Defining the Ideal Phenological Stage for Estimating Corn Yield Using Multispectral Images
Abstract
:1. Introduction
- Possibility of remote monitoring of yield;
- Prediction of places of high and low productivity in the first reproductive stages of maize;
- Provision of a database on culture within the scope of digital agriculture;
- Mapping of the geospatial distribution of crop production for later decision-making.
2. Materials and Methods
2.1. Areas of Study
2.2. The Methodology Used for Data Processing
2.3. Delimitation of the Experiment
2.4. Filtering of Maize Crop Yield Data
2.5. Descriptive and Exploratory Analysis of Yield
2.6. Acquisition of Multispectral Data
2.7. Processing of Multispectral Data
2.8. Calculation of Vegetation Indices
2.9. Generation of Prediction and Quality Control Models
2.10. Map of the Discrepancy between Value Observed in the Field and Estimated by the Model
3. Results
3.1. Exploratory Analysis of the Yield Variable
3.2. Analysis of the Validation Metrics between Yield and Phenological Stages and Selection of the Best Model for Estimation
3.3. Spatialization of the Estimated Variable
4. Discussion
5. Conclusions
- -
- For estimating yield of the maize crop utilizing the spectral models based on multispectral images and machine learning algorithms, the reproductive phenological phase of R2 was found to obtain the best RMSE% and MAPE% values of 9.17% and 7.07%, respectively;
- -
- Due to the influence of ground spectral response from images taken at the stadium
- -
- VE, it is possible to estimate the yield with satisfactory levels of accuracy;
- -
- The composition of the predictor variables and the accuracy and precision of the models are associated with the phenological stage of development; that is, the architecture of the model is variable for different areas and stages of senescence of the plant.
Limitations and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terliksiz, A.S.; Altýlar, D.T. Use of deep neural networks for crop yield prediction: A case study of soybean yield in Lauderdale County, Alabama, USA. In Proceedings of the 8th International Conference on Agro654 Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16 July 2019. [Google Scholar]
- Filgueiras, R.; Almeida, T.S.; Mantovani, E.C.; Dias, S.H.B.; Fernandes-Filho, E.I.; da Cunha, F.F.; Venancio, L.P. Soil water content and actual evapotranspiration predictions using regression algorithms and remote sensing data. Agric. Water Manag. 2020, 241, 106346. [Google Scholar] [CrossRef]
- Shanahan, J.; Dennis, D.; Francis, G.E.; Wallace, W.V.; Wilhelm, W.; Tringe, J.W.; Schlemmer, M.R.; Major, D.J. Use of Remote-Sensing Imagery to Estimate Corn Grain Yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef]
- Jensen, J. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Pearson PrenticeHall: Upper Saddle River, NJ, USA, 2009; 525p. [Google Scholar]
- Eugenio, F.C.; Grohs, M.; Venancio, L.P.; Schuh, M.; Bottega, E.L.; Ruoso, R.; Schons, C.; Lorenci Mallman, C.; Badin, T.L.; Fernandes, P. Estimation of soybean yield from machine learning techniques and multispectral RPAS imagery. Remote Sens. Appl. Soc. Environ. 2020, 27, 100782. [Google Scholar] [CrossRef]
- Barzin, R.; Pathak, R.; Lotfi, H.; Varco, J.; Bora, G.C. Use of UAS multispectral imagery at different physiological stages for yield prediction and input resource optimization in corn. Remote Sens. 2020, 12, 2392. [Google Scholar] [CrossRef]
- Ješovnik, A.; Blažević, I.; Lemić, D.; Pajač Živković, I. Ant fauna of annual and perennial crops. Appl. Ecol. Environ. Res. 2019, 17, 12709–12722. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Z.; Kang, Y.; Mutlu Özdoğan, M. Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach. Remote Sens. Environ. 2021, 259, 112408. [Google Scholar] [CrossRef]
- Ahmad, I.; Saeed, U.; Fahad, M.; Ullah, A.; Rahman, M.H.; Ahmad, A.; Judge, J. Yield forecasting of spring maize using remote sensing and crop modeling in Faisalabad-Punjab Pakistan. J. Indian Soc. Remote Sens. 2018, 46, 1701–1711. [Google Scholar] [CrossRef]
- Wahab, I.; Hall, O.; Jirström, M. Remote sensing of yields: Application of UAV imagery-derived NDVI for estimating maize vigor and yields in complex farming systems in Sub-Saharan Africa. Drones 2018, 2, 28. [Google Scholar] [CrossRef]
- Khaki, S.; Pham, H.; Wang, L. Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning. Sci. Rep. 2021, 11, 11132. [Google Scholar] [CrossRef]
- Khanal, S.; Klopfenstein, A.; Ramarao, V.V.; Ramarao, J.F.; Fulton, J.; Nathan, D.; Scott, A.; Shearer, S. Assessing the impact of agricultural field traffic on corn grain yield using remote sensing and machine learning. Soil Tillage Res. 2021, 208, 104880. [Google Scholar] [CrossRef]
- Tandzi, N.L.; Mutengwa, S.M. Estimation of maize (Zea mays L.) yield per harvest area: Appropriate methods. Agronomy 2020, 10, 29. [Google Scholar] [CrossRef]
- Soybean and Corn Cultivation Systems in the Alto Paranaíba-MG Region and Evaluation Results in the 2014/15 Harvest. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/149709/1/doc-200 (accessed on 1 July 2022).
