Application of Lavender and Rosemary Essential Oils (EOs), Their Mixture and Eucalyptol (EOs Main Compound) on Cucumber Fruit Quality Attributes and Microbial Load
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Essential Oil Extraction
2.2. Procedure
2.3. Impact on Fruits’ Quality Attributes
2.4. Impact on Fruits’ Polyphenols and Antioxidant Activity
2.5. Determination of Fruit Damage Index and Enzymatic Antioxidant Activity
2.6. Impact on Microbial Load
2.7. Statistical Analysis
3. Results and Discussion
3.1. Impacts on Fruits’ Quality Attributes
3.2. Impact on Fruits’ Polyphenols and Antioxidants
3.3. Fruit Damage Index and Enzymatic Antioxidant Activity
3.4. Impact on Microbial Load
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, J.; Wang, J.; Li, R.; Li, D.; Xu, F.; Sun, Q.; Zhao, B.; Mao, A.J.; Guo, Y.D. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.). Plant Physiol. Biochem. 2015, 96, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Brookie, K.L.; Best, G.I.; Conner, T.S. Intake of raw fruits and vegetables is associated with better mental health than intake of processed fruits and vegetables. Front. Psychol. 2018, 9, 487. [Google Scholar] [CrossRef] [PubMed]
- Naureen, Z.; Dhuli, K.; Donato, K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Bertelli, M. Foods of the Mediterranean diet: Citrus, cucumber and grape. J. Prev. Med. Hyg. 2022, 63, E21–E27. [Google Scholar] [PubMed]
- Kahramanoǧlu, I.; Usanmaz, S. Improving postharvest storage quality of cucumber fruit by modified atmosphere packaging and biomaterials. HortScience 2019, 54, 2005–2014. [Google Scholar] [CrossRef]
- Bahnasawy, A.H.; Khater, E.-S.G. Effect of Wax Coating on the Quality of Cucumber Fruits during Storage. J. Food Process. Technol. 2014, 5, 1. [Google Scholar] [CrossRef]
- Kang, H.M.; Park, K.W.; Saltveit, M.E. Elevated growing temperatures during the day improve the postharvest chilling tolerance of greenhouse-grown cucumber (Cucumis sativus) fruit. Postharvest Biol. Technol. 2002, 24, 49–57. [Google Scholar] [CrossRef]
- Xylia, P.; Botsaris, G.; Chrysargyris, A.; Skandamis, P.; Tzortzakis, N. Variation of microbial load and biochemical activity of ready-to-eat salads in Cyprus as affected by vegetable type, season, and producer. Food Microbiol. 2019, 83, 200–210. [Google Scholar] [CrossRef]
- Jahan, S.E.; Hassan, M.K.; Roy, S.; Ahmed, Q.M.; Hasan, G.N.; Muna, A.Y.; Sarkar, M.N. Effects of different postharvest treatments on nutritional quality and shelf life of cucumber. Asian J. Crop. Soil Sci. Plant Nutr. 2020, 2, 51–61. [Google Scholar] [CrossRef]
- Coroneo, V.; Carraro, V.; Marras, B.; Marrucci, A.; Succa, S.; Meloni, B.; Pinna, A.; Angioni, A.; Sanna, A.; Schintu, M. Presence of Trihalomethanes in ready-to-eat vegetables disinfected with chlorine. Food Addit. Contam.—Part A Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 2111–2117. [Google Scholar] [CrossRef]
- Xylia, P.; Clark, A.; Chrysargyris, A.; Romanazzi, G.; Tzortzakis, N. Quality and safety attributes on shredded carrots by using Origanum majorana and ascorbic acid. Postharvest Biol. Technol. 2019, 155, 120–129. [Google Scholar] [CrossRef]
