Influencing Factors of Elevated Levels of Potentially Toxic Elements in Agricultural Soils from Typical Karst Regions of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Pretreatment
2.3. Chemical Analysis
2.4. Factor Importance Identification
2.5. Statistical Analysis
3. Results and Discussion
3.1. Concentrations of PTEs in Agricultural Soils
3.2. Relationships between Major Elements and PTEs in Agricultural Soils
3.3. Factors Influencing Elevated Levels of PTEs in Agricultural Soils
3.3.1. Soil Ferro-Manganese Oxides
3.3.2. Soil pH and Organic Carbon
3.3.3. Weathering Intensity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, J.-L.; Lin, Y.-C.; Gao, S.-P.; Zhang, J.-F. Enrichment of trace elements in ferromanganese concretions from terra rossa and their potential desorption. Geochem. J. 2012, 46, 151–161. [Google Scholar] [CrossRef]
- Ji, H.; Wang, S.; Ouyang, Z.; Zhang, S.; Sun, C.; Liu, X.; Zhou, D. Geochemistry of red residua underlying dolomites in karst terrains of Yunnan-Guizhou Plateau: I. The formation of the Pingba profile. Chem. Geol. 2004, 203, 1–27. [Google Scholar] [CrossRef]
- Sandler, A.; Meunier, A.; Velde, B. Mineralogical and chemical variability of mountain red/brown Mediterranean soils. Geoderma 2015, 239–240, 156–167. [Google Scholar] [CrossRef]
- Vingiani, S.; Di Iorio, E.; Colombo, C.; Terribile, F. Integrated study of Red Mediterranean soils from Southern Italy. Catena 2018, 168, 129–140. [Google Scholar] [CrossRef]
- Yamasaki, S.-I.; Takeda, A.; Nunohara, K.; Tsuchiya, N. Red soils derived from limestone contain higher amounts of trace elements than those derived from various other parent materials. Soil Sci. Plant Nutr. 2013, 59, 692–699. [Google Scholar] [CrossRef]
- Wei, X.; Ji, H.; Wang, S.; Chu, H.; Song, C. The formation of representative lateritic weathering covers in south-central Guangxi (southern China). Catena 2014, 118, 55–72. [Google Scholar]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar]
- Gloaguen, T.V.; Passe, J.J. Importance of lithology in defining natural background concentrations of Cr, Cu, Ni, Pb and Zn in sedimentary soils, northeastern Brazil. Chemosphere 2017, 186, 31–42. [Google Scholar] [CrossRef]
- Zhang, S.; Song, J.; Cheng, Y.; McBride, M.B. Derivation of regional risk screening values and intervention values for cadmium-contaminated agricultural land in the Guizhou Plateau. Land Degrad. Dev. 2018, 29, 2366–2377. [Google Scholar] [CrossRef]
- Salomons, W.; Förstner, U. Metals in the Hydrocycle; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Quezada-Hinojosa, R.P.; Föllmi, K.B.; Verrecchia, E.; Adatte, T.; Matera, V. Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains. Catena 2015, 125, 10–32. [Google Scholar] [CrossRef]
- Temur, S.; Orhan, H.; Deli, A. Geochemistry of the limestone of Mortas Formation and related terra rossa, Seydisehir, Konya, Turkey. Geochem. Int. 2009, 47, 67–93. [Google Scholar] [CrossRef]
- Yu, G.; Zheng, W.; Wang, W.; Dai, F.; Zhang, Z.; Yuan, Y.; Wang, Q. Health risk assessment of Chinese consumers to Cadmium via dietary intake. J. Trace Elem. Med. Biol. 2017, 44, 137–145. [Google Scholar] [PubMed]
- Henson, M.C.; Chedrese, P.J. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp. Biol. Med. 2004, 229, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Li, W.; Yang, Z.; Zhang, Q.; Ji, J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 2020, 245, 125620. [Google Scholar] [PubMed]
- Wen, Y.; Li, W.; Yang, Z.; Zhuo, X.; Guan, D.-X.; Song, Y.; Guo, C.; Ji, J. Evaluation of various approaches to predict cadmium bioavailability to rice grown in soils with high geochemical background in the karst region, Southwestern China. Environ. Pollut. 2020, 258, 113645. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Dai, Y.; Nasir, M.; Zhang, Y.; Wu, H.; Guo, H.; Lv, J. Comparison of DGT with traditional methods for assessing cadmium bioavailability to Brassica chinensis in different soils. Sci. Rep. 2017, 7, 14206. [Google Scholar]
- Chenery, S.R.; Izquierdo, M.; Marzouk, E.; Klinck, B.; Palumbo-Roe, B.; Tye, A.M. Soil-plant interactions and the uptake of Pb at abandoned mining sites in the Rookhope catchment of the N. Pennines, UK-a Pb isotope study. Sci. Total Environ. 2012, 433, 547–560. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- R Development Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2007; ISBN 3-900051-07-0. Available online: http://www.R-project.org (accessed on 15 March 2023).
