Alternatives for the Valorization of Avocado Waste Generated in the Different Links of the Value Chain Based on a Life-Cycle Analysis Approach
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Methodology
2.1.1. Raw Material Characterization
2.1.2. Avocado-Oil Extraction and Production of Animal Feed
2.1.3. Bioactive Compounds Extraction and Characterization
2.1.4. Biogas Production
2.2. Valorization Schemes: Simulation Procedure
Small-Scale Biorefineries
2.3. Sustainability Analysis of Valorization Schemes
2.3.1. Economic Assessment
2.3.2. Social Assessment
- (i)
- Stakeholder: Workers
- (ii)
- Stakeholders: Local community
2.3.3. Life-Cycle Assessment
- (i)
- Definition of scope and objective
- (ii)
- System boundaries
- (iii)
- System studied
- (iv)
- Functional unit
- (v)
- Life-Cycle Inventory (LCI)
- (a)
- Input suppliers
- (b)
- Small producers
- (c)
- Commercialization
- (d)
- Transformation
- (e)
- Commercialization
3. Results
3.1. Experimental Results
3.1.1. Raw Material Characterization
3.1.2. Avocado-Oil Extraction and Characterization
3.1.3. Bioactive Compounds Extraction and Determination of DPPH, ABTS, and TPC
3.1.4. Biogas Production
3.2. Small Scale Biorefineries
3.3. Sustainability Assessment
3.3.1. Economic Assessment
3.3.2. Social Assessment
3.3.3. Life-Cycle Assessment
- (i)
- Detailed description of the creole avocado VC in Caldas
- (ii)
- Environmental impact of the creole avocado VC in the Caldas
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zou, C.; Zhao, Q.; Zhang, G.; Xiong, B. Energy revolution: From a fossil energy era to a new energy era. Nat. Gas Ind. B 2016, 3, 1–11. [Google Scholar] [CrossRef]
- Solarte-Toro, J.C.; Alzate, C.A.C. Biorefineries as the base for accomplishing the sustainable development goals (SDGs) and the transition to bioeconomy: Technical aspects, challenges and perspectives. Bioresour. Technol. 2021, 340, 125626. [Google Scholar] [CrossRef]
- Licht, L.A.; Isebrands, J. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 2005, 28, 203–218. [Google Scholar] [CrossRef]
- Alexander, P.; Brown, C.; Arneth, A.; Finnigan, J.; Moran, D.; Rounsevell, M.D. Losses, inefficiencies and waste in the global food system. Agric. Syst. 2017, 153, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J.A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chem. 2021, 352, 129300. [Google Scholar] [CrossRef] [PubMed]
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 141. [Google Scholar] [CrossRef]
- Oswell, N.J.; Thippareddi, H.; Pegg, R.B. Practical use of natural antioxidants in meat products in the U.S.: A review. Meat Sci. 2018, 145, 469–479. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.-G.; Morcuende, D.; Andrade, M.-J.; Kylli, P.; Estévez, M. Avocado (Persea americana Mill.) Phenolics, In Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef]
- MinAgricultura. Reporte: Area, Produccion y Rendimiento Nacional por Cultivo; Estadísticas Agropecuarias; MinAgricultura: Caldas, Colombia, 2020. [Google Scholar]
- Editors, G.; Lim, J.S.; Yunus, N.A.; Klemeš, J.J.; Solarte-Toro, J.C.; Alzate, C.A.C. Perspectives of the Sustainability Assessment of Biorefineries. Chem. Eng. Trans. 2021, 83, 307–312. [Google Scholar] [CrossRef]
- Espinosa-García, F.J.; García-Rodríguez, Y.M.; Bravo-Monzón, A.E.; Vega-Peña, E.V.; Delgado-Lamas, G. Implications of the foliar phytochemical diversity of the avocado crop Persea americana cv. Hass in its susceptibility to pests and pathogens. PeerJ 2021, 9, e11796. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Govea-Salas, M.; Pintado, M.E.; Aguilar, C.N. Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind. Crops Prod. 2020, 154, 112623. [Google Scholar] [CrossRef]
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, R.; Paschoal, J.A.R.; Melo, P.S.; De Alencar, S.M. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS ONE 2018, 13, e0192577. [Google Scholar] [CrossRef]
- Girmaye, K.; Ebsa, K. Optimization of Biogas Production from Avocado Fruit Peel Wastes Co-Digestion with Animal Manure Collected from Juice Vending House in Gimbi Town, Ethiopia. Ferment. Technol. 2019, 8, 1–6. [Google Scholar] [CrossRef]
- Gullón, B.; Gullón, P.; Eibes, G.; Cara, C.; De Torres, A.; López-Linares, J.C.; Ruiz, E.; Castro, E. Valorisation of olive agro-industrial by-products as a source of bioactive compounds. Sci. Total Environ. 2018, 645, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int. 2020, 37, 619–655. [Google Scholar] [CrossRef]
- Flores, M.; Saravia, C.; Vergara, C.E.; Avila, F.; Valdés, H.; Ortiz-Viedma, J. Avocado Oil: Characteristics, Properties, and Applications. Molecules 2019, 24, 2172. [Google Scholar] [CrossRef]
- IMARC. Avocado Oil Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2021–2026. 2021. Available online: https://www.imarcgroup.com/avocado-oil-market (accessed on 21 June 2023).
