.-J.; Chang, J.-S.; Friedman, M. Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells. J. Agric. Food Chem. 2004, 52, 2832–2839. [Google Scholar] [CrossRef]
- Rokka, V.-M.; Xu, Y.-S.; Kankila, J.; Kuusela, A.; Pulli, S.; Pehu, E. Identification of somatic hybrids of dihaploid Solanum tuberosum lines and S. brevidens by species specific RAPD patterns and assessment of disease resistance of the hybrids. Euphytica 1994, 80, 207–217. [Google Scholar] [CrossRef]
- Dahlin, P.; Müller, M.C.; Ekengren, S.; McKee, L.S.; Bulone, V. The impact of steroidal glycoalkaloids on the physiology of Phytophthora infestans, the causative agent of potato late blight. Mol. Plant-Microbe Interact. 2017, 30, 531–542. [Google Scholar] [CrossRef]
- Nema, P.K.; Ramayya, N.; Duncan, E.; Niranjan, K. Potato glycoalkaloids: Formation and strategies for mitigation. J. Sci. Food Agric. 2008, 88, 1869–1881. [Google Scholar] [CrossRef]
- Ginzberg, I.; Tokuhisa, J.G.; Veilleux, R.E. Potato steroidal glycoalkaloids: Biosynthesis and genetic manipulation. Potato Res. 2009, 52, 1–15. [Google Scholar] [CrossRef]
- Krits, P.; Fogelman, E.; Ginzberg, I. Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta 2007, 227, 143–150. [Google Scholar] [CrossRef]
- Gutensohn, M.; Hartzell, E.; Dudareva, N. Another level of complex-ity: The role of metabolic channeling and metabolons in plant terpenoid metabolism. Front. Plant Sci. 2022, 13, 954083. [Google Scholar] [CrossRef]
- Ginzberg, I.; Thippeswamy, M.; Fogelman, E.; Demirel, U.; Mweetwa, A.M.; Tokuhisa, J.; Veilleux, R.E. Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA reductase and squalene synthase. Planta 2012, 235, 1341–1353. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Gabriel, K.R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Yan, W. GGEbiplot—A Windows Application for Graphical Analysis of Multienvironment Trial Data and Other Types of Two-Way Data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
- George, N.; Lundy, M. Quantifying genotype × environment effects in long-term common wheat yield trials from an agroecologically diverse production region. Crop Sci. 2019, 59, 1960–1972. [Google Scholar] [CrossRef]
- Roozeboom, K.L.; Schapaugh, W.T.; Tuinstra, M.R.; Vanderlip, R.L.; Milliken, G.A. Testing Wheat in Variable Environments: Genotype, Environment, Interaction Effects, and Grouping Test Locations. Crop Sci. 2008, 48, 317. [Google Scholar] [CrossRef]
- Sabaghnia, N.; Dehghani, H.; Alizadeh, B.; Mohghaddam, M. Genetic analysis of oil yield, seed yield, and yield components in rapeseed using additive main effects and multiplicative interaction biplots. Agron. J. 2010, 102, 1361–1368. [Google Scholar] [CrossRef]
- Dehghani, H.; Feyzian, E.; Jalali, M.; Rezai, A.; Dane, F. Use of GGE biplot methodology for genetic analysis of yield and related traits in melon (Cucumis melo L.). Can. J. Plant Sci. 2012, 92, 77–85. [Google Scholar] [CrossRef]
- Upadhyaya, D.C.; Bagri, D.S.; Upadhyaya, C.P.; Kumar, A.; Thiruvengadam, M.; Jain, S.K. Genetic engineering of potato (Solanum tuberosum L.) for enhanced α-tocopherols and abiotic stress tolerance. Physiol. Plant. 2021, 173, 116–128. [Google Scholar] [CrossRef]
- Qin, T.; Ali, K.; Wang, Y.; Dormatey, R.; Yao, P.; Bi, Z.; Liu, Y.; Sun, C.; Bai, J. Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with different rooting depth responses to drought stress in potato. Front. Plant Sci. 2022, 13, 1007866. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Rajcan, I. Biplot Analysis of Test Sites and Trait Relations of Soybean in Ontario. Crop Sci. 2002, 42, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Yan, W. Singular-Value Partitioning in Biplot Analysis of Multienvironment Trial Data. Agron. J. 2002, 94, 253–260. [Google Scholar]