- Song, C.; Ji, H.; Beckford, H.O.; Chang, C.; Wang, S. Assessment of chemical weathering and physical erosion along a hillslope, southwest China. Catena 2019, 182, 104133. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Centre (CNEMC). Elemental Background Values of Soils in China; Environmental Science Press of China: Beijing, China, 1990. [Google Scholar]
- GB-15618-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment of China (MEE): Beijing, China, 2018.
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar]
- Wu, L.; Zhou, J.; Zhou, T.; Li, Z.; Jiang, J.; Zhu, D.; Hou, J.; Wang, Z.; Luo, Y.; Christie, P. Estimating cadmium availability to the hyperaccumulator Sedum plumbizincicola in a wide range of soil types using a piecewise function. Sci. Total Environ. 2018, 637–638, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Adriano, D.C. Trace Elements in the Terrestrial Environment: Biogeochemistry, Bioavailability, and Risks of Metals; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Liu, S.; Tian, S.; Li, K.; Wang, L.; Liang, T. Heavy metal bioaccessibility and health risks in the contaminated soil of an abandoned, small-scale lead and zinc mine. Environ. Sci. Pollut. Res. Int. 2018, 25, 15044–15056. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Ju, Y.; Hou, Q.; Wang, S.; Liu, Q.; Wu, Y.; Xiao, L. Enrichment of heavy metal elements and their adsorption on iron oxides during carbonate rock weathering process. Prog. Nat. Sci. 2009, 19, 1133–1139. [Google Scholar] [CrossRef]
- Quezada-Hinojosa, R.P.; Matera, V.; Adatte, T.; Rambeau, C.; Föllmi, K.B. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura. Geoderma 2009, 150, 287–301. [Google Scholar]
- Sterckeman, T.; Douay, F.; Baize, D.; Fourrier, H.; Proix, N.; Schvartz, C. Factors affecting trace element concentrations in soils developed on recent marine deposits from northern France. Appl. Geochem. 2004, 19, 89–103. [Google Scholar] [CrossRef]
- Tack, F.M.; Vanhaesebroeck, T.; Verloo, M.G.; Van Rompaey, K.; Van Ranst, E. Mercury baseline levels in Flemish soils (Belgium). Environ. Pollut. 2005, 134, 173–179. [Google Scholar] [CrossRef]
- Jacquat, O.; Voegelin, A.; Juillot, F.; Kretzschmar, R. Changes in Zn Tahervand speciation during soil formation from Zn-rich limestones. Geochim. Cosmochim. Acta 2009, 73, 5554–5571. [Google Scholar]
- Wei, X.; Ji, H.; Li, D.; Zhang, F.; Wang, S. Material source analysis and element geochemical research about two types of representative bauxite deposits and terra rossa in western Guangxi, southern China. J. Geochem. Explor. 2013, 133, 68–87. [Google Scholar]
- Suda, A.; Makino, T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma 2016, 270, 68–75. [Google Scholar]