- Stavropoulou, A.; Loulakakis, K.; Magan, N.; Tzortzakis, N. Origanum dictamnus Oil Vapour Suppresses the Development of Grey Mould in Eggplant Fruit in Vitro. Biomed Res. Int. 2014, 2014, 562679. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.V.; Ortega-Ramirez, L.A.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Antimicrobial, antioxidant, and sensorial impacts of oregano and rosemary essential oils over broccoli florets. J. Food Process. Preserv. 2019, 43, e13889. [Google Scholar] [CrossRef]
- Caroline, S.I.; Sylvain Leroy, S.K.; Nachigera Gustave, M.; Essia, N.J.-J. Influence of chlorine and rosemary essential oil postharvest pre-treatments on quality parameters of fresh tomatoes during storage. J. Postharvest Technol. 2018, 6, 57–68. [Google Scholar]
- Yuan, G.; Chen, X.; Li, D. Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Res. Int. 2016, 89, 117–128. [Google Scholar] [CrossRef]
- De Rapper, S.; Kamatou, G.; Viljoen, A.; Vuuren, S. Van The In Vitro Antimicrobial Activity of Lavandula angustifolia Essential Oil in Combination with Other Aroma-Therapeutic Oils. Evid.-Based Complement. Altern. Med. 2013, 2013, 852049. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.L.D.A.; Luft, C.; Lunardelli, A.; Amaral, R.H. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil. An. Acad. Bras. Cienc. 2015, 87, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Cardia, F.G.E.; Silva-filho, S.E.; Silva, E.L.; Uchida, N.S.; Augusto, H.; Cavalcante, O.; Cassarotti, L.L.; Eduardo, V.; Salvadego, C.; Spironello, R.A.; et al. Effect of Lavender (Lavandula angustifolia) Essential Oil on Acute Inflammatory Response. Evidence-Based Complement. Altern. Med. 2018, 2018, 1413940. [Google Scholar] [CrossRef]
- Sumalan, R.M.; Kuganov, R.; Obistioiu, D.; Popescu, I.; Sumalan, R.L.; Cocan, I. Assessment of Mint, Basil, and Lavender Essential Oil Vapor-Phase in Antifungal Protection and Lemon Fruit Quality. Molecules 2020, 25, 1831. [Google Scholar] [CrossRef]
- Abo Ghanima, M.M.; Elsadek, M.F.; Taha, A.E.; Abd El-Hack, M.E.; Alagawany, M.; Ahmed, B.M.; Elshafie, M.M.; El-Sabrout, K. Effect of housing system and rosemary and cinnamon essential oils on layers performance, egg quality, haematological traits, blood chemistry, immunity, and antioxidant. Animals 2020, 10, 245. [Google Scholar] [CrossRef]
- da Silva Bomfim, N.; Kohiyama, C.Y.; Nakasugi, L.P.; Nerilo, S.B.; Mossini, S.A.G.; Romoli, J.C.Z.; Graton Mikcha, J.M.; de Abreu Filho, B.A.; Machinski, M. Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L.) against Aspergillus flavus. Food Addit. Contam.—Part A Chem. Anal. Control. Expo. Risk Assess. 2020, 37, 153–161. [Google Scholar] [CrossRef]
- Gahruie, H.H.; Hosseini, S.M.H.; Taghavifard, M.H.; Eskandari, M.H.; Golmakani, M.T.; Shad, E. Lipid oxidation, color changes, and microbiological quality of frozen beef burgers incorporated with shirazi thyme, cinnamon, and rosemary extracts. J. Food Qual. 2017, 2017, 6350156. [Google Scholar]
- Halmschlag, C.B.; Carneiro de Melo Moura, C.; Brambach, F.; Siregar, I.Z.; Gailing, O. Molecular and morphological survey of Lamiaceae species in converted landscapes in Sumatra. PLoS ONE 2022, 17, e0277749. [Google Scholar] [CrossRef] [PubMed]