- Baum, M.E.; Archontoulis, S.V.; Licht, M.A. Planting date, hybrid maturity, and weather effects on maize yield and crop stage. Agron. J. 2019, 111, 303–313. [Google Scholar] [CrossRef]
- Oliveira, A.; Mello, C.; Marques, R. Temporal trends of climate indices associated with precipitation and air temperature in Minas Gerais, Brazil. Rev. Bras. Climatol. 2020, 26, 499–520. [Google Scholar] [CrossRef]
- Ji, Z.; Pan, Z.; Zhu, X.; Wang, J.; Li, Q. Prediction of Crop Yield Using Phenological Information Extracted from Remote Sensing Vegetation Index. Sensors 2021, 21, 1406. [Google Scholar] [CrossRef] [PubMed]
- Jie Sun, J.; Lai, Z.; Di, L.; Sun, Z.; Tao, J.; Shen, Y. Multilevel deep learning network for county-level corn yield estimation in the u.s. corn belt. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5048–5060. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Wu, Z.; Wang, S.; Sun, H.; Senthilnath, J.; Wang, J.; Bryant, C.; Fu, Y. Modified red blue vegetation index for chlorophyll estimation and yield prediction of maize from visible images captured by UAV. Sensors 2020, 20, 5055. [Google Scholar] [CrossRef] [PubMed]
- Fathipoor, H.; Arefi, H.; Shah-Hosseini, R.; Moghadam, H. Corn forage yield prediction using unmanned aerial vehicle images at mid-season growth stage. J. Appl. Remote Sens. 2019, 13, 034503. [Google Scholar] [CrossRef]
- Planet Labs Specifications: Spacecraft Operations & Ground Systems. Planet Labs. Available online: https://docplayer.net/45671690-Planet-labs-specifications-spacecraft-operations-ground-systems-1-section-header-planet-labs-spacecraft-operations-ground-systems.html (accessed on 1 July 2022).
- Marques Ramos, A.P.; Prado Osco, L.; Furuya, D.E.G.; Gonçalves, W.N.; Santana, D.C.; Teodoro, L.P.; da Silva Junior, C.A.; Capristo-Silva, G.F.; Li, J.; Rojo Baio, F.H.; et al. A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Comput. Electron. Agric. 2020, 178, 105791. [Google Scholar] [CrossRef]
- Aghighi, H.; Azadbakht, M.; Ashourloo, D.; Shahrabi, H.S.; Radiom, S. Machine learning regression techniques for the silage maize yield prediction using time-series images of landsat 8 OLI. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4563–4577. [Google Scholar] [CrossRef]
- Monitoring Vegetation Systems in the Great Plains with ERTS, NASA Special Publication. 1974. Available online: https://ntrs.nasa.gov/citations/19740022614 (accessed on 1 July 2022).
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. U.S. Remote mapping of standing crop biomass for estimation of the yield of the shortgrass prairie, Pawnee National Grasslands, Colorado. In Proceedings of the International Symposium on Remote Sensing of Environment, Pawnee National Grasslands, CO, USA, 2–6 October 1972. [Google Scholar]
- Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.E.; Rodrigueza, P.; Gaoa, X.; Ferreirab, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing predictive power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2000, 76, 156–172. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A broad-band leaf chlorophyll index at the canopy scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for nondestructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–278. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 1. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Arab, S.T.; Noguchi, R.; Matsushita, S.; Ahamed, T. Prediction of grape yields from time-series vegetation indices using satellite remote sensing and a machine-learning approach. Remote Sens. Appl. Soc. Environ. 2021, 22, 100485. [Google Scholar] [CrossRef]
- Accompaniment of the Brazilian Grain Crop: Twelfth Survey. Available online: https://www.conab.gov.br/infoagro/safras/grãos (accessed on 1 July 2022).