- Sipos, P.; Németh, T.; Kis, V.K.; Mohai, I. Association of individual soil mineral constituents and heavy metals as studied by sorption experiments and analytical electron microscopy analyses. J. Hazard. Mater. 2009, 168, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Yang, Z.; Yu, T.; Yang, Q.; Wen, Y.; Wu, T. Potential ecological risk assessment of heavy metals in the Fe-Mn nodules in the karst area of Guangxi, Southwest China. Bull. Environ. Contam. Toxicol. 2021, 106, 51–56. [Google Scholar] [PubMed]
- Ji, W.; Lu, Y.; Zhao, C.; Zhang, X.; Wang, H.; Hu, Z.; Yu, T.; Wen, Y.; Ying, R.; Yang, Z. Mineral composition and environmental importance of Fe-Mn nodules in soils in karst areas of Guangxi, China. Sustainability 2022, 14, 12457. [Google Scholar] [CrossRef]
- Ji, W.; Lu, Y.; Yang, M.; Wang, J.; Zhang, X.; Zhao, C.Y.; Xia, B.; Wu, Y.; Ying, Y. Geochemical characteristics of typical karst soil profiles in Anhui province, Southeastern China. Agronomy 2023, 13, 1067. [Google Scholar] [CrossRef]
- Ettler, V.; Chren, M.; Mihaljevič, M.; Drahota, P.; Kříbek, B.; Veselovský, F.; Sracek, O.; Vaněk, A.; Penížek, V.; Komárek, M.; et al. Characterization of Fe-Mn concentric nodules from Luvisol irrigated by mine water in a semi-arid agricultural area. Geoderma 2017, 299, 32–42. [Google Scholar] [CrossRef]
- Feng, J.-L. Trace elements in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa overlying dolomite: Their mobilization, redistribution and fractionation. J. Geochem. Explor. 2011, 108, 99–111. [Google Scholar]
- Gasparatos, D. Sequestration of heavy metals from soil with Fe-Mn concretions and nodules. Environ. Chem. Lett. 2012, 11, 1–9. [Google Scholar]
- SzymaŃSki, W.; Skiba, M. Distribution, morphology, and chemical composition of Fe-Mn nodules in Albeluvisols of the Carpathian Foothills, Poland. Pedosphere 2013, 23, 445–454. [Google Scholar]
- Ramos-Miras, J.; Roca-Perez, L.; Guzmán-Palomino, M.; Boluda, R.; Gil, C. Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). J. Geochem. Explor. 2011, 110, 186–192. [Google Scholar]
- Liu, Y.; Xiao, T.; Ning, Z.; Li, H.; Tang, J.; Zhou, G. High cadmium concentration in soil in the three gorges region: Geogenic source and potential bioavailability. Appl. Geochem. 2013, 37, 149–156. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Cadmium sorption and desorption in soils: A review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 489–533. [Google Scholar] [CrossRef]
- Tahervand, S.; Jalali, M. Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH. Environ. Monit. Assess. 2016, 188, 322. [Google Scholar] [PubMed]
- Santona, L.; Castaldi, P.; Melis, P. Evaluation of the interaction mechanisms between red muds and heavy metals. J. Hazard. Mater. 2006, 136, 324–329. [Google Scholar] [CrossRef] [PubMed]
Unit | Minimum | Maximum | Mean | SD | CV (%) | |
---|---|---|---|---|---|---|