- Tzortzakis, N.; Xylia, P.; Chrysargyris, A. Sage essential oil improves the effectiveness of Aloe vera gel on postharvest quality of tomato fruit. Agronomy 2019, 9, 635. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Rousos, C.; Xylia, P.; Tzortzakis, N. Vapour application of sage essential oil maintain tomato fruit quality in breaker and red ripening stages. Plants 2021, 10, 2645. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Botsaris, G.; Tzortzakis, N. Potential application of spearmint and lavender essential oils for assuring endive quality and safety. Crop Prot. 2017, 102, 94–103. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Ahmed, Z.F.R.F.F.R.; Tzortzakis, N.; Tzortzakis, Ν. Application of rosemary and eucalyptus essential oils and their main component on the preservation of apple and pear fruits. Horticulture 2021, 7, 479. [Google Scholar] [CrossRef]
- Vieira, A.M.F.D.; Steffens, C.A.; Argenta, L.C.; do Amarante, C.V.T.; Oster, A.H.; Casa, R.T.; Amarante, A.G.M.; Espíndola, B.P. Essential oils for the postharvest control of blue mold and quality of “Fuji” apples. Pesqui. Agropecu. Bras. 2018, 53, 547–556. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Panayiotou, C.; Tzortzakis, N. Nitrogen and phosphorus levels affected plant growth, essential oil composition and antioxidant status of lavender plant (Lavandula angustifolia Mill.). Ind. Crops Prod. 2016, 83, 577–586. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Miltiadous, P.; Tzortzakis, N. Origanum dubium (Cypriot Oregano) as a Promising Sanitizing Agent against Salmonella enterica and Listeria monocytogenes on Tomato and Cucumber Fruits. Biology 2022, 11, 1772. [Google Scholar] [CrossRef]
- Tzortzakis, N.G. Maintaining postharvest quality of fresh produce with volatile compounds. Innov. Food Sci. Emerg. Technol. 2007, 8, 111–116. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Chrysargyris, A.; Sivakumar, D.; Loulakakis, K. Vapour or dipping applications of methyl jasmonate, vinegar and sage oil for pepper fruit sanitation towards grey mould. Postharvest Biol. Technol. 2016, 118, 120–127. [Google Scholar] [CrossRef]
- Xylia, P.; Botsaris, G.; Skandamis, P.; Tzortzakis, Ν. Expiration Date of Ready-to-Eat Salads: Effects on Microbial Load and Biochemical Attributes. Foods 2021, 10, 941. [Google Scholar] [CrossRef] [PubMed]
- Xylia, P.; Ioannou, I.; Chrysargyris, A.; Stavrinides, M.C.; Tzortzakis, N. Quality attributes and storage of tomato fruits as affected by an eco-friendly, essential oil-based product. Plants 2021, 10, 1125. [Google Scholar] [CrossRef]
- Bolin, H.R.; Huxsoll, C.C. Effect of preparation procedures and storage parameters on quality retension of salad-cut lettuce. J. Food Sci. 1991, 56, 60–62. [Google Scholar] [CrossRef]
- Goyeneche, R.; Agüero, M.V.; Roura, S.; Di Scala, K. Application of citric acid and mild heat shock to minimally processed sliced radish: Color evaluation. Postharvest Biol. Technol. 2014, 93, 106–113. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Chrysargyris, A.; Nikou, A.; Tzortzakis, N. Effectiveness of Aloe vera gel coating for maintaining tomato fruit quality. N. Z. J. Crop Hortic. Sci. 2016, 44, 203–217. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- De Azevedo Neto, A.D.; Prisco, J.T.; Enéas-Filho, J.; De Abreu, C.E.B.; Gomes-Filho, E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 2006, 56, 87–94. [Google Scholar] [CrossRef]
- Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Hajisolomou, E.; Xylia, P.; Tzortzakis, N. Olive-mill and grape-mill waste as a substitute growing media component for unexploded vegetables production. Sustain. Chem. Pharm. 2023, 31, 100940. [Google Scholar] [CrossRef]
- Xylia, P.; Fasko, K.G.; Chrysargyris, A.; Tzortzakis, N. Heat treatment, sodium carbonate, ascorbic acid and rosemary essential oil application for the preservation of fresh Rosmarinus officinalis quality. Postharvest Biol. Technol. 2022, 187, 111868. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, D.; Ge, X.; Luo, Y.; Su, J. The role of essential oils in maintaining the postharvest quality and preservation of peach and other fruits. J. Food Biochem. 2022, 46, e14513. [Google Scholar] [CrossRef]
- Pandey, V.K.; Islam, R.U.; Shams, R.; Dar, A.H. A comprehensive review on the application of essential oils as bioactive compounds in Nano-emulsion based edible coatings of fruits and vegetables. Appl. Food Res. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Silva, C.J.; Adaskaveg, J.A.; Mesquida-Pesci, S.D.; Ortega-Salazar, I.B.; Pattathil, S.; Zhang, L.; Hahn, M.G.; van Kan, J.A.L.; Cantu, D.; Powell, A.L.T.; et al. Botrytis cinerea infection accelerates ripening and cell wall disassembly to promote disease in tomato fruit. Plant Physiol. 2023, 191, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Xylia, P.; Chrysargyris, A.; Ahmed, Z.F.R.; Shahwar, D.; Tzortzakis, N. Application of Rosemary and Eucalyptus Essential Oils on the Preservation of Cucumber Fruit. Horticulturae 2022, 8, 774. [Google Scholar] [CrossRef]
- Rabiei, V.; Shirzadeh, E.; Rabbiangourani, H.; Sharafi, Y. Effect of thyme and lavender essential oils on the qualitative and quantitative traits and storage life of apple “Jonagold” cultivar. J. Med. Plant Res. 2011, 5, 5522–5527. [Google Scholar]
- Adams, A.-R.; Adama, A.-R.; Kuunuori Thadius, T.; Barau, B. Ginger Essential Oil for Postharvest Quality of Datterino Tomato: Effect of Immersion Duration and Storage Temperature. J. Postharvest Technol. 2018, 06, 109–121. [Google Scholar]
- Santoro, K.; Maghenzani, M.; Chiabrando, V.; Bosio, P.; Gullino, M.L.; Spadaro, D.; Giacalone, G. Thyme and savory essential oil vapor treatments control brown rot and improve the storage quality of peaches and nectarines, but could favor gray mold. Foods 2018, 7, 7. [Google Scholar] [CrossRef]
- Frankova, A.; Smid, J.; Bernardos, A.; Finkousova, A.; Marsik, P.; Novotny, D.; Legarová, V.; Pulkrabek, J.; Kloucek, P. The antifungal activity of essential oils in combination with warm air flow against postharvest phytopathogenic fungi in apples. Food Control 2016, 68, 62–68. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L.; Debabov, D. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Viacava, G.E.; Ayala-Zavala, J.F.; González-Aguilar, G.A.; Ansorena, M.R. Effect of free and microencapsulated thyme essential oil on quality attributes of minimally processed lettuce. Postharvest Biol. Technol. 2018, 145, 125–133. [Google Scholar] [CrossRef]
- Micić, D.; Đurović, S.; Riabov, P.; Tomić, A.; Šovljanski, O.; Filip, S.; Tosti, T.; Dojčinović, B.; Božović, R.; Jovanović, D.; et al. Rosemary Essential Oils as a Promising Source of Bioactive Compounds: Chemical Composition, Thermal Properties, Biological Activity, and Gastronomical Perspectives. Foods 2021, 10, 2734. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Postharvest treatment of nanochitosan-based coating loaded with Zataria multiflora essential oil improves antioxidant activity and extends shelf-life of cucumber. Innov. Food Sci. Emerg. Technol. 2016, 33, 580–588. [Google Scholar] [CrossRef]