- Solarte-Toro, J.C.; Ortiz-Sanchez, M.; Restrepo-Serna, D.L.; Piñeres, P.P.; Cordero, A.P.; Alzate, C.A.C. Influence of products portfolio and process contextualization on the economic performance of small- and large-scale avocado biorefineries. Bioresour. Technol. 2021, 342, 126060. [Google Scholar] [CrossRef]
- Asadikia, A.; Rajabifard, A.; Kalantari, M. Systematic prioritisation of SDGs: Machine learning approach. World Dev. 2021, 140, 105269. [Google Scholar] [CrossRef]
- Poveda-Giraldo, J.A.; Cardona Alzate, C.A. Biorefinery potential of eucalyptus grandis to produce phenolic compounds and biogas. Can. J. For. Res. 2021, 51, 89–100. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.O.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; NREL/TP-510-42619; A National Laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy: Golden, CO, USA, 2004.
- De Castro, L.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef]
- Han, J.S.; Rowell, J.S. Chemical Composition of Fibers. In Paper and Composites from Agro-Based Resources, 1st ed.; Rowell, R., Young, R., Rowell, J., Eds.; CRC Press: Boca Raton, FL, USA, 1996; Volume 1, pp. 83–134. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; NREL/TP-510-42618; US National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- ASTME1755-01; Standard Test Method for Ash in Biomass. ASTM Int.: West Conshohocken, PA, USA, 2015.
- ASTME872-82; Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. ASTM Int.: West Conshohocken, PA, USA, 2013.
- ASTME1756-01; Standard Test Method for Determination of Total Solids in Biomass. ASTM Int.: West Conshohocken, PA, USA, 2001.
- Cederberg, C.; Hedenus, F.; Wirsenius, S.; Sonesson, U. Trends in greenhouse gas emissions from consumption and production of animal food products—implications for long-term climate targets. Animal 2013, 7, 330–340. [Google Scholar] [CrossRef]
- Wirsenius, S.; Hedenus, F.; Mohlin, K. Greenhouse gas taxes on animal food products: Rationale, tax scheme and climate mitigation effects. Clim. Chang. 2010, 108, 159–184. [Google Scholar] [CrossRef]
- Trujillo-Mayol, I.; Céspedes-Acuña, C.; Silva, F.L.; Alarcón-Enos, J. Improvement of the polyphenol extraction from avocado peel by assisted ultrasound and microwaves. J. Food Process Eng. 2019, 42, e13197. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Marinova, G.; Batchvarov, V. Methods DPPH. Bulg. J. Agric. Sci. 2011, 17, 11–24. [Google Scholar]
- Molyneux Philip. The Use of The Stable Free Radical Diphenylpicryl-hydrazyl (DPPH) For Estimating Anti-oxidant Activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese-Neil, R.; Tulio, A.Z., Jr.; Scheerens, J.C.; Miller-Raymond, A. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- VDI 4630; Fermentation of Organic Materials. Characterization of the Substrate, Sampling, Collection of Material Data, Fermentation Test. Verein Deutscher Ingenieure (VDI): Düsseldorf, Germany, 2006.
