Enhancing the Extraction Process Efficiency of Thyme Essential Oil by Combined Ultrasound and Microwave Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Essential Oil Extraction Procedure
2.2.2. Ultrasound Pre-Treatment of Plant Material
2.2.3. GC-MS Analysis of the Thyme Essential Oil
2.2.4. Statistical Analysis
3. Results
3.1. Microwave-Assisted Hydro-Distillation (MWHD) vs. Conventional Hydro-Distillation (CHD)
3.2. Influence of Solvent to Plant Ratio on the Extraction of Thyme Essential Oil
3.3. Influence of Ultrasound Equipment on the Extraction of Thyme Essential Oil
3.4. Influence of Ultrasound Amplitude on the Extraction of Thyme Essential Oil
3.5. Influence of Thyme Leaf Size on the EO Extraction
3.6. Principal Component Analysis
- p-Cymene is weakly correlated with thymol, β-pinene, α-terpinene, and γ-terpinene (−0.034 ≤ r ≤ 0.179);
- Thymol is highly inversely correlated with β-pinene, α-terpinene, and γ-terpinene (−0.890 ≤ r ≤ −0.815);
- β-Pinene is highly directly correlated with α-terpinene, and γ-terpinene (0.797 ≤ r ≤ 0.908);
- The EO obtained by methods 6–9 (highlighted using blue and green circles) had a higher content of thymol and lower contents of β-pinene, α-terpinene, and γ-terpinene compared with the EO obtained by methods 1–5 (highlighted using red circle—discrimination on PC1);
- The EO obtained by method 9 (highlighted using blue circle) had a higher content of p-cymene compared with the EO obtained by methods 6–8 (highlighted using green circle—discrimination on PC2).
- Moreover, the highest amount of thymol was obtained by method 9.
3.7. Energy Considerations
Extraction Methods | Total Energy (kJ) | Specific Energy (kJ/g of EO) | |
---|---|---|---|
Leaf particle size of 1–2 cm | CHD | 4104 | 2487.3 |
MWHD without ultrasound pre-treatment (solvent to plant material ratio of 8/1) | 1104 | 716.9 | |
MWHD without ultrasound pre-treatment (solvent to plant material ratio of 10/1) | 1104 | 657.1 | |
MWHD without ultrasound pre-treatment (solvent to plant material ratio of 12/1) | 1104 | 638.2 | |
MWHD + ultrasonic bath pre-treatment | 1896 | 1036.1 | |
MWHD + ultrasonic horn pre-treatment (50% amplitude) | 1151.1 | 548.2 | |
MWHD + ultrasonic horn pre-treatment (70% amplitude) | 1186.7 | 534.5 | |
Leaf particle size < 0.1 cm | MWHD without ultrasound pre-treatment (solvent to plant material ratio of 12/1) | 1104 | 508.8 |
MWHD + ultrasonic horn pre-treatment (50% amplitude) | 1151.2 | 479.6 | |
MWHD + ultrasonic horn pre-treatment (70% amplitude) | 1186.7 | 442.8 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prasanth Reddy, V.; Ravi Vital, K.; Varsha, P.V.; Satyam, S. Review on Thymus vulgaris Traditional Uses and Pharmacological Properties. Med. Aromat Plants 2014, 3, 1000164. [Google Scholar] [CrossRef]
- Shalaby, A.S.; Razin, A.M. Dense Cultivation and Fertilization for Higher Yield of Thyme (Thymus vulgaris L.). J. Agron. Crop Sci. 1992, 168, 243–248. [Google Scholar] [CrossRef]
- Nieto, G. A Review on Applications and Uses of Thymus in the Food Industry. Plants 2020, 9, 961. [Google Scholar] [CrossRef]