- Omoba, O.S.; Onyekwere, U. Postharvest physicochemical properties of cucumber fruits (Cucumber sativus L) treated with chitosan-lemon grass extracts under different storage durations. Afr. J. Biotechnol. 2016, 15, 2758–2766. [Google Scholar]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol. Technol. 2015, 110, 203–213. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Hertog, M.L.A.T.M.; Van de Poel, B.; Ampofo-Asiama, J.; Geeraerd, A.H.; Nicolai, B.M. Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biol. Technol. 2011, 62, 7–16. [Google Scholar] [CrossRef]
- Namiota, M.; Bonikowski, R. The current state of knowledge about essential oil fumigation for quality of crops during postharvest. Int. J. Mol. Sci. 2021, 22, 13351. [Google Scholar] [CrossRef]
- Yang, S.A.; Jeon, S.K.; Lee, E.J.; Shim, C.H.; Lee, I.S. Comparative study of the chemical composition and antioxidant activity of six essential oils and their components. Nat. Prod. Res. 2010, 24, 140–151. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Lu, X.; Ma, Y.; Liu, X. Effects of hydrogen peroxide accumulation, lipid peroxidation, and polyphenol oxidation during superficial scald development in ‘Fuji’ apples. Hortic. Environ. Biotechnol. 2014, 55, 299–307. [Google Scholar] [CrossRef]
- Chen, C.; Cai, N.; Chen, J.; Wan, C. Clove essential oil as an alternative approach to control postharvest blue mold caused by Penicillium italicum in citrus fruit. Biomolecules 2019, 9, 197. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Wang, H.; Xu, F.; Cheng, S. Effects and possible mechanisms of tea tree oil vapor treatment on the main disease in postharvest strawberry fruit. Postharvest Biol. Technol. 2013, 77, 94–101. [Google Scholar] [CrossRef]
- López-Gómez, A.; Ros-Chumillas, M.; Antolinos, V.; Buendía-Moreno, L.; Navarro-Segura, L.; Sánchez-Martínez, M.J.; Martínez-Hernández, G.B.; Soto-Jover, S. Fresh culinary herbs decontamination with essential oil vapours applied under vacuum conditions. Postharvest Biol. Technol. 2019, 156, 110942. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Krishnan, T.; Yiap, B.C.; Hu, C.P.; Chan, K.G.; Lim, S.H.E. Membrane disruption and anti-quorum sensing effects of synergistic interaction between Lavandula angustifolia (lavender oil) in combination with antibiotic against plasmid-conferred multi-drug-resistant Escherichia coli. J. Appl. Microbiol. 2014, 116, 1119–1128. [Google Scholar] [CrossRef]
Treatment | L* | a* | b* | h (°) | C | CI | |
---|---|---|---|---|---|---|---|
Day 0 | Control | 39.04 ± 0.87 | −11.99 ± 0.71 | 16.30 ± 1.22 | 126.51 ± 0.53 | 20.24 ± 1.40 | −19.06 ± 0.79 |
Day 5 | Control | 36.29 ± 0.48 | −11.61 ± 0.16 ab | 15.73 ± 0.27 | 126.44 ± 0.29 | 19.56 ± 0.29 | −20.37 ± 0.38 |
Lav 100 μL/L | 36.40 ± 1.09 | −11.28 ± 0.75 ab | 15.15 ± 1.35 | 126.92 ± 0.66 | 18.90 ± 1.53 | −20.82 ± 1.09 | |
Lav 200 μL/L | 38.12 ± 1.23 | −13.41 ± 0.46 b | 17.32 ± 1.29 | 128.13 ± 1.48 | 21.93 ± 1.26 | −21.00 ± 1.88 | |
Ros 100 μL/L | 38.92 ± 1.17 | −12.79 ± 0.60 ab | 17.79 ± 1.14 | 125.84 ± 0.52 | 21.91 ± 1.28 | −18.69 ± 0.81 | |
