Techno-Economic Evaluation of Downdraft Fixed Bed Gasification of Almond Shell and Husk as a Process Step in Energy Production for Decentralized Solutions Applied in Biorefinery Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Raw Material and Gasification Product Analysis
2.2.1. Elemental Analysis (Ultimate Analysis)
2.2.2. Thermogravimetric Analysis (Proximate Analysis)
2.2.3. Higher Heating Value (HHV)
2.2.4. Gasification Performance
2.2.5. Gas Chromatography—Syngas
2.3. Theoretical Parameters
2.3.1. Equivalence Ratio
2.3.2. Cold Gas Efficiency
2.3.3. Syngas Yield
2.3.4. Carbon Conversion Efficiency
2.4. Economic Analysis
3. Results
3.1. Almond Husk and Shell Analysis
3.2. Gasification Performance and Analysis
4. Discussion
4.1. Effect of Temperature on Gasification Tests
4.2. Economic Analysis
4.2.1. Economic Assessment
4.2.2. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Las-Heras-Casas, J.; López-Ochoa, L.M.; Paredes-Sánchez, J.P.; López-González, L.M. Implementation of biomass boilers for heating and domestic hot water in multi-family buildings in Spain: Energy, environmental, and economic assessment. J. Clean. Prod. 2018, 176, 590–603. [Google Scholar] [CrossRef]
- Krishnam Raju, G.L.V.; Vamsi Nagaraju, T.; Jagadeep, K.; Venkata Rao, M.; Chanakya Varma, V. Waste-to-energy agricultural wastes in development of sustainable geopolymer concrete. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Osorio-Aravena, J.C.; Rodríguez-Segura, F.J.; Frolova, M.; Terrados-Cepeda, J.; Muñoz-Cerón, E. How much solar PV, wind and biomass energy could be implemented in short-term? A multi-criteria GIS-based approach applied to the province of Jaén, Spain. J. Clean. Prod. 2022, 366, 132920. [Google Scholar] [CrossRef]
- Sonu; Rani, G.M.; Pathania, D.; Abhimanyu; Umapathi, R.; Rustagi, S.; Huh, Y.S.; Gupta, V.K.; Kaushik, A.; Chaudhary, V. Agro-waste to sustainable energy: A green strategy of converting agricultural waste to nano-enabled energy applications. Sci. Total Environ. 2023, 875, 162667. [Google Scholar] [CrossRef]
- Sarode, D.D.; Oak, R.S.; Joshi, J.B. Chapter 10—Conversion of agriculture, forest, and garden waste for alternate energy source: Bio-oil and biochar production from surplus agricultural waste. In Advanced Materials from Recycled Waste; Elsevier: Amsterdam, The Netherlands, 2023; pp. 199–220. [Google Scholar]
- Rohatgi, V.; Challagulla, N.V.; Kumar, R. Chapter 4—Sustainable Conversion of Agricultural Waste to Energy and High-Value Chemicals; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Ozgen, S.; Cernuschi, S.; Caserini, S. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renew. Sustain. Energy Rev. 2021, 135, 110113. [Google Scholar] [CrossRef]
- Garcia, B.B.; Lourinho, G.; Brito, P.; Romano, P. Review of Biofuel Technologies in WtL and WtE. In Elements of Bioeconomy; Biernat, K., Ed.; IntechOpen: Toruń, Poland, 2019; ISBN 978-1-78923-862-4. [Google Scholar]
- Schmid, J.C.; Benedikt, F.; Fuchs, J.; Mauerhofer, A.M.; Müller, S.; Hofbauer, H. Syngas for biorefineries from thermochemical gasification of lignocellulosic fuels and residues—5 years’ experience with an advanced dual fluidized bed gasifier design. In Biomass Conversion and Biorefinery; Springer: Berlin/Heidelberg, Germany, 2021; Volume 11, ISBN 1339901900. [Google Scholar]
- Rozowska, A. More People Have Access to Electricity than Ever Before, but World Is Falling Short of Sustainable Energy Goals. Available online: https://www.worldbank.org/en/news/press-release/2019/05/22/tracking-sdg7-the-energy-progress-report-2019 (accessed on 20 August 2023).
- JOIN, IEA. Renewable Energy Fund for Off-Grid Solutions. Available online: https://www.iea.org/policies/5899-renewable-energy-fund-for-off-grid-solutions (accessed on 20 August 2023).
