Coffee—From Plant to Cup
1. Introduction
2. Published Articles
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, A.P.; Gargiulo, R.; Almeida, I.N.M.; Caravela, M.I.; Denison, C.; Moat, J. Hot Coffee: The identity, climate profiles, agronomy, and beverage characteristics of Coffea racemosa and C. zanguebariae. Front. Sustain. Food Syst. 2021, 5, 740137. [Google Scholar] [CrossRef]
- Davis, A.P.; Tosh, J.; Ruch, N.; Fay, M.F. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data implications for the size, morphology, distribution and evolutionary history of Coffea. Bot. J. Linn. Soc. 2011, 167, 357–377. [Google Scholar] [CrossRef]
- Bagyaraj, D.J.; Thilagar, G.; Ravisha, C.; Kushalappa, C.G.; Krishnamurthy, K.N.; Vaast, P. Below ground microbial diversity as influenced by coffee agroforestry systems in the Western Ghats, India. Agric. Ecosyst. Environ. 2015, 202, 198–202. [Google Scholar] [CrossRef]
- Partelli, F.L.; Silva, F.A.; Covre, A.M.; Oliosi, G.; Correa, C.C.G.; Viana, A.P. Adaptability and stability of Coffea canephora to dynamic environments using the Bayesian approach. Sci. Rep. 2022, 12, 11608. [Google Scholar] [CrossRef]
- International Coffee Organization (ICO). Historical Data on the Global Coffee Trade. Available online: https://www.ico.org/new_historical.asp (accessed on 4 August 2023).
- International Coffee Organization (ICO). Coffee Price Rise Continues in November Reaching a 10-Year High. November Issue. 2021. Available online: http://www.ico.org (accessed on 3 March 2022).
- Tolessa, K.; D’heer, J.; Duchateau, L.; Boeckx, P. Influence of growing altitude, shade and harvest period on quality and bio-chemical composition of Ethiopian specialty coffee. J. Sci. Food Agric. 2017, 97, 2847. [Google Scholar] [CrossRef]
- Semedo, J.N.; Rodrigues, W.P.; Martins, M.Q.; Martins, L.D.; Pais, I.P.; Rodrigues, A.P.; Leitão, A.E.; Partelli, F.L.; Campostrini, E.; Tomaz, M.A.; et al. Coffee responses to drought, warming and high [CO2] in a context of future climate change scenarios. In Theory and Practice of Climate Adaptation; Alves, F., Leal, W., Azeiteiro, U., Eds.; Climate Change Management Series; Springer: Cham, Switzerland, 2018; pp. 465–477. [Google Scholar]
- Koutouleas, A.; Sarzynski, T.; Bordeaux, M.; Bosselmann, A.S.; Campa, C.; Etienne, H.; Turreira-García, N.; Rigal, C.; Vaast, P.; Ramalho, J.C.; et al. Shaded-coffee: A nature-based strategy for coffee production under climate change? A Review. Front. Sustain. Food Syst. 2022, 6, 877476. [Google Scholar] [CrossRef]
- Marques, I.; Gouveia, D.; Gaillard, J.-C.; Martins, S.; Semedo, M.C.; Lidon, F.C.; DaMatta, F.M.; Ribeiro-Barros, A.I.; Armengaud, J.; Ramalho, J.C. Next-Generation proteomics reveals a greater antioxidative response to drought in Coffea arabica than in Coffea canephora. Agronomy 2022, 12, 148. [Google Scholar] [CrossRef]
- Semedo, J.N.; Rodrigues, A.P.; Lidon, F.C.; Pais, I.P.; Marques, I.; Gouveia, D.; Armengaud, J.; Martins, S.; Semedo, M.C.; Silva, M.J.; et al. In-trinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. can be strengthened by elevated air CO2. Tree Physiol. 2021, 41, 708. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Silva, C.A.; Dubberstein, D.; Dias, J.R.M.; Vieira, H.D.; Partelli, F.L. Genetic diversity based on nutrient concentrations in different organs of robusta coffee. Agronomy 2022, 12, 640. [Google Scholar] [CrossRef]
- Schmidt, R.; Silva, L.O.E.; Ferreira, A.; Gontijo, I.; Guimarães, R.J.; Ramalho, J.C.; Partelli, F.L. Variability of root system size and distribution among Coffea canephora genotypes. Agronomy 2022, 12, 647. [Google Scholar] [CrossRef]
- Moreira, P.C.; Abrahão, J.C.R.; Porto, A.C.M.; Nadaleti, D.H.S.; Gonçalves, F.M.A.; Carvalho, G.R.; Botelho, C.E. Progeny selection to develop a sustainableu arabica coffee cultivar. Agronomy 2022, 12, 1144. [Google Scholar] [CrossRef]
- León-Burgos, A.F.; Unigarro, C.A.; Balaguera-López, H.E. Soil Waterlogging conditions affect growth, water status, and chlorophyll “a” fluorescence in coffee plants (Coffea arabica L.). Agronomy 2022, 12, 1270. [Google Scholar] [CrossRef]
- Filete, C.A.; Moreira, T.R.; Santos, A.R.; Gomes, W.S.; Guarçoni, R.C.; Moreli, A.P.; Augusto, M.I.; Abreu, R.O.; Simmer, M.M.B.; Caliman, A.D.C.; et al. The New standpoints for the terroir of Coffea canephora from Southwestern Brazil: Edaphic and sensorial perspective. Agronomy 2022, 12, 1931. [Google Scholar] [CrossRef]