Ros 200 μL/L | 37.31 ± 1.51 | −12.48 ± 0.82 ab | 17.40 ± 1.59 | 125.97 ± 0.80 | 21.42 ± 1.77 | −19.75 ± 1.38 | |
Lav + Ros 100 μL/L | 36.05 ± 1.04 | −11.40 ± 0.45 ab | 14.90 ± 0.76 | 127.49 ± 0.46 | 18.76 ± 0.88 | −21.43 ± 0.96 | |
Lav + Ros 200 μL/L | 37.41 ± 1.39 | −12.85 ± 0.68 ab | 17.61 ± 1.28 | 126.35 ± 0.75 | 21.80 ± 1.43 | −19.89 ± 1.17 | |
Eucalyptol 100 μL/L | 35.68 ± 1.04 | −11.59 ± 0.57 ab | 15.34 ± 1.00 | 127.22 ± 0.68 | 19.23 ± 1.12 | −21.41 ± 0.90 | |
Eucalyptol 200 μL/L | 35.24 ± 1.15 | −10.28 ± 0.60 a | 13.09 ± 0.92 | 128.24 ± 0.38 | 16.65 ± 1.09 | −22.54 ± 1.07 | |
Day 10 | Control | 36.66 ± 1.14 | −11.97 ± 0.98 | 16.34 ± 1.74 | 126.55 ± 0.69 | 20.26 ± 1.98 | −20.41 ± 1.07 |
Lav 100 μL/L | 39.25 ± 0.94 | −13.03 ± 0.55 | 18.28 ± 1.02 | 125.59 ± 0.43 | 22.45 ± 1.15 | −18.33 ± 0.73 | |
Lav 200 μL/L | 37.09 ± 1.51 | −13.21 ± 0.55 | 18.10 ± 1.22 | 126.30 ± 0.66 | 22.41 ± 1.31 | −20.04 ± 1.07 | |
Ros 100 μL/L | 39.55 ± 0.69 | −13.09 ± 0.47 | 18.90 ± 0.81 | 124.75 ± 0.29 | 22.99 ± 0.93 | −17.58 ± 0.40 | |
Ros 200 μL/L | 38.31 ± 1.13 | −12.39 ± 0.77 | 16.96 ± 1.46 | 126.43 ± 0.78 | 21.01 ± 1.62 | −19.44 ± 1.03 | |
Lav + Ros 100 μL/L | 39.95 ± 1.23 | −12.94 ± 0.80 | 18.41 ± 1.55 | 125.32 ± 0.63 | 22.51 ± 1.73 | −17.89 ± 0.94 | |
Lav + Ros 200 μL/L | 38.54 ± 0.48 | −11.48 ± 0.05 | 16.03 ± 0.29 | 125.63 ± 0.43 | 19.72 ± 0.25 | −18.63 ± 0.48 | |
Eucalyptol 100 μL/L | 36.48 ± 2.15 | −11.53 ± 1.39 | 15.76 ± 2.40 | 126.90 ± 1.00 | 19.54 ± 2.76 | −21.20 ± 1.98 | |
Eucalyptol 200 μL/L | 38.87 ± 1.00 | −13.76 ± 0.69 | 19.64 ± 1.40 | 125.23 ± 0.73 | 27.15 ± 2.72 | −19.09 ± 0.36 |
Concentration | Firmness (N) | TSS (°Brix) | TA (g Malic Acid/L) | Ripening Index (TSS/TA) | AA (mg AA/100 g) | |
---|---|---|---|---|---|---|
Day 0 | Control | 15.24 ± 0.86 | 2.90 ± 0.15 | 1.06 ± 0.19 | 29.23 ± 5.27 | 2.61 ± 0.23 B |
Day 5 | Control | 14.66 ± 0.47 b | 3.10 ± 0.06 | 1.38 ± 0.24 a | 24.10 ± 4.51 c | 2.32 ± 0.06 e |
Lav 100 μL/L | 14.90 ± 1.00 ab | 3.20 ± 0.00 | 0.78 ± 0.01 b | 41.09 ± 0.49 c | 2.63 ± 0.16 de | |
Lav 200 μL/L | 14.31 ± 0.50 b | 3.00 ± 0.17 | 0.53 ± 0.02 bc | 56.55 ± 4.77 bc | 2.23 ± 0.04 e | |
Ros 100 μL/L | 15.34 ± 0.32 ab | 3.10 ± 0.15 | 0.60 ± 0.03 bc | 51.71 ± 4.36 c | 2.27 ± 0.13 e | |
Ros 200 μL/L | 18.45 ± 1.30 a | 3.03 ± 0.07 | 0.53 ± 0.03 bc | 57.84 ± 2.18 bc | 3.10 ± 0.06 cd | |
Lav + Ros 100 μL/L | 15.38 ± 0.53 ab | 3.30 ± 0.15 | 0.31 ± 0.10 c | 81.99 ± 5.31 abc | 3.65 ± 0.21 bc | |
Lav + Ros 200 μL/L | 16.14 ± 0.54 ab | 2.87 ± 0.13 | 0.45 ± 0.01 cb | 63.65 ± 4.68 bc | 4.16 ± 0.16 ab | |
Eucalyptol 100 μL/L | 16.19 ± 1.19 ab | 2.93 ± 0.07 | 0.29 ± 0.06 c | 113.66 ± 32.47 ab | 3.74 ± 0.14 abc | |
Eucalyptol 200 μL/L | 15.25 ± 0.76 ab | 2.90 ± 0.20 | 0.21 ± 0.02 c | 139.88 ± 12.52 a | 4.40 ± 0.19 a | |
Day 10 | Control | 17.27 ± 0.74 a | 3.07 ± 0.23 | 0.72 ± 0.02 a | 42.99 ± 4.37 | 5.58 ± 0.18 abA |
Lav 100 μL/L | 16.68 ± 0.66 ab | 2.67 ± 0.03 | 0.31 ± 0.11 b | 119.47 ± 51.66 | 4.88 ± 0.09 bcd | |
Lav 200 μL/L | 13.91 ± 0.81 b | 2.70 ± 0.15 | 0.21 ± 0.07 b | 149.57 ± 36.81 | 6.37 ± 0.10 a | |
Ros 100 μL/L | 14.29 ± 0.87 b | 2.60 ± 0.10 | 0.23 ± 0.01 b | 112.28 ± 9.43 | 5.96 ± 0.08 a | |
Ros 200 μL/L | 15.37 ± 0.66 ab | 2.87 ± 0.12 | 0.33 ± 0.11 b | 122.71 ± 58.93 | 4.45 ± 0.38 cd | |
