Drip Irrigation Soil-Adapted Sector Design and Optimal Location of Moisture Sensors: A Case Study in a Vineyard Plot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Test Plot
2.2. Outline of the Proposed Procedure
2.3. Apparent Electrical Conductivity (ECa) Data Acquisition and Mapping
2.4. Cluster Analysis
2.5. Soil Sampling and Multivariate Analysis to Contrast ECa Zoning and Irrigation
2.6. Location of Moisture Probes through Purposive Sampling
3. Results
3.1. ECa Maps
3.2. Multivariate Analysis of Variance (MANOVA) of Soil Properties According to ECa Clusters
3.3. Potential Irrigation Sectors and Location of Smart Points for Soil Moisture Content Monitoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adamchuk, V.I.; Ferguson, R.B.; Hergert, G.W. Soil Heterogeneity and Crop Growth. In Precision Crop Protection—The Challenge and Use of Heterogeneity; Oerke, E.-C., Gerhards, R., Menz, G., Sikora, R.A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 3–16. [Google Scholar]
- Käthner, J.; Zude-Sasse, M. Interaction of 3D soil electrical conductivity and generative growth in Prunus domestica L. Eur. J. Hortic. Sci. 2015, 80, 231–239. [Google Scholar] [CrossRef]
- Pedrera-Parrilla, A.; Martínez, G.; Espejo-Pérez, A.J.; Gómez, J.A.; Giráldez, J.V.; Vanderlinden, K. Mapping impaired olive tree development using electromagnetic induction surveys. Plant Soil 2014, 384, 381–400. [Google Scholar] [CrossRef]
- Unamunzaga, O.; Besga, G.; Castellón, A.; Usón, M.A.; Chéry, P.; Gallejones, P.; Aizpurua, A. Spatial and vertical analysis of soil properties in a Mediterranean vineyard soil. Soil Use Manag. 2014, 30, 285–296. [Google Scholar] [CrossRef]
- Uribeetxebarria, A.; Arnó, J.; Escolà, A.; Martínez-Casasnovas, J.A. Apparent electrical conductivity and multivariate analysis of soil properties to assess soil constraints in orchards affected by previous parceling. Geoderma 2018, 319, 185–193. [Google Scholar] [CrossRef]
- Uribeetxebarria, A.; Daniele, E.; Escolà, A.; Arnó, J.; Martínez-Casasnovas, J.A. Spatial variability in orchards after land transformation: Consequences for precision agriculture practices. Sci. Total Environ. 2018, 635, 343–352. [Google Scholar] [CrossRef]
- Acevedo-Opazo, C.; Tisseyre, B.; Ojeda, H.; Ortega-Farias, S.; Guillaume, S. Is it possible to assess the spatial variability of vine water status? OENO One 2008, 42, 203–219. [Google Scholar] [CrossRef]
- Adamchuk, V.I.; Hummel, J.W.; Morgan, M.T.; Upadhyaya, S.K. On-the-go soil sensors for precision agriculture. Comput. Electron. Agric. 2004, 44, 71–91. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agron. J. 2003, 95, 455–471. [Google Scholar] [CrossRef]
- Mertens, F.M.; Pätzold, S.; Welp, G. Spatial heterogeneity of soil properties and its mapping with apparent electrical conductivity. J. Plant Nutr. Soil Sci. 2008, 171, 146–154. [Google Scholar] [CrossRef]
- Buesa, I.; Pérez, D.; Castel, J.; Intrigliolo, D.S.; Castel, J.R. Effect of deficit irrigation on vine performance and grape composition of Vitis vinifera L. cv. Muscat of Alexandria. Aust. J. Grape Wine Res. 2017, 23, 251–259. [Google Scholar] [CrossRef]
- Wilson, T.G.; Kustas, W.P.; Alfieri, J.G.; Anderson, M.C.; Gao, F.; Prueger, J.H.; McKee, L.G.; Alsina, M.M.; Sanchez, L.A.; Alstad, K.P. Relationships between soil water content, evapotranspiration, and irrigation measurements in a California drip-irrigated Pinot noir vineyard. Agric. Water Manag. 2020, 237, 106186. [Google Scholar] [CrossRef]
- Carroll, Z.L.; Oliver, M.A. Exploring the spatial relations between soil physical properties and apparent electrical conductivity. Geoderma 2005, 128, 354–374. [Google Scholar] [CrossRef]