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef]
- Mariana, O.-S.; Camilo, S.-T.J.; Ariel, C.-A.C. A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case. Bioresour. Technol. 2021, 325, 124682. [Google Scholar] [CrossRef] [PubMed]
- Pérez, C.A.; Hernández, G.J.; Fuentes, C.J. Use of endophytic bacteria as biological control on Phytophthora cinnamomi Rands causing root rot in avocado (Persea americana Mill.). Rev. Colomb. de Cienc. Anim. 2014, 6, 213–222. [Google Scholar] [CrossRef]
- Permal, R.; Chang, W.L.; Seale, B.; Hamid, N.; Kam, R. Converting industrial organic waste from the cold-pressed avocado oil production line into a potential food preservative. Food Chem. 2020, 306, 125635. [Google Scholar] [CrossRef]
- Serna-Loaiza, S.; Carmona-Garcia, E.; Cardona, C.A. Potential raw materials for biorefineries to ensure food security: The Cocoyam case. Ind. Crops Prod. 2018, 126, 92–102. [Google Scholar] [CrossRef]
- Rashama, C.; Ijoma, G.N.; Matambo, T.S. Appraising different models for predicting biomethane potential: The case of avocado oil processing by-products. J. Mater. Cycles Waste Manag. 2020, 23, 409–415. [Google Scholar] [CrossRef]
- Restrepo-Serna, D.L.; Solarte-Toro, J.C.; Cardona-Alzate, C.A. A Biorefinery Approach for an Integral Valorisation of Avocado Peel and Seeds through Supercritical Fluids. Waste Biomass Valorization 2022, 13, 3973–3988. [Google Scholar] [CrossRef]
- Alonso-Gómez, L.A.; Solarte-Toro, J.C.; Bello-Pérez, L.A.; Cardona-Alzate, C.A. Performance evaluation and economic analysis of the bioethanol and flour production using rejected unripe plantain fruits (Musa paradisiaca L.) as raw material. Food Bioprod. Process. 2020, 121, 29–42. [Google Scholar] [CrossRef]
- Ruiz-Mercado, G.J.; Smith, R.L.; Gonzalez, M.A. Sustainability indicators for chemical processes: II. Data needs. Ind. Eng. Chem. Res. 2012, 51, 2329–2353. [Google Scholar] [CrossRef]
- Peters, S.; Max, D.T.; Klaus, R.; West, E. Plant Design and Economics for Chemical Engineers, 5th ed.; McGraw-Hill Education: Denver, CO, USA, 2003. [Google Scholar]
- Rueda-Duran, C.-A.; Ortiz-Sanchez, M.; Cardona-Alzate, C.A. Detailed economic assessment of polylactic acid production by using glucose platform: Sugarcane bagasse, coffee cut stems, and plantain peels as possible raw materials. Biomass Convers. Biorefinery 2022, 12, 4419–4434. [Google Scholar] [CrossRef]
- Merino-Salazar, P.; Artazcoz, L.; Cornelio, C.; Iñiguez, M.J.I.; Rojas, M.; Martínez-Iñigo, D.; Vives, A.; Funcasta, L.; Benavides, F.G. Work and health in Latin America: Results from the working conditions surveys of Colombia, Argentina, Chile, Central America and Uruguay. Occup. Environ. Med. 2017, 74, 432–439. [Google Scholar] [CrossRef]
- Aristizábal-Marulanda, V.; Solarte-Toro, J.C.; Alzate, C.A.C. Economic and social assessment of biorefineries: The case of Coffee Cut-Stems (CCS) in Colombia. Bioresour. Technol. Rep. 2020, 9, 100397. [Google Scholar] [CrossRef]
- Poveda-Giraldo, J.A.; Garcia-Vallejo, M.C.; Alzate, C.A.C. Analysis of Single-Step Pretreatments for Lignocellulosic Platform Isolation as the Basis of Biorefinery Design. Molecules 2023, 28, 1278. [Google Scholar] [CrossRef] [PubMed]
- Eisfeldt, F.; Ciroth, A. PSILCA—A Product Social Impact Life Cycle Assessment Database. 2018. Available online: https://www.psilca.net/ (accessed on 21 June 2023).