Lav + Ros 100 μL/L | 14.74 ± 0.59 ab | 2.73 ± 0.15 | 0.19 ± 0.06 b | 112.75 ± 12.31 | 6.07 ± 0.32 a | |
Lav + Ros 200 μL/L | 15.88 ± 0.23 ab | 2.63 ± 0.09 | 0.37 ± 0.03 b | 73.48 ± 6.17 | 4.04 ± 0.15 d | |
Eucalyptol 100 μL/L | 15.90 ± 1.18 ab | 3.03 ± 0.12 | 0.19 ± 0.05 b | 178.93 ± 39.01 | 5.89 ± 0.15 ab | |
Eucalyptol 200 μL/L | 16.30 ± 0.50 ab | 3.00 ± 0.06 | 0.19 ± 0.04 b | 170.81 ± 40.59 | 5.39 ± 0.20 abc |
Concentration | Phenols (μg GAE/g) | DPPH (μg trolox/g) | FRAP (μg trolox/g) | ABTS (μg trolox/g) | |
---|---|---|---|---|---|
Day 0 | Control | 52.48 ± 0.59 B | 17.02 ± 1.40 A | 36.83 ± 3.22 | 93.45 ± 0.73 A |
Day 5 | Control | 63.71 ± 1.30 a | 13.47 ± 0.99 b | 35.21 ± 0.86 a | 78.40 ± 1.02 ab |
Lav 100 μL/L | 59.65 ± 0.67 ab | 17.88 ± 0.53 a | 33.60 ± 1.87 ab | 82.93 ± 2.01 ab | |
Lav 200 μL/L | 50.57 ± 1.22 c | 11.64 ± 0.65 b | 26.34 ± 1.62 cd | 83.52 ± 2.62 a | |
Ros 100 μL/L | 53.91 ± 2.67 bc | 15.67 ± 1.32 ab | 28.62 ± 1.40 bc | 61.77 ± 1.37 cd | |
Ros 200 μL/L | 48.80 ± 2.10 c | 14.67 ± 0.54 ab | 27.61 ± 1.05 bcd | 67.27 ± 0.82 c | |
Lav + Ros 100 μL/L | 53.76 ± 2.32 bc | 14.41 ± 1.10 ab | 27.66 ± 1.14 bcd | 75.38 ± 1.46 b | |
Lav + Ros 200 μL/L | 46.08 ± 0.43 c | 12.37 ± 0.75 b | 22.44 ± 1.13 d | 60.41 ± 1.44 cd | |
Eucalyptol 100 μL/L | 49.14 ± 0.96 c | 13.18 ± 0.87 b | 23.18 ± 0.77 cd | 58.32 ± 1.14 d | |
Eucalyptol 200 μL/L | 53.24 ± 1.92 bc | 13.55 ± 0.64 b | 25.97 ± 0.71 cd | 66.27 ± 1.61 c | |
Day 10 | Control | 62.73 ± 0.85 aA | 8.45 ± 0.84 bcdB | 36.64 ± 1.74 ab | 81.37 ± 1.42 bB |
Lav 100 μL/L | 51.62 ± 0.21 ab | 11.40 ± 0.36 abc | 32.55 ± 1.37 bc | 89.92 ± 2.45 a | |
Lav 200 μL/L | 55.08 ± 1.15 ab | 12.25 ± 0.62 a | 39.07 ± 1.29 a | 83.61 ± 1.13 ab | |
Ros 100 μL/L | 48.79 ± 1.56 c | 11.61 ± 0.95 ab | 31.53 ± 0.73 cd | 69.29 ± 2.20 cd | |
Ros 200 μL/L | 64.20 ± 1.24 a | 9.24 ± 0.53 abcd | 36.33 ± 0.62 ab | 59.86 ± 1.55 ef | |
Lav + Ros 100 μL/L | 66.85 ± 1.84 a | 7.28 ± 0.93 d | 32.76 ± 0.41 bc | 56.39 ± 0.72 f | |
Lav + Ros 200 μL/L | 63.57 ± 1.44 a | 8.12 ± 0.48 cd | 29.61 ± 0.09 cd | 65.23 ± 0.36 de | |
Eucalyptol 100 μL/L | 50.82 ± 1.60 ab | 10.86 ± 0.59 abc | 26.97 ± 0.47 d | 72.58 ± 0.66 c | |
Eucalyptol 200 μL/L | 55.39 ± 1.30 b | 8.57 ± 0.47 bcd | 32.59 ± 0.61 bc | 64.62 ± 1.40 de |
Concentration | H2O2 (mmol/g) | MDA (nmol/g) | SOD (units/mg of Protein) | CAT (units/mg of Protein) | POD (units/mg of Protein) | |
---|---|---|---|---|---|---|
Day 0 | Control | 0.14 ± 0.00 B | 9.63 ± 0.10 A | 3.12 ± 0.35 | 4.27 ± 0.51 | 10.82 ± 1.72 |
Day 5 | Control | 0.15 ± 0.00 a | 9.46 ± 0.09 abc | 2.23 ± 0.16 | 3.26 ± 0.22 ab | 15.42 ± 2.01 bc |
Lav 100 μL/L | 0.14 ± 0.01 ab | 8.96 ± 0.15 c | 2.46 ± 0.43 | 3.05 ± 0.21 ab | 26.88 ± 4.25 a | |
Lav 200 μL/L | 0.14 ± 0.00 ab | 9.37 ± 0.14 bc | 2.74 ± 0.04 | 5.69 ± 1.01 a | 30.32 ± 1.76 a | |
Ros 100 μL/L | 0.16 ± 0.01 a | 9.67 ± 0.33 abc | 2.24 ± 0.16 | 2.81 ± 0.47 ab | 14.73 ± 0.23 bc | |
Ros 200 μL/L | 0.14 ± 0.00 ab | 8.54 ± 0.33 c | 1.79 ± 0.10 | 4.29 ± 1.14 ab | 29.73 ± 3.81 a | |
Lav + Ros 100 μL/L | 0.14 ± 0.01 ab | 10.09 ± 0.32 abc | 2.10 ± 0.09 | 1.69 ± 0.28 b | 9.94 ± 0.24 c | |
Lav + Ros 200 μL/L | 0.15 ± 0.00 a | 10.32 ± 0.29 abc | 2.30 ± 0.15 | 2.50 ± 0.24 b | 14.75 ± 1.14 bc | |
Eucalyptol 100 μL/L | 0.15 ± 0.00 a | 11.60 ± 1.17 ab | 1.79 ± 0.34 | 3.45 ± 0.43 ab | 12.18 ± 1.44 c | |