- Sheorain, J.; Mehra, M.; Thakur, R.; Grewal, S.; Kumari, S. In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier. Int. J. Biol. Macromol. 2019, 125, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.K.; Vashisht, I.; Khan, A.; Sharma, S.; Saha, S. Synthesis, characterization and antibacterial activity of thymol-loaded polylactic acid microparticles entrapped with essential oils of varying viscosity. J. Mater. Sci. 2019, 54, 9745–9758. [Google Scholar] [CrossRef]
- Parkatzidis, K.; Chatzinikolaidou, M.; Koufakis, E.; Kaliva, M.; Farsari, M.; Vamvakaki, M. Multi-photon polymerization of bio-inspired, thymol-functionalized hybrid materials with biocompatible and antimicrobial activity. Polym. Chem. 2020, 11, 4078–4083. [Google Scholar] [CrossRef]
- Venturini, T.P.; Rossato, L.; Chassot, F.; De Azevedo, M.I.; Al-Hatmi, A.M.S.; Santurio, J.M.; Alves, S.H. Activity of cinnamaldehyde, carvacrol and thymol combined with antifungal agents against Fusarium spp. J. Essent. Oil Res. 2021, 33, 502–508. [Google Scholar] [CrossRef]
- Felici, M.; Tugnoli, B.; Ghiselli, F.; Massi, P.; Tosi, G.; Fiorentini, L.; Piva, A.; Grilli, E. In vitro anticoccidial activity of thymol, carvacrol, and saponins. Poult. Sci. 2020, 99, 5350–5355. [Google Scholar] [CrossRef]
- Videla, E.A.; Giayetto, O.; Fernandez, M.E.; Chacana, P.A.; Marin, R.H.; Nazar, F.N. Immediate and transgenerational effects of thymol supplementation, inactivated Salmonella and chronic heat stress on representative immune variables of Japanese quail. Sci. Rep. 2020, 10, 18152. [Google Scholar] [CrossRef]
- Alam, M.M.; Malebari, A.M.; Syed, N.; Neamatallah, T.; Almalki, A.S.A.; Elhenawy, A.A.; Obaid, R.J.; Alsharif, M.A. Design, synthesis and molecular docking studies of thymol based 1,2,3-triazole hybrids as thymidylate synthase inhibitors and apoptosis inducers against breast cancer cells. Bioorg. Med. Chem. 2021, 38, 116136. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Alcantara, C.; Zugcic, T.; Abdelkebir, R.; Collado, M.C.; Garcia-Perez, J.V.; Jambrak, A.R.; Gavahian, M.; Barba, F.J.; Lorenzo, J.M. Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Res. Int. 2020, 134, 109242. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.-C.; Liu, Y.-H.; Sun, Y.-W.; Chan, C.-F. The Composition, Antioxidant and Antibacterial Activities of Cold-Pressed and Distilled Essential Oils of Citrus paradisi and Citrus grandis (L.) Osbeck. Evid.-Based Complement. Altern. Med. 2015, 2015, 804091. [Google Scholar] [CrossRef] [PubMed]
- Kant, R.; Kumar, A. Advancements in steam distillation system for oil extraction from peppermint leaves. Mater. Today Proc. 2021, 47, 5794–5799. [Google Scholar] [CrossRef]
- Rombaut, N.; Tixier, A.-S.; Bily, A.; Chemat, F. Green extraction processes of natural products as tools for biorefinery. Biofuels Bioprod. Biorefin. 2014, 8, 530–544. [Google Scholar] [CrossRef]
- Peng, X.; Feng, C.; Wang, X.; Gu, H.; Li, J.; Zhang, X.; Zhang, X.; Yang, L. Chemical composition and antioxidant activity of essential oils from barks of Pinus pumila using microwave-assisted hydrodistillation after screw extrusion treatment. Ind. Crops Prod. 2021, 166, 113489. [Google Scholar] [CrossRef]