- Salary Checks—World Wide Wage Comparison—WageIndicator.org. Available online: https://wageindicator.org/ (accessed on 21 June 2023).
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework Management. Secretaría Central de ISO: Geneva Switzerland, 2018.
- Setyawan, H.Y.; Sukardi, S.; Puriwangi, C.A. Phytochemicals properties of avocado seed: A review. IOP Conf. Ser. Earth Environ. Sci. 2021, 733, 012090. [Google Scholar] [CrossRef]
- García-Vargas, M.C.; Contreras, M.d.M.; Castro, E. Avocado-Derived Biomass as a Source of Bioenergy and Bioproducts. Appl. Sci. 2020, 10, 8195. [Google Scholar] [CrossRef]
- Perea-Moreno, A.-J.; Aguilera-Ureña, M.-J.; Manzano-Agugliaro, F. Fuel properties of avocado stone. Fuel 2016, 186, 358–364. [Google Scholar] [CrossRef]
- Nasri, C.; Halabi, Y.; Harhar, H.; Mohammed, F.; Bellaouchou, A.; Guenbour, A.; Tabyaoui, M. Chemical characterization of oil from four Avocado varieties cultivated in Morocco. OCL 2021, 28, 19. [Google Scholar] [CrossRef]
- Narain, N.; Bora, P.S.; Rocha, R.V.; Paulo, M.Q. Characterization of the oils from the pulp and seeds of avocado (cultivar: Fuerte) fruits. Grasas y Aceites 2001, 52, 171–174. [Google Scholar] [CrossRef]
- Garcia-Vallejo, M.C.; Solarte-Toro, J.C.; Ortiz-Sanchez, M.; Chamorro-Anaya, L.; Chamorro-Anaya, L.; Peroza-Piñeres, P.; Pérez-Cordero, A.; Alzate, C.A.C. Exploring the production of antioxidants and biogas from avocado (Persea Americana var. Americana) residues as an alternative for developing rural bioeconomies. Sustain. Chem. Pharm. 2023, 33, 101089. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Lozano-Sánchez, J.; Quirantes-Piné, R.; Segura-Carretero, A. Optimization of drying process and pressurized liquid extraction for recovery of bioactive compounds from avocado peel by-product. Electrophoresis 2018, 39, 1908–1916. [Google Scholar] [CrossRef]
- Sautermeister, F.; Priest, M.; Lee, P.; Fox, M. Impact of sulphuric acid on cylinder lubrication for large 2-stroke marine diesel engines: Contact angle, interfacial tension and chemical interaction. Tribol. Int. 2013, 59, 47–56. [Google Scholar] [CrossRef]
- Rodríguez, S.P.; Alzate, C.A.C. Chapter 12: Small-scale biorefineries based on plantain and avocado residues. In Waste Biorefinery; Value Addition Through Resource Utilization; Elsevier: Amsterdam, The Netherlands, 2021; pp. 349–374. [Google Scholar]
- Milena, H.J.A.; Segura, A. Huella de carbono en cadenas productivas de cafe (Coffea arabica L.) con diferentes estandares de certificación en Costa Rica. Luna Azul 2012, 35, 60–77. [Google Scholar]
- Falconer, L.; Telfer, T.; Pham, K.L.; Ross, L. GIS Technologies for Sustainable Aquaculture. Earth Syst. Environ. Sci. 2017, 3, 290–314. [Google Scholar] [CrossRef]
- Kitamura, R.; Sugiyama, C.; Yasuda, K.; Nagatake, A.; Yuan, Y.; Du, J.; Yamaki, N.; Taira, K.; Kawai, M.; Hatano, R. Effects of Three Types of Organic Fertilizers on Greenhouse Gas Emissions in a Grassland on Andosol in Southern Hokkaido, Japan. Front. Sustain. Food Syst. 2021, 5, 649613. [Google Scholar] [CrossRef]
- Havukainen, J.; Uusitalo, V.; Koistinen, K.; Liikanen, M.; Horttanainen, M. Carbon footprint evaluation of biofertilizers. Int. J. Sustain. Dev. Plan. 2018, 13, 1050–1060. [Google Scholar] [CrossRef]
- Yuttitham, M. Comparison of Carbon Footprint of Organic and Conventional Farming of Chinese Kale. Environ. Nat. Resour. J. 2019, 17, 78–92. [Google Scholar] [CrossRef]
- Hadjian, P.; Bahmer, T.; Egle, J. Life Cycle Assessment of Three Tropical Fruits (Avocado, Banana, Pineapple). Trop. Subtrop. Agroecosystems 2019, 22, 127–141. [Google Scholar]
- D’Abbadie, C.; Alkbari, S. WA Avocado Life Cycle Analysis (LCA); Department of Primary Industries and Regional Development: Perth, Australia, 2023; pp. 1–8.