- Kühn, J.; Brenning, A.; Wehrhan, M.; Koszinski, S.; Sommer, M. Interpretation of electrical conductivity patterns by soil properties and geological maps for precision agriculture. Precis. Agric. 2009, 10, 490–507. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Heil, K.; Schmidhalter, U. Characterisation of soil texture variability using the apparent soil electrical conductivity at a highly variable site. Comput. Geosci. 2012, 39, 98–110. [Google Scholar] [CrossRef]
- Pedrera-Parrilla, A.; Van De Vijver, E.; Van Meirvenne, M.; Espejo-Pérez, A.J.; Giráldez, J.V.; Vanderlinden, K. Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: Significance for clay and soil water content mapping. Precis. Agric. 2016, 17, 531–545. [Google Scholar] [CrossRef]
- Martinez, G.; Vanderlinden, K.; Ordóñez, R.; Muriel, J.L. Can apparent electrical conductivity improve the spatial characterization of soil organic carbon? Vadose Zone J. 2009, 8, 586–593. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Kitchen, N.R.; Wiebold, W.J.; Batchelor, W.D.; Bollero, G.A.; Bullock, D.G.; Clay, D.E.; Palm, H.L.; Pierce, F.J.; Schuler, R.T.; et al. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput. Electron. Agric. 2005, 46, 263–283. [Google Scholar] [CrossRef]
- Bramley, R.G.V. Understanding variability in winegrape production systems. 2. Within vineyard variation in quality over several vintages. Aust. J. Grape Wine Res. 2005, 11, 33–45. [Google Scholar] [CrossRef]
- Acevedo-Opazo, C.; Tisseyre, B.; Guillaume, S.; Ojeda, H. The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precis. Agric. 2008, 9, 285–302. [Google Scholar] [CrossRef]
- Fulton, A.; Schwankl, L.; Lynn, K.; Lampinenm, B.; Edstrom, J.; Prichard, T. Using EM and VERIS technology to assess land suitability for orchard and vineyard development. Irrig. Sci. 2011, 29, 497–512. [Google Scholar] [CrossRef]
- Brogi, C.; Huisman, J.A.; Pätzold, S.; von Hebel, C.; Weihermüller, L.; Kaufmann, M.S.; van der Kruk, J.; Vereecken, H. Large-scale soil mapping using multi-configuration EMI and supervised image classification. Geoderma 2019, 335, 133–148. [Google Scholar] [CrossRef]
- Córdoba, M.A.; Bruno, C.I.; Costa, J.L.; Peralta, N.R.; Balzarini, M.G. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosyst. Eng. 2016, 143, 95–107. [Google Scholar] [CrossRef]
- Moral, F.J.; Terrón, J.M.; Marques da Silva, J.R.M. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res. 2010, 106, 335–343. [Google Scholar] [CrossRef]
- Peralta, N.R.; Costa, J.R. Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Comput. Electron. Agric. 2013, 99, 218–226. [Google Scholar] [CrossRef]
- Taylor, J.A.; McBratney, A.B.; Whelan, B.M. Establishing management classes for broadacre grain production. Agron. J. 2007, 99, 1366–1376. [Google Scholar] [CrossRef]
- Vitharana, U.W.A.; Van Meirvenne, M.; Simpson, D.; Cockx, L.; De Baerdemaeker, J. Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area. Geoderma 2008, 143, 206–215. [Google Scholar] [CrossRef]
- Ortega-Blu, R.; Molina-Roco, M. Evaluation of vegetation indices and apparent soil electrical conductivity for site-specific vineyard management in Chile. Precis. Agric. 2016, 17, 434–450. [Google Scholar] [CrossRef]
- Aggelopoulou, K.; Fountas, S.; Pateras, D.; Nanos, G.; Gemtos, T. Soil spatial variability and site-specific fertilization maps in an apple orchard. Precis. Agric. 2011, 12, 118–129. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Arnó, J. Soil Sensors to Optimize Irrigation Zoning. In Dossier Tècnic. Agricultura de Precisió: Aplicacions al Reg; De Ribot, M.J., Malet, I., Teixidó, A., Cuadros, R., Sisquella, M.T., Vallverdú, X., Eds.; Generalitat de Catalunya, Departament d’Agricultura, Ramaderia, Pesca i Alimentació: Barcelona, Spain, 2020; Volume 107, pp. 32–36. (In Catalan) [Google Scholar]
- Bazzi, C.L.; Schenatto, K.; Upadhyaya, S.; Rojo, F.; Kizer, E.; Ko-Madden, C. Optimal placement of proximal sensors for precision irrigation in tree crops. Precis. Agric. 2019, 20, 663–674. [Google Scholar] [CrossRef]