- Miljanovic, A.; Bielen, A.; Grbin, D.; Marijanovic, Z.; Andlar, M.; Rezic, T.; Roca, S.; Jerkovic, I.; Vikic-Topic, D.; Dent, M. Effect of Enzymatic, Ultrasound, and Reflux Extraction Pretreatments on the Chemical Composition of Essential Oils. Molecules 2020, 25, 4818. [Google Scholar] [CrossRef]
- Calinescu, I.; Gavrila, A.I.; Ivopol, M.; Ivopol, G.C.; Popescu, M.; Mircioaga, N. Microwave assisted extraction of essential oils from enzymatically pretreated lavender (Lavandula angustifolia Miller). Cent. Eur. J. Chem. 2014, 12, 829–836. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Cui, G.; Wei, M.; Zou, Z.; Ni, H. Efficient extraction of essential oil from Cinnamomum burmannii leaves using enzymolysis pretreatment and followed by microwave-assisted method. Food Sci. Technol. 2021, 147, 111497. [Google Scholar] [CrossRef]
- Leila, M.; Ratiba, D.; Al-Marzouqi, A.-H. Experimental and mathematical modelling data of green process of essential oil extraction: Supercritical CO2 extraction. Mater. Today Proc. 2021, 49, 1023–1029. [Google Scholar] [CrossRef]
- Guo, J.; Yang, R.; Gong, Y.; Hu, K.; Hu, Y.; Song, F. Optimization and evaluation of the ultrasound-enhanced subcritical water extraction of cinnamon bark oil. Food Sci. Technol. 2021, 147, 111673. [Google Scholar] [CrossRef]
- Yingngam, B.; Brantner, A.; Treichler, M.; Brugger, N.; Navabhatra, A.; Nakonrat, P. Optimization of the eco-friendly solvent-free microwave extraction of Limnophila aromatica essential oil. Ind. Crops Prod. 2021, 165, 113443. [Google Scholar] [CrossRef]
- Asofiei, I.; Calinescu, I.; Gavrila, A.I.; Ighigeanu, D.; Martin, D.; Matei, C. Microwave Hydrodiffusion and Gravity, a Green Method for the Essential Oil Extraction from Ginger—Energy Considerations. Univ. Politeh. Buchar. Sci. Bull. Ser. B Chem. Mater. Sci. 2017, 79, 81–92. [Google Scholar]
- Ferreira, D.F.; Lucas, B.N.; Voss, M.; Santos, D.; Mello, P.A.; Wagner, R.; Cravotto, G.; Barin, J.S. Solvent-free simultaneous extraction of volatile and non-volatile antioxidants from rosemary (Rosmarinus officinalis L.) by microwave hydrodiffusion and gravity. Ind. Crops Prod. 2020, 145, 112094. [Google Scholar] [CrossRef]
- Chen, F.; Liu, S.; Zhao, Z.; Gao, W.; Ma, Y.; Wang, X.; Yan, S.; Luo, D. Ultrasound pre-treatment combined with microwave-assisted hydrodistillation of essential oils from Perilla frutescens (L.) Britt. leaves and its chemical composition and biological activity. Ind. Crops Prod. 2020, 143, 111908. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, P.; Zheng, W.; Yu, G.; Li, Z.; She, Y.; Lee, M. Three-stage microwave extraction of cumin (Cuminum cyminum L.) Seed essential oil with natural deep eutectic solvents. Ind. Crops Prod. 2019, 140, 111660. [Google Scholar] [CrossRef]
- Calinescu, I.; Vinatoru, M.; Ghimpeteanu, D.; Lavric, V.; Mason, T.J. A new reactor for process intensification involving the simultaneous application of adjustable ultrasound and microwave radiation. Ultrason. Sonochem. 2021, 77, 105701. [Google Scholar] [CrossRef]
- Lee, C.S.; Binner, E.; Winkworth-Smith, C.; John, R.; Gomes, R.; Robinson, J. Enhancing natural product extraction and mass transfer using selective microwave heating. Chem. Eng. Sci. 2016, 149, 97–103. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Kowalski, R.; Wawrzykowski, J. Effect of ultrasound-assisted maceration on the quality of oil from the leaves of thyme Thymus vulgaris L. Flavour Fragr. J. 2009, 24, 69–74. [Google Scholar] [CrossRef]