- Tagarakis, A.; Ketterings, Q. In-season estimation of corn yield potential using proximal sensing. Agron. J. 2017, 109, 1323–1330. [Google Scholar] [CrossRef]
- Corn: Brazil Expands Cultivation to Meet Growing Demand. Available online: https://www.esalq.usp.br/visaoagricola/sites/default/files/Esalq-VA13-Milho.pdf (accessed on 1 July 2022).
- Physiology of Corn Production, Technical Circular, Infoteca-e. Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/490408 (accessed on 1 July 2022).
- Alehegn, E. Ethiopian maize diseases recognition and classification using support vector machine. Int. J. Comput. Vis. Robot. 2019, 9, 90–109. [Google Scholar] [CrossRef]
- Aravind, K.R.; Raja, P.; Aniirudh, R.; Ashiwin, R. Disease classification in maize crop using bag of features and multiclass support vector machine. In Proceedings of the Second International Conference on Inventive Systems and Control, Piscataway, NJ, USA, 19 January 2018. [Google Scholar]
- Fan, J.; Zheng, J.; Wu, L.; Zhang, F. Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models. Agric. Water Manag. 2021, 245, 106547. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, J.; Zhang, F.; Wud, L.; Zoua, Y.; Zhuangbc, Q. Estimation of rainfed maize transpiration under various mulching methods using modified Jarvis-Stewart model and hybrid support vector machine model with whale optimization algorithm. Agric. Water Manag. 2021, 249, 106799. [Google Scholar] [CrossRef]
- García-Martínez, H.; Flores-Magdaleno, H.; Ascencio-Hernández, R.; Khalil-Gardezi, A.; Tijerina-Chávez, L.; Mancilla-Villa, O.R.; Vázquez-Peña, M.A. Corn Grain Yield Estimation from Vegetation Indices, Canopy Cover, Plant Density, and a Neural Network Using Multispectral and RGB Images Acquired with Unmanned Aerial Vehicles. Agriculture 2020, 10, 277. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Liang, S.; Yongchao, Z.; Khan, J.; Shibo Fang, S. Monitoring maize growth on the North China Plain using a hybrid genetic algorithm-based back-propagation neural network model. Comput. Electron. Agric. 2020, 170, 105238. [Google Scholar] [CrossRef]
- Liesenberg, V.; Galvão, L.S.; Ponzoni, F.J. Variations in reflectance with seasonality and viewing geometry: Implications for classification of Brazilian savanna physiognomies with MISR/Terra data. Remote Sens. Environ. 2007, 107, 276–286. [Google Scholar] [CrossRef]
- Ray, K.; Banerjee, H.; Dutta, S.; Hazra, A.K.; Majumdar, K. Macronutrients influence yield and oil quality of hybrid maize (Zea mays L.). PLoS ONE 2019, 14, e0216939. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Avasthe, R.K.; Yadav, G.S.; Das, A.; Singh, V.K.; Mohapatra, K.P.; Rathore, S.S.; Chandra, P.; Kumar, A. Impact of land configuration and organic nutrient management on yield, quality and soil properties under baby corn in Eastern Himalayas. Sci. Rep. 2020, 10, 16129. [Google Scholar] [CrossRef] [PubMed]
- Selvi, K.C.; Coskun, G.; Mehmet, A.B. Short Term Effects of Different Tillage Methods on Nitrate Content in Soil and Corn Yield. Malays. J. Soil Sci. 2019, 23, 55–68. [Google Scholar]
Index | Equation | Reference | Contribution |
---|---|---|---|
Normalized difference vegetation index | [24] | High correlation with yield | |
Green normalized difference | [25] | Sensitivity to chlorophyll concentration | |
Ratio vegetation index | [26,27] | Correlation with crop leaf density | |
Soil adjusted vegetation index | [28] | Minimizes the ground glare effect | |
Modified soil adjusted vegetation index 1 | [29] | Minimizes the soil effect of the SAVI index | |
Optimized soil adjusted vegetation index | [30] | Analysis on vegetative stages | |
Enhanced vegetation index | [31] | Enhance vegetation with less atmospheric influence | |
Triangular vegetation index | [32] | Sensitivity to crop leaf area index | |
Second modified triangular vegetation index | [33] | Sensitivity to crop leaf area index | |