- Keiner, D.; Thoma, C.; Bogdanov, D.; Breyer, C. Seasonal hydrogen storage for residential on- and off-grid solar photovoltaics prosumer applications: Revolutionary solution or niche market for the energy transition until 2050? Appl. Energy 2023, 340, 121009. [Google Scholar] [CrossRef]
- Adeyemo, A.A.; Amusan, O.T. Modelling and multi-objective optimization of hybrid energy storage solution for photovoltaic powered off-grid net zero energy building. J. Energy Storage 2022, 55, 105273. [Google Scholar] [CrossRef]
- Hwang, S.; Tongsopit, S.; Kittner, N. Transitioning from diesel backup generators to PV-plus-storage microgrids in California public buildings. Sustain. Prod. Consum. 2023, 38, 252–265. [Google Scholar] [CrossRef]
- Klass, L.; Kabza, A.; Sehnke, F.; Strecker, K.; Hölzle, M. Lifelong performance monitoring of PEM fuel cells using machine learning models. J. Power Sources 2023, 580, 233308. [Google Scholar] [CrossRef]
- Kasaeian, A.; Javidmehr, M.; Mirzaie, M.R.; Fereidooni, L. Integration of solid oxide fuel cells with solar energy systems: A review. Appl. Therm. Eng. 2023, 224, 120117. [Google Scholar] [CrossRef]
- Ruokamo, E.; Laukkanen, M.; Karhinen, S.; Kopsakangas-Savolainen, M.; Svento, R. Innovators, followers and laggards in home solar PV: Factors driving diffusion in Finland. Energy Res. Soc. Sci. 2023, 102, 103183. [Google Scholar] [CrossRef]
- Wollz, D.H.; da Silva, S.A.O.; Sampaio, L.P. Real-time monitoring of an electronic wind turbine emulator based on the dynamic PMSG model using a graphical interface. Renew. Energy 2020, 155, 296–308. [Google Scholar] [CrossRef]
- La Camera, F. Global Energy Transformation: A Roadmap to 2050 (2019 Edition); IRENA: Abu Dhabi, United Arab Emirates, 2019; p. 20199. [Google Scholar]
- de España, G. Ministerio Para la Transición Ecológica y el Reto Demográfico—Madrid, Spain. Available online: https://energia.gob.es/es-es/Paginas/index.aspx (accessed on 20 August 2023).
- Raghutla, C.; Chittedi, K.R. The effect of technological innovation and clean energy consumption on carbon neutrality in top clean energy-consuming countries: A panel estimation. Energy Strategy Rev. 2023, 47, 101091. [Google Scholar] [CrossRef]
- Villardon, A.; Dorado, F.; Silva, L.S. Hydrothermal carbonization coupled with fast pyrolysis of almond shells: Valorization and production of valuable chemicals. Waste Manag. 2023, 169, 112–124. [Google Scholar]
- Mirás-Avalos, J.M.; Gonzalez-Dugo, V.; García-Tejero, I.F.; López-Urrea, R.; Intrigliolo, D.S.; Egea, G. Quantitative analysis of almond yield response to irrigation regimes in Mediterranean Spain. Agric. Water Manag. 2023, 279, 108208. [Google Scholar] [CrossRef]
- Shahavi, M.H.; Esfilar, R.; Golestani, B.; Sadeghi Sadeghabad, M.; Biglaryan, M. Comparative study of seven agricultural wastes for renewable heat and power generation using integrated gasification combined cycle based on energy and exergy analyses. Fuel 2022, 317, 123430. [Google Scholar] [CrossRef]
- Kong, G.; Zhang, X.; Wang, K.; Zhou, L.; Wang, J.; Zhang, X.; Han, L. Tunable H2/CO syngas production from co-gasification integrated with steam reforming of sewage sludge and agricultural biomass: A experimental study. Appl. Energy 2023, 342, 121195. [Google Scholar] [CrossRef]
- Dai, B.; Zhu, W.; Mu, L.; Guo, X.; Qian, H.; Liang, X.; Kontogeorgis, G.M. Effect of the composition of biomass on the quality of syngas produced from thermochemical conversion based on thermochemical data prediction. Energy Fuels 2019, 33, 5253–5262. [Google Scholar] [CrossRef]
- Yi, W.; Wang, X.; Zeng, K.; Yang, H.; Shao, J.; Zhang, S.; Chen, H. Improving the staged gasification of crop straw by choosing a suitable devolatilization temperature. J. Energy Inst. 2023, 108, 101221. [Google Scholar] [CrossRef]
- Zhou, S.; Shen, Z.; Xu, J.; Dai, Z.; Liu, H. Numerical study on reaction-induced force of a coal particle: Effect of temperature gradient in entrained-flow gasifier. Fuel 2023, 344, 128078. [Google Scholar] [CrossRef]
- Schobert, H.H. Renewable Energy from Biomass. Energy Soc. 2020, 599–634. [Google Scholar]