- Webster, R.; Lark, R.M. Field Sampling for Environmental Science and Management; Routledge: London, UK; New York, NY, USA, 2013. [Google Scholar]
- Arnó, J.; Martínez-Casasnovas, J.A.; Ribes-Dasi, M.; Rosell, J.R. Precision Viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Span. J. Agric. Res. 2009, 7, 779–790. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Hamilton, R.P. Understanding variability in winegrape production systems. 1. Within vineyard variation in yield over several vintages. Aust. J. Grape Wine Res. 2004, 10, 32–45. [Google Scholar] [CrossRef]
- Tisseyre, B.; Ojeda, H.; Taylor, J. New technologies and methodologies for site-specific viticulture. J. Int. Sci. Vigne Vin 2007, 41, 63–76. [Google Scholar] [CrossRef]
- Muršec, M.; Leveque, J.; Chaussod, R.; Curmi, P. The impact of drip irrigation on soil quality in sloping orchards developed on marl—A case study. Plant Soil Environ. 2018, 64, 20–25. [Google Scholar] [CrossRef]
- Nouri, H.; Stokvis, B.; Galindo, A.; Blatchford, M.; Hœkstra, A.Y. Water scarcity alleviation through water footprint reduction in agriculture: The effect of soil mulching and drip irrigation. Sci. Total Environ. 2019, 653, 241–252. [Google Scholar] [CrossRef]
- Ortuani, B.; Facchi, A.; Mayer, A.; Bianchi, D.; Bianchi, A.; Brancadoro, L. Assessing the effectiveness of variable-rate drip irrigation on water use efficiency in a vineyard in Northern Italy. Water 2019, 11, 1964. [Google Scholar] [CrossRef]
- Dalurzo, H.C. Régimen Hídrico Del Suelo Y Producción de Viñas Bajo Diferentes Sistemas de Riego en Raimat (Lleida, España). Ph.D. Thesis, University of Lleida, Lleida, Spain, 2010. Available online: http://hdl.handle.net/10803/8249 (accessed on 26 March 2023).
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Rodríguez-Pérez, J.R.; Plant, R.E.; Lambert, J.-J.; Smart, D.R. Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precis. Agric. 2011, 12, 775–794. [Google Scholar] [CrossRef]
- Serrano, J.; Mau, V.; Rodrigues, R.; Paixão, L.; Shahidian, S.; Marques da Silva, J.; Paniagua, L.L.; Moral, F.J. Definition and validation of vineyard management zones based on soil apparent electrical conductivity and altimetric survey. Environments 2023, 10, 117. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Whelan, B.M. VESPER, Version 1.62; Australian Centre for Precision Agriculture, McMillan Building A05, The University of Sydney: Camperdown, NSW, Australia, 2006. [Google Scholar]
- Fridgen, J.J.; Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Wiebold, W.J.; Fraisse, C.W. Management zone analyst (MZA): Software for subfield management zone delineation. Agron. J. 2004, 96, 100–108. [Google Scholar] [CrossRef]
- Lund, E.D.; Colin, P.E.; Christy, D.; Drummond, P.E. Applying soil electrical conductivity to precision agriculture. In Proceedings of the Fourth International Conference on Precision Agriculture, St. Paul, MN, USA, 19–22 July 1998; Robert, P.C., Rust, R.H., Larson, W.E., Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 1999; pp. 1089–1100. [Google Scholar]
- Hunter, J.J.; Archer, E.; van Schalkwyk, D.; Strever, A.; Volschenk, C. Grapevine roots: Interaction with natural factors and agronomic practices. Acta Hortic. 2016, 1136, 63–80. [Google Scholar] [CrossRef]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Poesen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Process. Landf. 1998, 23, 527–544. [Google Scholar] [CrossRef]
- Rodríguez Díaz, J.A.; Perea, R.G.; Moreno, M.A. Modelling and Management of Irrigation System. Water 2020, 12, 697. [Google Scholar] [CrossRef]
- Shwetha, P.; Varija, K. Soil Water Retention Curve from Saturated Hydraulic Conductivity for Sandy Loam and Loamy Sand Textured Soils. Aquat. Procedia 2015, 4, 1142–1149. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Fandiño, M.; Rey, B.J.; Dafonte, J.; Cancela, J.J. Zoning of a Newly-Planted Vineyard: Spatial Variability of Physico-Chemical Soil Properties. Soil Syst. 2020, 4, 62. [Google Scholar] [CrossRef]