As | mg kg−1 | 2.55 | 523.0 | 39.91 | 49.48 | 123.9 |
Cd | mg kg−1 | 0.12 | 7.69 | 1.12 | 1.46 | 130.4 |
Cr | mg kg−1 | 30.70 | 1442 | 178.9 | 159.7 | 89.28 |
Cu | mg kg−1 | 12.90 | 162.0 | 35.76 | 14.15 | 39.57 |
Hg | mg kg−1 | 0.06 | 0.55 | 0.19 | 0.08 | 42.10 |
Ni | mg kg−1 | 7.30 | 166.4 | 39.52 | 23.41 | 59.25 |
Pb | mg kg−1 | 16.40 | 528.5 | 58.29 | 56.80 | 97.44 |
Zn | mg kg−1 | 28.20 | 732.1 | 145.0 | 99.54 | 68.61 |
Na2O | % | 0.04 | 1.11 | 0.13 | 0.09 | 71.10 |
MgO | % | 0.15 | 1.86 | 0.63 | 0.28 | 44.28 |
Al2O3 | % | 4.86 | 28.92 | 14.24 | 4.58 | 32.19 |
SiO2 | % | 27.12 | 87.19 | 62.95 | 14.22 | 22.60 |
Fe2O3T | % | 1.29 | 47.24 | 8.62 | 6.46 | 74.95 |
Mn | mg kg−1 | 39.10 | 2961 | 576.9 | 607.4 | 105.2 |
K2O | % | 0.14 | 3.28 | 1.13 | 0.61 | 53.58 |
CaO | % | 0.20 | 23.50 | 1.73 | 3.66 | 211.1 |
pH | 4.97 | 8.25 | 6.61 | 0.84 | 12.72 |
As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|
Background values of soil A layer in Guangxi (mg·kg−1) [24] | 20.5 | 0.267 | 82.1 | 27.8 | 0.152 | 26.6 | 24 | 75.6 |
Proportion of samples exceeded Guangxi background values (%) | 52.5 | 84.2 | 75.9 | 71.9 | 66.5 | 63.7 | 90.3 | 80.6 |
Background values of soil A layer in China (mg·kg−1) [24] | 11.2 | 0.097 | 61 | 22.6 | 0.065 | 26.9 | 26 | 74.2 |
Proportion of samples exceeded national background values (%) | 84.5 | 100.0 | 94.6 | 86.7 | 99.3 | 62.2 | 86.7 | 82.4 |
Proportion of samples exceeded the risk screening thresholds [25] | 43.5 | 76.3 | 32.4 | 4.3 | 0.7 | 1.1 | 6.1 | 12.6 |
Proportion of samples exceeded the risk control limits [25] | 5.0 | 7.6 | 0.4 | - | 0.4 | - | 0.4 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Wang, Y.; Ji, W.; Wei, N.; Liao, Q.; Huang, D.; Meng, X.; Song, Y. Influencing Factors of Elevated Levels of Potentially Toxic Elements in Agricultural Soils from Typical Karst Regions of China. Agronomy 2023, 13, 2230. https://doi.org/10.3390/agronomy13092230
Wen Y, Wang Y, Ji W, Wei N, Liao Q, Huang D, Meng X, Song Y. Influencing Factors of Elevated Levels of Potentially Toxic Elements in Agricultural Soils from Typical Karst Regions of China. Agronomy. 2023; 13(9):2230. https://doi.org/10.3390/agronomy13092230
Chicago/Turabian StyleWen, Yubo, Yuanyuan Wang, Wenbing Ji, Ning Wei, Qilin Liao, Dingling Huang, Xianqiang Meng, and Yinxian Song. 2023. "Influencing Factors of Elevated Levels of Potentially Toxic Elements in Agricultural Soils from Typical Karst Regions of China" Agronomy 13, no. 9: 2230. https://doi.org/10.3390/agronomy13092230
APA StyleWen, Y., Wang, Y., Ji, W., Wei, N., Liao, Q., Huang, D., Meng, X., & Song, Y. (2023). Influencing Factors of Elevated Levels of Potentially Toxic Elements in Agricultural Soils from Typical Karst Regions of China. Agronomy, 13(9), 2230. https://doi.org/10.3390/agronomy13092230