- Khosasaeng, T.; Suntivarakorn, R. Effect of Equivalence Ratio on an Efficiency of Single Throat Downdraft Gasifier Using RDF from Municipal solid waste. Energy Procedia 2017, 138, 784–788. [Google Scholar] [CrossRef]
- Čespiva, J.; Wnukowski, M.; Niedzwiecki, L.; Skřínský, J.; Vereš, J.; Ochodek, T.; Pawlak-Kruczek, H.; Borovec, K. Characterization of tars from a novel, pilot scale, biomass gasifier working under low equivalence ratio regime. Renew. Energy 2020, 159, 775–785. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification and Pyrolysis. Practical Design; Academic Press: Cambridge, MA, USA, 2010; ISBN 978-0-12-374988-8. [Google Scholar]
- Furusawa, Y.; Taguchi, H.; Ismail, S.N.; Thangavel, S.; Matsuoka, K.; Fushimi, C. Estimation of cold gas efficiency and reactor size of low-temperature gasifier for advanced-integrated coal gasification combined cycle systems. Fuel Process. Technol. 2019, 193, 304–316. [Google Scholar] [CrossRef]
- Daniel Posen, I.; Jaramillo, P.; Landis, A.E.; Michael Griffin, W. Greenhouse gas mitigation for U.S. plastics production: Energy first, feedstocks later. Environ. Res. Lett. 2017, 12, 034024. [Google Scholar] [CrossRef]
- Ayub, Y.; Hu, Y.; Ren, J. Estimation of syngas yield in hydrothermal gasification process by application of artificial intelligence models. Renew. Energy 2023, 215, 118953. [Google Scholar] [CrossRef]
- Cardoso, J.; Silva, V.; Eusébio, D. Techno-economic analysis of a biomass gasification power plant dealing with forestry residues blends for electricity production in Portugal. J. Clean. Prod. 2019, 212, 741–753. [Google Scholar] [CrossRef]
- Hrbek, J. Thermal Gasification Based Hybrid Systems IEA Bioenergy Task 33 Special Project, 1st ed.; Hrbek, J., Ed.; IEA Bioenergy: Wieselburg-Land, Austria, 2015; ISBN 978-1-910154-52-6. [Google Scholar]
- Ren, R.; Wang, H.; Feng, X.; You, C. Techno-economic analysis of auto-thermal gasification of municipal solid waste with ash direct melting for hydrogen production. Energy Convers. Manag. 2023, 292, 117401. [Google Scholar] [CrossRef]
- Onokwai, A.O.; Ajisegiri, E.S.A.; Okokpujie, I.P.; Ibikunle, R.A.; Oki, M.; Dirisu, J.O. Characterization of lignocellulose biomass based on proximate, ultimate, structural composition, and thermal analysis. Mater. Today Proc. 2022, 65, 2156–2162. [Google Scholar] [CrossRef]
- Jansen, A.A.; van der Walt, I.J.; Crouse, P.L. Waste-tyre pyrolysis and gasification via the reverse boudouard reaction: Derivation of empirical kinetics from TGA data. Thermochim. Acta 2022, 708, 179104. [Google Scholar] [CrossRef]
- White, G.P. The implementation of management science in higher education administration. Omega 1987, 15, 283–290. [Google Scholar] [CrossRef]
- Surjosatyo, A.; Anggriawan, M.B.; Hermawan, A.A.; Dafiqurrohman, H. Comparison between secondary thermal cracking methods and venturi scrubber filtering in order to reduce tar in biomass gasification. Energy Procedia 2019, 158, 749–754. [Google Scholar] [CrossRef]
- Sezer, S.; Kartal, F.; Özveren, U. Prediction of chemical exergy of syngas from downdraft gasifier by means of machine learning. Therm. Sci. Eng. Prog. 2021, 26, 101031. [Google Scholar] [CrossRef]
- Awais, M.; Omar, M.M.; Munir, A.; Li, W.; Ajmal, M.; Hussain, S.; Ahmad, S.A.; Ali, A. Co-gasification of different biomass feedstock in a pilot-scale (24 kWe) downdraft gasifier: An experimental approach. Energy 2022, 238, 121821. [Google Scholar] [CrossRef]
- Jahromi, R.; Rezaei, M.; Hashem Samadi, S.; Jahromi, H. Biomass gasification in a downdraft fixed-bed gasifier: Optimization of operating conditions. Chem. Eng. Sci. 2021, 231, 116249. [Google Scholar] [CrossRef]
- Antolini, D.; Ail, S.S.; Patuzzi, F.; Grigiante, M.; Baratieri, M. Experimental investigations of air-CO2 biomass gasification in reversed downdraft gasifier. Fuel 2019, 253, 1473–1481. [Google Scholar] [CrossRef]
- AllPowerLabs Power Pallet Technician’s Handbook (PP20/v1.09). Available online: http://www.allpowerlabs.com/wp-content/uploads/2015/06/v1-09_Section_01_Introduction_to_the_Power_Pallet.pdf (accessed on 20 August 2023).