- Silva, V.A.; Abrahão, J.C.R.; Reis, A.M.; Santos, M.O.; Pereira, A.A.; Botelho, C.E.; Carvalho, G.R.; Castro, E.M.; Barbosa, J.P.R.A.D.; Botega, G.P.; et al. Strategy for selection of drought-tolerant arabica coffee genotypes in Brazil. Agronomy 2022, 12, 2167. [Google Scholar] [CrossRef]
- Gomes, W.S.; Pereira, L.L.; Filete, C.A.; Moreira, T.R.; Guarçoni, R.C.; Oliveira, E.C.S.; Moreli, A.P.; Guimarães, C.V.; Simmer, M.M.B.; Júnior, V.L.; et al. Changes in the chemical and sensoryi profile of Coffea canephora var. Conilon promoted by carbonic maceration. Agronomy 2022, 12, 2265. [Google Scholar] [CrossRef]
- Cassamo, C.T.; Mangueze, A.V.J.; Leitão, A.E.; Pais, I.P.; Moreira, R.; Campa, C.; Chiulele, R.; Reis, F.O.; Marques, I.; Scotti-Campos, P.; et al. Shade and Altitude implications on the physical and chemical attributes of green coffee beans from Gorongosa Mountain, Mozambique. Agronomy 2022, 12, 2540. [Google Scholar] [CrossRef]
- Alberto, N.J.; Ramalho, J.C.; Ribeiro-Barros, A.I.; Viana, A.P.; Krohling, C.A.; Moiane, S.S.; Alberto, Z.; Rodrigues, W.P.; Partelli, F.L. Diversity in Coffea arabica cultivars in the Mountains of Gorongosa National Park, Mozambique, regarding bean and leaf nutrient accumulation and physical fruit traits. Agronomy 2023, 13, 1162. [Google Scholar] [CrossRef]
- Ferreira, D.S.; Oliveira, M.E.S.; Ribeiro, W.R.; Filete, C.A.; Castanheira, D.T.; Rocha, B.C.P.; Moreli, A.P.; Oliveira, E.C.S.; Guarçoni, R.C.; Partelli, F.L.; et al. Association of altitude and solar radiation to understand coffee quality. Agronomy 2022, 12, 1885. [Google Scholar] [CrossRef]
- Debona, D.G.; Louvem, R.F.; Luz, J.M.R.; Nariyoshi, Y.N.; Castro, E.V.R.; Oliveira, E.C.S.; Guarconi, R.C.; Castro, M.G.; Oliveira, G.F.; Partelli, F.L.; et al. Heat and mass transfer kinetics on the chemical and sensory quality of arabica coffee beans. Agronomy 2022, 12, 2880. [Google Scholar] [CrossRef]
- Pérez, V.O.; Pérez, L.G.M.; Fernandez-Alduenda, M.R.; Barreto, C.I.A.; Agudelo, C.P.G.; Restrepo, E.C.M. Chemical composition and sensory quality of coffee fruits at different stages of maturity. Agronomy 2023, 13, 341. [Google Scholar] [CrossRef]
- Al-Ghamedi, K.; Alaraidh, I.; Afzal, M.; Mahdhi, M.; Al-Faifi, Z.; Oteef, M.D.Y.; Tounekti, T.; Alghamdi, S.S.; Khemira, H. Assessment of genetic diversity of local coffee populations in Southwestern Saudi arabia using SRAP markers. Agronomy 2023, 13, 302. [Google Scholar] [CrossRef]
- Sseremba, G.; Tongoona, P.B.; Musoli, P.; Eleblu, J.S.Y.; Melomey, L.D.; Bitalo, D.N.; Atwijukire, E.; Mulindwa, J.; Aryatwijuka, N.; Muhumuza, E.; et al. Viability of deficit irrigation pre-exposure in adapting robusta coffee to drought stress. Agronomy 2023, 13, 674. [Google Scholar] [CrossRef]
- Ariyoshi, C.; Sera, G.H.; Rodrigues, L.M.R.; Carvalho, F.G.; Shigueoka, L.H.; Mendonça, A.E.S.; Pereira, C.T.M.; Destéfano, S.A.L.; Pereira, L.F.P. Development and validation of an allele-specific marker for resistance to bacterial halo blight in Coffea arabica. Agronomy 2022, 12, 3178. [Google Scholar] [CrossRef]
- Bento, N.L.; Ferraz, G.A.S.; Amorim, J.S.; Santana, L.S.; Barata, R.A.P.; Soares, D.V.; Ferraz, P.F.P. Weed detection and mapping of a coffee farm by a remotely piloted aircraft system. Agronomy 2023, 13, 830. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, F.; Xie, C.; Qu, P.; Jiang, K.; Du, H.; Zhao, M.; Lu, Y.; Wang, B.; Shi, X.; et al. Effects of different altitudes on Coffea arabica rhizospheric soil chemical properties and soil microbiota. Agronomy 2023, 13, 471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domingues, D.S.; Ramalho, J.C.; Partelli, F.L. Coffee—From Plant to Cup. Agronomy 2023, 13, 2346. https://doi.org/10.3390/agronomy13092346
Domingues DS, Ramalho JC, Partelli FL. Coffee—From Plant to Cup. Agronomy. 2023; 13(9):2346. https://doi.org/10.3390/agronomy13092346
Chicago/Turabian StyleDomingues, Douglas Silva, José C. Ramalho, and Fábio Luiz Partelli. 2023. "Coffee—From Plant to Cup" Agronomy 13, no. 9: 2346. https://doi.org/10.3390/agronomy13092346
APA StyleDomingues, D. S., Ramalho, J. C., & Partelli, F. L. (2023). Coffee—From Plant to Cup. Agronomy, 13(9), 2346. https://doi.org/10.3390/agronomy13092346