- Roldan-Gutierrez, J.M.; Ruiz-Jimenez, J.; Luque de Castro, M.D. Ultrasound-assisted dynamic extraction of valuable compounds from aromatic plants and flowers as compared with steam distillation and superheated liquid extraction. Talanta 2008, 75, 1369–1375. [Google Scholar] [CrossRef]
- Egri, D.; Pârvulescu, O.C.; Ion, V.A.; Raducanu, C.E.; Calcan, S.I.; Badulescu, L.; Madjar, R.; Orbeci, C.; Dobre, T.; Mot, A.; et al. Vine Pruning-Derived Biochar for Agronomic Benefits. Agronomy 2022, 12, 2730. [Google Scholar] [CrossRef]
- Zarshenas, M.M.; Samani, S.M.; Petramfar, P.; Moein, M. Analysis of the essential oil components from different Carum copticum L. samples from Iran. Pharmacogn. Res. 2014, 6, 62–66. [Google Scholar] [CrossRef]
- Krause, S.T.; Liao, P.; Crocoll, C.; Boachon, B.; Forster, C.; Leidecker, F.; Wiese, N.; Zhao, D.; Wood, J.C.; Buell, C.R.; et al. The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proc. Natl. Acad. Sci. USA 2021, 118, e2110092118. [Google Scholar] [CrossRef] [PubMed]
- Panda, D.; Manickam, S. Cavitation Technology-The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. Appl. Sci. 2019, 9, 766. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.-S.; Chemat, F. Degradation during application of ultrasound in food processing: A review. Food Control 2013, 31, 593–606. [Google Scholar] [CrossRef]
- Ince, N.H.; Tezcanli, G.; Belen, R.K.; Apikyan, P.G. Ultrasound as a catalyzer of aqueous reaction systems: The state of the art and environmental applications. Appl. Catal. B 2001, 29, 167–176. [Google Scholar] [CrossRef]
- Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Asikainen, M.; Jauhiainen, O.; Aaltonen, O.; Harlin, A. Continuous catalyst-free aromatization of γ-terpinene using air as an oxidant. Green Chem. 2013, 15, 3230. [Google Scholar] [CrossRef]
- Chemat, F.; Cravotto, G. (Eds.) Microwave-Assisted Extraction for Bioactive Compounds; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bernard, J. Les centrales thermiques. Sci. Vie 2001, 214, 68–69. [Google Scholar]
RT (min) | Compound | CAS | BP (°C) | Component Content (mg/100 g DM) | |
---|---|---|---|---|---|
MWHD | CHD | ||||
9.043 | α-Pinene | 80-56-8 | 155 | 13 ± 0.2 b | 15 ± 0.7 a |
9.205 | Camphene | 79-92-5 | 159 | 16 ± 0.2 b | 26 ± 1.2 a |
9.941 | Sabinene | 3387-41-5 | 163 | 7 ± 0.1 b | 11 ± 0.5 a |
10.039 | β-Pinene | 127-91-3 | 165 | 33 ± 0.3 b | 41 ± 1.8 a |
10.568 | α-Terpinene | 99-86-5 | 173 | 57 ± 1.1 b | 68 ± 2.9 a |
10.613 | p-Cymene | 99-87-6 | 177 | 88 ± 3.0 b | 110 ± 4.8 a |
10.783 | Eucalyptol | 470-82-6 | 176 | 6 ± 0.1 b | 11 ± 0.5 a |
11.245 | γ-Terpinene | 99-85-4 | 183 | 523 ± 37.4 a | 573 ± 24.9 a |
13.071 | Terpinen-4-ol | 562-74-3 | 219 | - | 14 ± 0.6 a |
14.657 | Thymol | 89-83-8 | 232 | 969 ± 28.9 a | 689 ± 29.9 b |
16.724 | β-(E)-Caryophyllene | 87-44-5 | 254 | 4 ± 0.1 b | 11 ± 0.5 a |
17.616 | γ-Cadinene | 39029-41-9 | 271 | 3 ± 0.1 b | 4 ± 0.2 a |
Variables | PC1 | PC2 |
---|---|---|
β-Pinene | −0.966 | 0.045 |
α-Terpinene | −0.888 | −0.201 |