- Azeem, M.; Shaheen, S.M.; Ali, A.; Jeyasundar, P.G.S.A.; Latif, A.; Abdelrahman, H.; Li, R.; Almazroui, M.; Niazi, N.K.; Sarmah, A.K.; et al. Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review. J. Hazard. Mater. 2022, 427, 128131. [Google Scholar] [CrossRef]
- Sousa Cardoso, J.; Silva, V.; Eusébio, D.; Lima Azevedo, I.; Tarelho, L.A.C. Techno-economic analysis of forest biomass blends gasification for small-scale power production facilities in the Azores. Fuel 2020, 279, 118552. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Toft, A.J.; Brammer, J.G. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew. Sustain. Energy Rev. 2002, 6, 181–246. [Google Scholar] [CrossRef]
- United States Department of Agriculture of Forest Products Laboratory. Fuel to Burn: Economics of Converting Forest Thinnings to Energy Using BioMax in Southern Oregon. Available online: https://www.fpl.fs.usda.gov/documnts/fplgtr/fpl_gtr157/fpl_gtr157.pdf (accessed on 20 August 2023).
- Godini, A. Almond Fruitfulness and Role of Self-Fertility. In Acta Horticulturae, Proceedings of the ISHS Acta Horticulturae 591: III International Symposium on Pistachios and Almonds, Zaragoza, Spain, 25–29 May 2002; R. Socias i Company, Batlle, I., Hormaza, M.T.E., Eds.; International Society for Horticultural Science: Leuven, Belgium, 2022; Volume 591, pp. 191–203. ISBN 978-90-66058-16-3. [Google Scholar]
- Rentizelas, A.A.; Tolis, A.J.; Tatsiopoulos, I.P. Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renew. Sustain. Energy Rev. 2009, 13, 887–894. [Google Scholar] [CrossRef]
- Lo, S.L.Y.; How, B.S.; Teng, S.Y.; Lam, H.L.; Lim, C.H.; Rhamdhani, M.A.; Sunarso, J. Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties. Renew. Sustain. Energy Rev. 2021, 152, 111644. [Google Scholar] [CrossRef]
- Colantoni, A.; Villarini, M.; Monarca, D.; Carlini, M.; Mosconi, E.M.; Bocci, E.; Rajabi Hamedani, S. Economic analysis and risk assessment of biomass gasification CHP systems of different sizes through Monte Carlo simulation. Energy Rep. 2021, 7, 1954–1961. [Google Scholar] [CrossRef]
- International Finance Corporation (IFC). Converting Biomass to Energy; Corporation, I.F.: Washington, DC, USA, 2017. [Google Scholar]
- Eugene, F.; Brigham, J.F.H. Fundamentals of Financial Management, 15th ed.; Cengage Learning: Boston, MA, USA, 2018; ISBN 1337671002/9781337671002. [Google Scholar]
Parameters | Unit | Shell 1 | Husk 1 | |
---|---|---|---|---|
Ultimate | C | % | 55.2 | 43.1 |
H | 6.4 | 5.7 | ||
N | 0.2 | 3.3 | ||
S | 0 | 0 | ||
O | 35.3 2 | 36.1 2 | ||
Proximate | Moisture | % | 9.8 | 11.3 |
Volatile | 58.2 | 57.7 | ||
Fixed Carbon | 29.1 | 19.2 | ||
Ashes | 2.9 | 11.8 | ||
HHV | MJ/kg | 18.7 | 16.1 |
Parameter | Unit | Temperature | ||
---|---|---|---|---|
CO2 | % | 10.9 | 10.7 | 11.3 |
C2H4 | % | 2.5 | 2.5 | 0.8 |
C2H6 | % | 0.5 | 0.2 | 0.0 |
C2H2 | % | 0.1 | 0.1 | 0.2 |