Eucalyptol 200 μL/L | 0.12 ± 0.01 b | 11.64 ± 0.07 a | 1.51 ± 0.32 | 2.98 ± 0.62 ab | 24.59 ± 3.50 ab | |
Day 10 | Control | 0.18 ± 0.01 A | 6.98 ± 0.14 dB | 3.01 ± 0.71 a | 4.45 ± 0.17 de | 16.54 ± 2.52 c |
Lav 100 μL/L | 0.17 ± 0.01 | 7.70 ± 0.09 cd | 1.90 ± 0.24 ab | 9.58 ± 1.12 c | 13.69 ± 1.88 c | |
Lav 200 μL/L | 0.17 ± 0.00 | 7.82 ± 0.14 cd | 1.65 ± 0.18 ab | 19.64 ± 0.59 a | 37.01 ± 2.26 a | |
Ros 100 μL/L | 0.17 ± 0.01 | 8.93 ± 0.28 ab | 1.41 ± 0.29 ab | 4.99 ± 0.95 de | 34.65 ± 7.24 ab | |
Ros 200 μL/L | 0.18 ± 0.00 | 8.08 ± 0.31 bc | 1.60 ± 0.30 ab | 7.70 ± 0.19 cd | 26.95 ± 0.91 abc | |
Lav + Ros 100 μL/L | 0.18 ± 0.01 | 8.46 ± 0.27 abc | 0.95 ± 0.05 b | 3.49 ± 0.69 de | 25.19 ± 3.81 abc | |
Lav + Ros 200 μL/L | 0.19 ± 0.01 | 8.52 ± 0.12 abc | 2.83 ± 0.46 a | 14.87 ± 1.79 b | 30.18 ± 3.94 abc | |
Eucalyptol 100 μL/L | 0.20 ± 0.01 | 8.26 ± 0.13 abc | 1.80 ± 0.08 ab | 3.31 ± 0.20 e | 19.57 ± 0.37 bc | |
Eucalyptol 200 μL/L | 0.17 ± 0.00 | 9.19 ± 0.20 a | 1.52 ± 0.11 ab | 5.93 ± 0.46 cde | 34.81 ± 1.68 ab |
Concentration | TVC (log cfu/g) | Yeast and Mold (log cfu/g) | |
---|---|---|---|
Day 0 | Control | 5.81 ± 0.10 | 4.12 ± 0.17 |
Day 5 | Control | 4.67 ± 0.03 | 4.59 ± 0.07 ab |
Lav 100 μL/L | 4.71 ± 0.02 | 4.67 ± 0.18 ab | |
Lav 200 μL/L | 4.45 ± 0.38 | 4.47 ± 0.01 ab | |
Ros 100 μL/L | 4.70 ± 0.07 | 4.43 ± 0.22 ab | |
Ros 200 μL/L | 4.43 ± 0.10 | 4.65 ± 0.08 ab | |
Lav + Ros 100 μL/L | 4.86 ± 0.05 | 4.85 ± 0.03 a | |
Lav + Ros 200 μL/L | 4.58 ± 0.05 | 4.43 ± 0.04 ab | |
Eucalyptol 100 μL/L | 4.28 ± 0.12 | 4.32 ± 0.04 ab | |
Eucalyptol 200 μL/L | 4.21 ± 0.05 | 4.08 ± 0.13 b | |
Day 10 | Control | 5.38 ± 0.15 d | 4.73 ± 0.03 ab |
Lav 100 μL/L | 5.69 ± 0.08 cd | 3.73 ± 0.00 cd | |
Lav 200 μL/L | 5.88 ± 0.02 abc | 3.30 ± 0.35 d | |
Ros 100 μL/L | 6.00 ± 0.00 abc | 4.88 ± 0.01 ab | |
Ros 200 μL/L | 4.91 ± 0.05 e | 3.11 ± 0.16 d | |
Lav + Ros 100 μL/L | 5.80 ± 0.05 bcd | 4.41 ± 0.09 bc | |
Lav + Ros 200 μL/L | 6.20 ± 0.03 ab | 5.18 ± 0.01 a | |
Eucalyptol 100 μL/L | 6.19 ± 0.08 ab | 4.89 ± 0.07 ab | |
Eucalyptol 200 μL/L | 6.29 ± 0.15 a | 4.56 ± 0.01 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xylia, P.; Goumenos, C.; Tzortzakis, N.; Chrysargyris, A. Application of Lavender and Rosemary Essential Oils (EOs), Their Mixture and Eucalyptol (EOs Main Compound) on Cucumber Fruit Quality Attributes and Microbial Load. Agronomy 2023, 13, 2493. https://doi.org/10.3390/agronomy13102493
Xylia P, Goumenos C, Tzortzakis N, Chrysargyris A. Application of Lavender and Rosemary Essential Oils (EOs), Their Mixture and Eucalyptol (EOs Main Compound) on Cucumber Fruit Quality Attributes and Microbial Load. Agronomy. 2023; 13(10):2493. https://doi.org/10.3390/agronomy13102493
Chicago/Turabian StyleXylia, Panayiota, Christos Goumenos, Nikolaos Tzortzakis, and Antonios Chrysargyris. 2023. "Application of Lavender and Rosemary Essential Oils (EOs), Their Mixture and Eucalyptol (EOs Main Compound) on Cucumber Fruit Quality Attributes and Microbial Load" Agronomy 13, no. 10: 2493. https://doi.org/10.3390/agronomy13102493
APA StyleXylia, P., Goumenos, C., Tzortzakis, N., & Chrysargyris, A. (2023). Application of Lavender and Rosemary Essential Oils (EOs), Their Mixture and Eucalyptol (EOs Main Compound) on Cucumber Fruit Quality Attributes and Microbial Load. Agronomy, 13(10), 2493. https://doi.org/10.3390/agronomy13102493