- Scull, P.; Franklin, J.; Chadwick, O.A.; McArthur, D. Predictive soil mapping: A review. Prog. Phys. Geogr. 2003, 27, 171–197. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Arnó, J.; Escolà, A. Sensores de Conductividad Eléctrica Aparente Para el Análisis de la Variabilidad del Suelo en Agricultura de Precisión. In Tecnología Hortícola Mediterránea. Evolución Y Futuro: Viveros, Frutales, Hortalizas Y Ornamentales; Namesny, A., Conesa, C., Martín, L., Papasseit, P., Eds.; Biblioteca de Horticultura, SPE3 S.L.: Valencia, Spain, 2022; pp. 521–542. [Google Scholar]
- Corwin, D.L.; Lesch, S.M.; Segal, E.; Skaggs, T.H.; Bradford, S.A. Comparison of Sampling Strategies for Characterizing Spatial Variability with Apparent Soil Electrical Conductivity Directed Soil Sampling. J. Environ. Eng. Geophys. 2010, 15, 147–162. [Google Scholar] [CrossRef]
- Haghverdi, A.; Leib, B.G.; Washington-Allen, R.A.; Ayers, P.D.; Buschermohle, M.J. Perspectives on delineating management zones for variable rate irrigation. Comput. Electron. Agric. 2015, 17, 154–167. [Google Scholar] [CrossRef]
- Yari, A.; Madramootoo, C.A.; Woods, S.A.; Adamchuk, V.I.; Huang, H.H. Assessment of Field Spatial and Temporal Variabilities to Delineate Site-Specific Management Zones for Variable-Rate Irrigation. J. Irrig. Drain. Eng. 2017, 143, 04017037. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J.; Paixão, L.; Moral, F.; Carmona-Cabezas, R.; Garcia, S.; Palha, J.; Noéme, J. Mapping Management Zones Based on Soil Apparent Electrical Conductivity and Remote Sensing for Implementation of Variable Rate Irrigation—Case Study of Corn under a Center Pivot. Water 2020, 12, 3427. [Google Scholar] [CrossRef]
- Carbone, A.; Quici, E.; Pica, G. The age dynamics of vineyards: Past trends affecting the future. Wine Econ. Policy 2019, 8, 38–48. [Google Scholar] [CrossRef]
Soil Property | Irrigation Sectors with Low ECa (N = 20) | Irrigation Sectors with High ECa (N = 15) | ||
---|---|---|---|---|
0–30 cm | 30–60 cm | 0–30 cm | 30–60 cm | |
pH | 8.37 a | 8.4 A | 8.27 b | 8.4 A |
EC1:5 | 0.33 a | 0.45 A | 0.37 a | 0.49 A |
CaCO3 (%) | 27.3 a | 27.5 A | 27.5 a | 27.5 A |
OM (%) | 2.2 a | 1.5 A | 1.8 a | 1.9 A |
Clay (%) | 28.6 a | 27.5 A | 28.2 a | 32.6 A |
Silt (%) | 48.1 b | 50.2 A | 52.6 a | 48.9 A |
Sand (%) | 23.3 a | 22.3 A | 19.2 a | 18.6 A |
WRC–33 kPa (%) | 25.1 a | 24.4 A | 26.5 a | 25.3 A |
WRC–1500 kPa (%) | 13.1 a | 12.5 A | 13.1 a | 12.6 A |
Slope (%) | 9.1 a | 5.1 b |
of Prediction | |||||
---|---|---|---|---|---|
Slope (%) | 0.53 | 3.468 | 3.475 | 6.936 | 7.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnó, J.; Uribeetxebarria, A.; Llorens, J.; Escolà, A.; Rosell-Polo, J.R.; Gregorio, E.; Martínez-Casasnovas, J.A. Drip Irrigation Soil-Adapted Sector Design and Optimal Location of Moisture Sensors: A Case Study in a Vineyard Plot. Agronomy 2023, 13, 2369. https://doi.org/10.3390/agronomy13092369
Arnó J, Uribeetxebarria A, Llorens J, Escolà A, Rosell-Polo JR, Gregorio E, Martínez-Casasnovas JA. Drip Irrigation Soil-Adapted Sector Design and Optimal Location of Moisture Sensors: A Case Study in a Vineyard Plot. Agronomy. 2023; 13(9):2369. https://doi.org/10.3390/agronomy13092369
Chicago/Turabian StyleArnó, Jaume, Asier Uribeetxebarria, Jordi Llorens, Alexandre Escolà, Joan R. Rosell-Polo, Eduard Gregorio, and José A. Martínez-Casasnovas. 2023. "Drip Irrigation Soil-Adapted Sector Design and Optimal Location of Moisture Sensors: A Case Study in a Vineyard Plot" Agronomy 13, no. 9: 2369. https://doi.org/10.3390/agronomy13092369
APA StyleArnó, J., Uribeetxebarria, A., Llorens, J., Escolà, A., Rosell-Polo, J. R., Gregorio, E., & Martínez-Casasnovas, J. A. (2023). Drip Irrigation Soil-Adapted Sector Design and Optimal Location of Moisture Sensors: A Case Study in a Vineyard Plot. Agronomy, 13(9), 2369. https://doi.org/10.3390/agronomy13092369