H2S | % | 0.0 | 0.0 | 0.0 |
N2 | % | 51.7 | 52.1 | 53.2 |
CH4 | % | 3.6 | 2.9 | 1.1 |
CO | % | 16.4 | 17.6 | 17.9 |
H2 | % | 14.4 | 14.5 | 15.5 |
LHVsyngas | MJ/Nm3 | 6.7 | 6.4 | 4.9 |
T1 | °C | 748.0 | 794.0 | 851.0 |
T2 | °C | 632.0 | 615.0 | 629.0 |
PReact | KPa | −32.1 | −30.9 | −39.2 |
Vair | Nm3/h | 175.7 | 178.3 | 179.8 |
Tair | °C | 21.0 | 22.0 | 20.0 |
Vtar | g/kgfuel | 0.048 | 0.044 | 0.046 |
Qchar | g/kgfuel | 140.0 | 137.0 | 132.0 |
ER | - | 0.3 | 0.3 | 0.3 |
LHVfuel | MJ/kg | 17.4 | ||
ƞsyngas | Nm3/kg | 1.8 | 1.9 | 2.0 |
Vsyngas | Nm3/h | 182.4 | 187.3 | 197.3 |
CGE | % | 70.2 | 68.9 | 55.6 |
CCE | % | 66.5 | 70.2 | 68.2 |
Qcomb | kg/h | 100.0 | 100.0 | 100.0 |
Residence time | h | 7 |
Economic Parameter | 100 kW Unit | Observations |
---|---|---|
Inflation rate (%) | 6.8 | Inflation rate applied in May 2023 |
Initial investment (k€) | 180 | 1800 €/kWh |
Maintenance and operation cost (k€) | 36 | 20% capital cost |
Electric energy produced (MWh/year) | 720 | Operation time 7200 h/year |
Electricity energy sold to the grid (MWh/year) | 576 | |
Electricity energy sales tariff (€/MWh) | 93.1 | https://energia.gob.es/es-es/Paginas/index.aspx (accessed on 23 August 2020) |
Self-consumption (MWh/year) | 144 | |
Electric kW price (€/kWh) | 0.13 | https://endesaopenempresas.com/ (accessed on 23 August 2020) |
Energy sales annual revenue (k€/year) | 53.6 | |
Self-consumption annual revenue (k€/year) | 18.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmo-Calado, L.; Hermoso-Orzáez, M.J.; La Cal-Herrera, J.; Brito, P.; Terrados-Cepeda, J. Techno-Economic Evaluation of Downdraft Fixed Bed Gasification of Almond Shell and Husk as a Process Step in Energy Production for Decentralized Solutions Applied in Biorefinery Systems. Agronomy 2023, 13, 2278. https://doi.org/10.3390/agronomy13092278
Carmo-Calado L, Hermoso-Orzáez MJ, La Cal-Herrera J, Brito P, Terrados-Cepeda J. Techno-Economic Evaluation of Downdraft Fixed Bed Gasification of Almond Shell and Husk as a Process Step in Energy Production for Decentralized Solutions Applied in Biorefinery Systems. Agronomy. 2023; 13(9):2278. https://doi.org/10.3390/agronomy13092278
Chicago/Turabian StyleCarmo-Calado, Luís, Manuel Jesús Hermoso-Orzáez, José La Cal-Herrera, Paulo Brito, and Julio Terrados-Cepeda. 2023. "Techno-Economic Evaluation of Downdraft Fixed Bed Gasification of Almond Shell and Husk as a Process Step in Energy Production for Decentralized Solutions Applied in Biorefinery Systems" Agronomy 13, no. 9: 2278. https://doi.org/10.3390/agronomy13092278
APA StyleCarmo-Calado, L., Hermoso-Orzáez, M. J., La Cal-Herrera, J., Brito, P., & Terrados-Cepeda, J. (2023). Techno-Economic Evaluation of Downdraft Fixed Bed Gasification of Almond Shell and Husk as a Process Step in Energy Production for Decentralized Solutions Applied in Biorefinery Systems. Agronomy, 13(9), 2278. https://doi.org/10.3390/agronomy13092278