- Paolini, V.; Petracchini, F.; Segreto, M.; Tomassetti, L.; Naja, N.; Cecinato, A. Environmental impact of biogas: A short review of current knowledge. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2018, 53, 899–906. [Google Scholar] [CrossRef]
- Machado, K.S.; Seleme, R.; Maceno, M.M.; Zattar, I.C. Carbon footprint in the ethanol feedstocks cultivation—Agricultural CO2 emission assessment. Agric. Syst. 2017, 157, 140–145. [Google Scholar] [CrossRef]
- Cecile de Klein, T.C.W.; Novoa, R.S.A.; Ogle, S.; Smith, K.A.; Rochette, P. Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. Agric. For. Other Land Use 2006, 4, 1–54. [Google Scholar]
- Prasuhn, V. Erfassung der PO4-Austräge für die Ökobilanzierung; Salca-Phosphor: Agroscope, Switzerland, 2006; p. 20. [Google Scholar]
- Andres, C.; Aristizabal, A. Análisis de Disponibilidad de Cadmio Libre en Suelos Empleados Para el Cultivo de Cacao en los Departamentos de Arauca y Nariño; Universidad de La Salle: Bogotá, Colombia, 2021. [Google Scholar]
- Acosta, A.S.G. Evaluación de Algunas Propiedades Físicas y Químicas de un Suelo Aeric Tropic Fluvaquents Sometido a Diferentes Tiempos de Usos en el Sistema Fríjol Voluble. Ph.D. Thesis, Universidad de Nariño, Pasto, Colombia, 2014. [Google Scholar]
- Nemecek, T.; Bengoa, X.; Rossi, V.; Humbert, S.; Lansche, J.; Mouron, P. World Food LCA Database: Methodological Guidelines for the Life Cycle Inventory of Agricultural Products; World Food LCA Database (WFLDB): Lausanne, Switzerland, 2019; p. 88. [Google Scholar]
Scenario | Raw Material | Product and Subproducts |
---|---|---|
Small-B1 | Rejected avocado | Guacamole Biogas Fertilizer |
Small-B2 | Rejected avocado | Animal feed Biogas Fertilizer |
Small-B3 | Rejected avocado Seeds and peels from industrial processing | Avocado oil Bioactive compounds Biogas Fertilizer |
Small-B4 | Rejected avocado Seeds and peels from industrial processing | Animal feed Bioactive compounds Biogas Fertilizer |
Index | Equation | Units | Equation |
---|---|---|---|
Mass | |||
Product yield | kg P/t RM | (2) | |
Process mass intensity | kg RM/kg P | (3) | |
Mass loss index | kg WS/kg P | (4) | |
Energetics | |||
Specific energy consumption | kW/kg RM | (5) | |
Self-generation | N.A. | (6) | |
Resources energy efficiency | % | (7) |
Stakeholders | Subcategory | Indicator | Equation |
---|---|---|---|
Workers | Fair wages | Living wage per month | |
Minimum wage per month | |||
Working time | Hours of work per employee | ||
Local community | Local employment | Employment generation | N.A |
Access to material resources | Industrial water use | ||
Energy demand |
Link | Criteria | Commentary/Consideration/Limitation |
---|---|---|
Input suppliers | Construction of the nursery | The inputs and outputs considered in the producer’s link were adjusted according to the contribution of the area planted with creole avocados to the total avocados planted |
Hectares of creole avocado in Caldas | The creole avocado crop represents 9.15% of the total avocado in the department | |
Germination | Germination was carried out in germinators and the seedlings were grown in plastic bags | |