- Hamouz, K.; Pazderů, K.; Lachman, J.; Orsak, M.; Pivec, V.; Hejtmankova, K.; Tomasek, J.; Cizek, M. Effect of cultivar, flesh colour, location and year of cultivation on the glycoalkaloid content in potato tubers. Plant Soil Environ. 2014, 60, 512–517. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M.; Sikorska, A. The effect of herbicides on the content of glycoalkaloids in the leaves and tubers of potato. Plant Soil Environ. 2015, 61, 328–331. [Google Scholar] [CrossRef]
- Nahar, N.; Westerberg, E.; Arif, U.; Huchelmann, A.; Guasca, A.O.; Beste, L.; Dalman, K.; Dutta, P.C.; Jonsson, L.; Sitbon, F. Transcript profiling of two potato cultivars during glycoalkaloid-inducing treatments shows differential expression of genes in sterol and glycoalkaloid metabolism. Sci. Rep. 2017, 7, 43268. [Google Scholar] [CrossRef]
- Manjulatha, M.; Hwangbae, S.; Yulho, K.; Sujeong, K.; Kwangsoo, C.; Ohkeun, K.; Yongik, J.; Suyoung, H.; Jeonghwan, N.; Jongtaek, S. Comparative Expression of Key Genes Involved in Steroidal Glycoalkaloid Biosynthesis in Tubers of Two Potato Cultivars, Atlantic and Haryoung. Plant Breed. Biotechnol. 2014, 2, 257–267. [Google Scholar] [CrossRef]
- Eltayeb, E.A.; Al-Sinani, S.S.; Khan, I. Effect of Illumination by Fluorescent Light on the Accumulation of Glycoalkaloids in the Tubers of 7 Varieties of Potato (Solanum tuberosum L.) Grown in Oman. Pak. J. Biol. Sci. 2003, 6, 655–660. [Google Scholar] [CrossRef]
Source of Variation | hmg1 | hmg2 | pss1 | pvs1 | sgt1 | sgt2 | sgt3 | |
---|---|---|---|---|---|---|---|---|
G | D-3 | 0.44 ± 0.09d | 0.50 ± 0.04d | 0.69 ± 0.07d | 1.64 ± 0.35d | 0.46 ± 0.12e | 0.85 ± 0.08ab | 0.34 ± 0.04c |
D-6 | 0.36 ± 0.05d | 0.84 ± 0.13d | 1.52 ± 0.28b | 10.45 ± 4.59a | 1.57 ± 0.48d | 1.02 ± 0.17b | 1.30 ± 0.44c | |
JZ-12 | 2.91 ±0.09b | 3.23 ± 0.79b | 1.46 ± 0.12b | 3.15 ± 0.33c | 5.92 ± 1.98c | 0.78 ± 0.05ab | 9.26 ± 1.19b | |
DXY | 4.59 ± 0.35a | 5.75 ± 2.41a | 3.20 ±1.19a | 7.51 ± 3.39b | 8.81 ± 2.76a | 4.85 ± 1.96a | 13.45 ± 4.03b | |
L-6 | 2.47 ± 0.33c | 1.85 ± 0.21c | 1.15 ± 0.19c | 1.42 ± 0.60d | 7.79 ±2.14b | 0.59 ± 0.11c | 73.35 ± 27.08a | |
E | 6 | 2.01 ± 0.33b | 1.28 ± 0.11b | 1.31 ± 0.13b | 7.04 ± 2.93a | 5.04 ± 1.30a | 0.87 ± 0.07b | 9.49 ± 2.16b |
12 | 1.94 ± 0.43b | 0.89 ± 0.15c | 0.88 ± 0.06c | 1.74 ± 0.34c | 4.65 ± 1.57a | 0.70 ± 0.09b | 37.80 ±19.21a | |
24 | 2.50 ± 0.58a | 5.13 ± 1.48a | 2.62 ±0.74a | 5.71 ± 2.08b | 5.03 ± 1.95a | 3.28 ±1.26a | 11.33 ± 2.90b | |
ANOVA | G | 163.034 *** | 327.215 *** | 116.179 *** | 61.644 *** | 116.876 *** | 472.073 *** | 156.045 *** |
E | 8.014 ** | 659.458 *** | 175.514 *** | 49.263 *** | 0.685 ns | 499.283 *** | 69.789 *** | |
G *E | 7.365 *** | 296.721 *** | 150.431 *** | 112.907 *** | 133.742 *** | 429.882 *** | 104.185 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Li, Y.; Cui, T.; Bai, J. GGE Biplot-Based Transcriptional Analysis of 7 Genes Involved in Steroidal Glycoalkaloid Biosynthesis in Potato (Solanum tuberosum L.). Agronomy 2023, 13, 2127. https://doi.org/10.3390/agronomy13082127
Zhao F, Li Y, Cui T, Bai J. GGE Biplot-Based Transcriptional Analysis of 7 Genes Involved in Steroidal Glycoalkaloid Biosynthesis in Potato (Solanum tuberosum L.). Agronomy. 2023; 13(8):2127. https://doi.org/10.3390/agronomy13082127
Chicago/Turabian StyleZhao, Feng, Yajie Li, Tongxia Cui, and Jiangping Bai. 2023. "GGE Biplot-Based Transcriptional Analysis of 7 Genes Involved in Steroidal Glycoalkaloid Biosynthesis in Potato (Solanum tuberosum L.)" Agronomy 13, no. 8: 2127. https://doi.org/10.3390/agronomy13082127
APA StyleZhao, F., Li, Y., Cui, T., & Bai, J. (2023). GGE Biplot-Based Transcriptional Analysis of 7 Genes Involved in Steroidal Glycoalkaloid Biosynthesis in Potato (Solanum tuberosum L.). Agronomy, 13(8), 2127. https://doi.org/10.3390/agronomy13082127