Chlorophyll vegetation index | [34] | Increased sensitivity to chlorophyll | |
Chlorophyll index | [35] | Assists in estimating total plant chlorophyll | |
Green leaf index | [36] | Leaf area intensity of the crop | |
Triangular greenness index | [28] | Enhances vegetation with low sensitivity to atmospheric effects | |
Normalized green, red difference index | [37] | Correlation with crop biomass |
E.F. | Support Vector Machine | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bs | c | debug | dNCC | ft | kernel | nDP | rO | |||||||
VE | 100 | 1.0 | False | False | Normalize | Polykernel | 2 | RegSMOImproved | ||||||
R3 | 100 | 1.0 | False | False | Normalize | Polykernel | 2 | RegSMOImproved | ||||||
E.F. | Neural Net | |||||||||||||
GUI | aB | debug/decay/dNCC | bS | hL | IR | momentum | nTBF/nA/nNC | tT | ||||||
V8 | False | True | False | 100 | 3 | 0.3 | 0.2 | True | 500 | |||||
V11 | False | True | False | 100 | 3 | 0.1 | 0.3 | True | 500 | |||||
R1 | False | True | False | 100 | 1 | 0.1 | 0.2 | True | 500 | |||||
R2 | False | True | False | 100 | 3 | 0.3 | 0.2 | True | 500 | |||||
E.F. | Random Forest | |||||||||||||
bSP | bS | bTR | cOOB | Cai | debug | dNCC | maxDepth | Iterations | ||||||
R5 | 100 | 100 | False | False | False | False | False | 0 | 100 | |||||
E.F. | Random Tree | |||||||||||||
KV | allowUnclassifiedInstancess | Bs | bTR/ dNCC | MaxDepth/numFolds | minVarianceProp | minNum | ||||||||
V5 | 0 | False | 100 | False | 0 | 0.001 | 1.0 | |||||||
R4 | 0 | False | 100 | False | 0 | 0.001 | 1.0 | |||||||
R6 | 0 | False | 100 | False | 0 | 0.001 | 1.0 |
Variable | Average | D.P. | Minimum | Maximum | Q1 | Median | Q3 | C.V. (%) |
---|---|---|---|---|---|---|---|---|
Yield | 8871 | 1110 | 6345 | 11,254 | 8115 | 8808 | 9675 | 12.52 |
Date | E.F. | Alg. | MAPE | RMSE | Bands/Indexes |
---|---|---|---|---|---|
20//2002 | VE | SVM | 6.31 | 9.68 | GLI, VARI, GNDVI, CI-G, CVI |
13//2003 | V5 | RT | 7.09 | 9.62 | R, B, G, CVI, GNDVI |
31//2003 | V8 | NN | 7.39 | 9.70 | R, G, GNDVI, CI-G, CVI |
11//2004 | V11 | NN | 7.95 | 10.32 | CVI, CI-G, RVI, TGI, GNDVI |
25 April 2020 | R1 | NN | 7.25 | 9.25 | G. RVI, CVI, GNDVI, CI-G |
13//2005 | R2 | NN | 7.07 | 9.17 | NIR, CI-G, GNDVI, TVI, RVI |
22 May 2020 | R3 | SVM | 7.30 | 10.53 | EVI, CVI, NGRDI, VARI, TGI |
05//2006 | R4 | RT | 9.62 | 13.62 | G, GNDVI, CI-G, CVI, MTVI |
18//2006 | R5 | RF | 9.42 | 12.88 | NGRDI, VARI, TGI, EVI, RVI |
03//2007 | R6 | RT | 15.91 | 20.96 | MSAVI, MTVI, SAVI, OSAVI, NDVI |
Metrics Analyzed | Study Area | |
---|---|---|
Observed | Dear | |
Average | 9137.66 | 8448.98 |
Standard Deviation | 924.62 | 917.76 |
RMSE | 12.31 | |
MAPE | 8.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu Júnior, C.A.M.d.; Martins, G.D.; Xavier, L.C.M.; Bravo, J.V.M.; Marques, D.J.; Oliveira, G.d. Defining the Ideal Phenological Stage for Estimating Corn Yield Using Multispectral Images. Agronomy 2023, 13, 2390. https://doi.org/10.3390/agronomy13092390
Abreu Júnior CAMd, Martins GD, Xavier LCM, Bravo JVM, Marques DJ, Oliveira Gd. Defining the Ideal Phenological Stage for Estimating Corn Yield Using Multispectral Images. Agronomy. 2023; 13(9):2390. https://doi.org/10.3390/agronomy13092390
Chicago/Turabian StyleAbreu Júnior, Carlos Alberto Matias de, George Deroco Martins, Laura Cristina Moura Xavier, João Vitor Meza Bravo, Douglas José Marques, and Guilherme de Oliveira. 2023. "Defining the Ideal Phenological Stage for Estimating Corn Yield Using Multispectral Images" Agronomy 13, no. 9: 2390. https://doi.org/10.3390/agronomy13092390
APA StyleAbreu Júnior, C. A. M. d., Martins, G. D., Xavier, L. C. M., Bravo, J. V. M., Marques, D. J., & Oliveira, G. d. (2023). Defining the Ideal Phenological Stage for Estimating Corn Yield Using Multispectral Images. Agronomy, 13(9), 2390. https://doi.org/10.3390/agronomy13092390