Average distance between nursery and grower | Average distance 35 km. Distances were modeled with EURO 1 type engines (SimaPro) | |
Producers | Crop establishment | The inputs and outputs considered in the producers’ link were adjusted according to the percentage contribution of the area planted with creole avocado to the total avocado planted |
Crop type | Monoculture | |
Genetic material | Creole avocado (P. americana var. Drymifolia) | |
Seeding density | 142 avocado trees/ha | |
Productivity | 400 kg of dry avocado per hectare per year | |
Labors | The environmental impact associated with the transportation of workers was not considered | |
Commercialization | Marketing | Plastic baskets were considered for avocado transportation |
Transporter | The average distance was 20 km. Distances were modeled with EURO 1 type engines (SimaPro). | |
Process | Raw Materials/Utilities | The mass and energy balances compiled from the simulation of the processes or scenarios evaluated using the Aspen Plus v9 software were considered for avocado processing. Likewise, electricity consumption and the consumption of low- or high-pressure steam (thermal consumption) were also considered for the process |
Commercialization | Transporter | The environmental impacts associated with the transportation of creole avocado and processed products were not considered for the study due to the diversity of routes that must be involved |
Item | Seed | Peel | ||
---|---|---|---|---|
Chemical Characterization (%w/w Dry Basis) | ||||
Extractives | 26.45 | 0.55 | 30.78 | 0.57 |
Reducing sugars (g/L) | 3.01 | 0.57 | 2.09 | 0.40 |
Fats | 9.81 | 0.40 | 13.89 | 1.58 |
Cellulose | 13.38 | 0.43 | 21.64 | 0.98 |
Hemicellulose | 9.30 | 0.59 | 15.04 | 0.27 |
Total lignin | 7.78 | 0.82 | 9.95 | 0.81 |
Insoluble acid lignin | 7.59 | 0.67 | 9.71 | 0.65 |
Soluble acid lignin | 0.19 | 0.01 | 0.24 | 0.02 |
Starch | 24.58 | 1.12 | 1.60 | 1.33 |
Proximate analysis | ||||
Moisture | 13.17 | 0.11 | 11.09 | 0.10 |
Ash | 2.86 | 0.10 | 3.27 | 0.13 |
Volatile matter | 79.91 | 0.54 | 80.26 | 0.23 |
Fixed carbon | 17.22 | 0.13 | 16.48 | 0.11 |
VM/FC | 4.64 | 0.81 | 4.87 | 0.58 |
Higher calorific value (MJ/kg) | 18.37 | 1.11 | 18.05 | 1.02 |
Solids content | ||||
Total solids | 87.61 | 0.20 | 89.51 | 0.27 |
Volatile solids | 3.33 | 0.03 | 6.44 | 0.05 |
Item | DPPH | TPC | ABTS + |
---|---|---|---|
Seed | 718.94 | 559.14 | 613.60 |
Peel | 773.05 | 388.04 | 245.35 |
Item | Units | Small-B1 | Small-B2 | Small-B3 | Small-B4 |
---|---|---|---|---|---|
Mass indicators | |||||
Product yield (Yp) | |||||
Guacamole | t/t RM | 0.46 | - | 0.23 | 0.23 |
Avocado oil | t/t RM | - | - | 0.25 | - |
Bioactive compounds | t/t RM | - | - | 0.77 | 0.77 |
Animal feed | t/t RM | - | 1.13 | - | 0.64 |
Biogas | kg/t RM | 0.079 | 0.072 | 0.072 | 0.072 |
Fertilizer | t/t RM | 1.18 | 1.18 | 0.78 | 0.78 |
Process Mass Intensity (PMI) | kg RM/kg P | 18.54 | 13.65 | 10.74 | 9.16 |
Mass loss index (MLI) | kg WS/kg P | 5.26 | 3.80 | 5.16 | 5.13 |
Energy indicators | |||||
Specific Energy Consumption (SEC) | kWh/kg RM | 20.37 | 20.38 | 12.54 | 12.53 |
Self-generation—Biogas (SGI) | N.A. | 0.058 | 0.057 | 0.089 | 0.090 |
Energy efficiency resources (nE) | % | 0.0060 | 0.0059 | 0.0057 | 0.0057 |