p-Cymene | −0.150 | 0.985 |
γ-Terpinene | −0.930 | −0.079 |
Thymol | 0.950 | −0.063 |
Method | Method Description | PC1 | PC2 |
---|---|---|---|
1 | MWHD without ultrasound pre-treatment, solvent to plant ratio of 8/1, leaf particle size of 1–2 cm | −2.382 | 0.174 |
−3.041 | 0.252 | ||
−1.723 | 0.095 | ||
2 | MWHD without ultrasound pre-treatment, solvent to plant ratio of 10/1, leaf particle size of 1–2 cm | −1.506 | 0.710 |
−2.039 | 0.830 | ||
−1.075 | 0.821 | ||
3 | MWHD without ultrasound pre-treatment, solvent to plant ratio of 12/1, leaf particle size of 1–2 cm | −1.477 | 0.196 |
−1.941 | 0.433 | ||
−0.653 | −0.170 | ||
4 | MWHD + ultrasonic bath pre-treatment, solvent to plant ratio of 12/1, leaf particle size of 1–2 cm | −1.388 | 0.539 |
−1.663 | 0.672 | ||
−1.113 | 0.406 | ||
5 | MWHD + ultrasonic horn pre-treatment (50% amplitude), solvent to plant ratio 12/1, leaf particle size 1–2 cm | −1.267 | −0.454 |
−1.339 | −0.264 | ||
−0.271 | −0.698 | ||
6 | MWHD + ultrasonic horn pre-treatment (70% amplitude), solvent to plant ratio of 12/1, leaf particle size of 1–2 cm | 0.601 | −1.865 |
0.472 | −1.727 | ||
0.895 | −2.018 | ||
7 | MWHD without ultrasound pre-treatment, solvent to plant ratio of 12/1, leaf particle size < 0.1 cm | 1.846 | −0.559 |
1.737 | −0.486 | ||
2.101 | −0.754 | ||
8 | MWHD + ultrasonic horn pre-treatment (50% amplitude), solvent to plant ratio of 12/1, leaf particle size < 0.1 cm | 1.798 | −0.479 |
1.699 | −0.384 | ||
2.169 | −0.915 | ||
9 | MWHD + ultrasonic horn pre-treatment (70% amplitude, solvent to plant ratio of 12/1, leaf particle size < 0.1 cm | 3.120 | 1.964 |
3.111 | 2.181 | ||
3.328 | 1.502 |
Variables | β-Pinene | α-Terpinene | p-Cymene | γ-Terpinene | Thymol |
---|---|---|---|---|---|
β-Pinene | 1 | 0.797 | 0.179 | 0.908 | −0.890 |
α-Terpinene | 0.797 | 1 | −0.034 | 0.742 | −0.815 |
p-Cymene | 0.179 | −0.034 | 1 | 0.055 | −0.194 |
γ-Terpinene | 0.908 | 0.742 | 0.055 | 1 | −0.832 |
Thymol | −0.890 | −0.815 | −0.194 | −0.832 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrila, A.I.; Chisega-Negrila, C.G.; Maholea, L.; Gavrila, M.L.; Parvulescu, O.C.; Popa, I. Enhancing the Extraction Process Efficiency of Thyme Essential Oil by Combined Ultrasound and Microwave Techniques. Agronomy 2023, 13, 2331. https://doi.org/10.3390/agronomy13092331
Gavrila AI, Chisega-Negrila CG, Maholea L, Gavrila ML, Parvulescu OC, Popa I. Enhancing the Extraction Process Efficiency of Thyme Essential Oil by Combined Ultrasound and Microwave Techniques. Agronomy. 2023; 13(9):2331. https://doi.org/10.3390/agronomy13092331
Chicago/Turabian StyleGavrila, Adina I., Ciprian G. Chisega-Negrila, Laura Maholea, Mircea L. Gavrila, Oana C. Parvulescu, and Ioana Popa. 2023. "Enhancing the Extraction Process Efficiency of Thyme Essential Oil by Combined Ultrasound and Microwave Techniques" Agronomy 13, no. 9: 2331. https://doi.org/10.3390/agronomy13092331
APA StyleGavrila, A. I., Chisega-Negrila, C. G., Maholea, L., Gavrila, M. L., Parvulescu, O. C., & Popa, I. (2023). Enhancing the Extraction Process Efficiency of Thyme Essential Oil by Combined Ultrasound and Microwave Techniques. Agronomy, 13(9), 2331. https://doi.org/10.3390/agronomy13092331