Economic Evaluation Results | Units | Small-B1 | Small-B2 | Small-B3 | Small-B4 |
---|---|---|---|---|---|
CapEx | mUSD | 0.48 | 0.48 | 1.00 | 0.97 |
OpEx | mUSD | 1.28 | 1.37 | 6.28 | 6.29 |
Payback period | year | 1.04 | 0.16 | 0.17 | |
Minimum Processing Scale for Economic Feasibility (MPSEF) | kg/h | 31.59 | 5.94 | 5.23 |
Stakeholders | Indicator | Base Case for Colombia | Value | Risk | |
---|---|---|---|---|---|
Workers | Living wage per month | 238.5 USD | 0.9100 | Low risk | |
Minimum wage per month | 256.0 USD | 1.3600 | Medium risk | ||
Hours of work per employee * | 42 | 40 | Low risk | ||
Local community | Employment generation | 6–7 workers/day | Jobs | ||
Level of industrial water use (withdrawal) ** | S-B1 | 0.0003 | Very low risk | ||
S-B2 | 0.0003 | ||||
S-B3 | 0.0004 | ||||
S-B4 | 0.0004 | ||||
Energy demand *** | 72.824 GWh | S-B1 | GWh 0.0069 | Very low risk | |
S-B2 | 0.0069 | ||||
S-B3 | 0.0087 | ||||
S-B4 | 0.0088 |
Nitrogen Emissions | |||
---|---|---|---|
Input suppliers | Emissions of N2O—Direct—air | 0.23 | g N2O/seedling |
Emissions of N2O—Indirect—air | 0.02 | g N2O/seedling | |
Emissions of NH3—air | 0.18 | g NH3/seedling | |
Emissions of NO3−—water | 2.23 | g NO3−—N/seedling | |
Producers | Emissions of N2O—Direct—air | 9.64 | g N2O/seedling |
Emissions of N2O—Indirect—air | 1.01 | g N2O/seedling | |
Emissions of NH3—air | 7.45 | g NH3/seedling | |
Emissions of NO3−—water | 92.00 | g NO3−—N/seedling | |
Phosphorus Emissions | |||
Input suppliers | water | 201.01 | g P/ha/a |
Emissions of P soil | 0.04 | g P/ha | |
Producers | water | 246.92 | g P/ha/a |
Emissions of P soil | 7.26 | g P/ha | |
Emissions | |||
Producers | —air | 31.24 | /seedling |
Category | Small-B1 | Small-B2 | Small-B3 | Small-B4 |
---|---|---|---|---|
eq per FU) | 1.01 | 1.32 | 2.41 | 2.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Vallejo, M.C.; Agudelo Patiño, T.; Poveda-Giraldo, J.A.; Piedrahita-Rodríguez, S.; Cardona Alzate, C.A. Alternatives for the Valorization of Avocado Waste Generated in the Different Links of the Value Chain Based on a Life-Cycle Analysis Approach. Agronomy 2023, 13, 2229. https://doi.org/10.3390/agronomy13092229
Garcia-Vallejo MC, Agudelo Patiño T, Poveda-Giraldo JA, Piedrahita-Rodríguez S, Cardona Alzate CA. Alternatives for the Valorization of Avocado Waste Generated in the Different Links of the Value Chain Based on a Life-Cycle Analysis Approach. Agronomy. 2023; 13(9):2229. https://doi.org/10.3390/agronomy13092229
Chicago/Turabian StyleGarcia-Vallejo, Maria Camila, Tatiana Agudelo Patiño, Jhonny Alejandro Poveda-Giraldo, Sara Piedrahita-Rodríguez, and Carlos Ariel Cardona Alzate. 2023. "Alternatives for the Valorization of Avocado Waste Generated in the Different Links of the Value Chain Based on a Life-Cycle Analysis Approach" Agronomy 13, no. 9: 2229. https://doi.org/10.3390/agronomy13092229
APA StyleGarcia-Vallejo, M. C., Agudelo Patiño, T., Poveda-Giraldo, J. A., Piedrahita-Rodríguez, S., & Cardona Alzate, C. A. (2023). Alternatives for the Valorization of Avocado Waste Generated in the Different Links of the Value Chain Based on a Life-Cycle Analysis Approach. Agronomy, 13(9), 2229. https://doi.org/10.3390/agronomy13092229