Research Progress on Grassland Eco-Assets and Eco-Products and Its Implications for the Enhancement of Ecosystem Service Function of Karst Desertification Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Search
2.3. Appraisal
2.4. Synthesis
2.5. Report
3. Results
3.1. Annual Distribution
3.2. Research Topic Distribution
3.3. Study Area Distribution
3.4. Major Progress and Landmark Achievements
3.4.1. Structure Optimization
3.4.2. Functional Enhancement
3.4.3. Service Management
3.4.4. Ecological Assets
3.4.5. Ecological Products
4. Discussion
4.1. Key Scientific Issues That Need to Be Addressed
4.1.1. There Is an Urgent Need to Identify the Drivers of Change in Ecosystem EAs and EPs of Grasslands and to Find the Mechanisms of the Effects from Climate Change and Soil Characteristics
4.1.2. Assessment Models and Techniques Should Focus on Enhancing Multifunctionality, Breaking Down Supply and Demand Barriers between Karst Grassland Ecosystems and Human Society, and Promoting a Balance between the Three Regional Functions
4.1.3. In Response to the Inefficient Transformation of Grassland EAs and EPs, the Input–Output Ratio Should Be Improved to Increase the Supply Capacity of Grassland EPs in Karst Areas
4.1.4. To Address the Issue of Trade-Off/Synergy Mechanisms for Grassland Ecosystem Services and Based on the Cascade Framework of “Ecosystem Structure–Process–Function–Services”, a Holistic Approach to Improving Ecosystem Quality in Karst Areas Is Proposed
4.1.5. In Response to the Uneven Spatio-Temporal Distribution of Grassland Resources in Different Regions, Different Functional Areas of Use Should Be Identified to Enhance the Supply of EPs in Karst Areas
4.2. The Intrinsic Relationship between Grassland EAs, Products, and Desertification Control
4.3. Insights into the Enhancement of Grassland Ecosystem Services in Desertification Control
4.3.1. A Deeper Understanding of the Fragility of the Karst Natural Environment Is a Prerequisite for Optimizing the Structure of Grassland EAs
4.3.2. Identifying the Relationship between the Supply and Demand of Grassland Ecosystems Is an Intermediate Step in the Functional Enhancement of Ecological Assets
4.3.3. Grassland Ecological Management Practices Are an Important Initiative to Enhance the Supply of Grassland Ecological Products
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, G.; Cheng, Z.; Alatalo, J.M.; Zhao, J.; Liu, Y. Climate Warming Consistently Reduces Grassland Ecosystem Productivity. Earth’s Futur. 2021, 9, e2020EF001837. [Google Scholar] [CrossRef]
- Zhang, G.; Biradar, C.M.; Xiao, X.; Dong, J.; Zhou, Y.; Qin, Y.; Zhang, Y.; Liu, F.; Ding, M.; Thomas, R.J. Exacerbated grassland degradation and desertification in Central Asia during 2000–2014. Ecol. Appl. 2018, 28, 442–456. [Google Scholar] [CrossRef] [PubMed]
- Soliveres, S.; Manning, P.; Prati, D.; Gossner, M.M.; Alt, F.; Arndt, H.; Allan, E. Locally rare species influence grassland ecosystem multifunctionality. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150269. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Peeters, A. Importance, evolution, environmental impact and future challenges of grasslands and grassland-based systems in Europe. Grassl. Sci. 2009, 55, 113–125. [Google Scholar] [CrossRef]
- London, J.; Park, J. Man’s Impact on the Global Environment: Assessment and Recommendation for Action; Report of the Study of Critical Environmental Problems; MIT Press: Cambridge, MA, USA, 1970. [Google Scholar]
- Daily, G. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- White, R.; Murray, S.; Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Wilson, S. Grasses and grassland ecology. Ann. Bot. 2009, 6, 104. [Google Scholar] [CrossRef]
- Buisson, E.; Le Stradic, S.; Silveira, F.A.O.; Durigan, G.; Overbeck, G.E.; Fidelis, A.; Fernandes, G.W.; Bond, W.J.; Hermann, J.-M.; Mahy, G.; et al. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol. Rev. 2018, 94, 590–609. [Google Scholar] [CrossRef]
- Lemaire, G.; Hodgson, J.; Chabbi, A. Introduction: Food security and environmental impacts—Challenge for grassland sciences. In Grassland Productivity and Ecosystem Services; Lemaire, G., Hodgson, J., Chabbi, A., Eds.; CABI: Wallingford, UK, 2011. [Google Scholar]
- Dong, T.; Zhang, L.; Xiao, Y.; Zheng, H.; Huang, B.; Ouyang, Z. Assessment of ecological assets and gross ecosystem product value in Ordos City. Acta Ecol. Sin. 2019, 39, 3062–3074. [Google Scholar]
- Zeng, X.G.; Yu, H.Y.; Xie, F. Concept, classification and market supply mechanism of ecological products. China Popul. Resour. Env. 2014, 24, 12–17. [Google Scholar]
- Liu, Y.X.; Fu, B.J.; Zhao, W.; Wang, S. Ecological asset accounting and ecosystem services evaluation: Concept intersection and key research priorities. Acta Ecol. Sin. 2018, 38, 8267–8276. [Google Scholar]
- Zhang, L.B.; Yu, H.Y.; Hao, C.Z.; Wang, H.; Luo, R.J. Redefinition and connotation analysis of ecosystem product. Res. Environ. Sci. 2021, 34, 655–660. [Google Scholar]
- Zhou, J.Y.; Xiong, K.N.; Wang, Q.; Tang, J.H.; Lin, L. A Review of Ecological Assets and Ecological Products Supply: Implications for the Karst Rocky Desertification Control. Int. J. Environ. Res. Public Health 2022, 19, 10168. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fan, Z.H.; Xiong, K.N.; Shen, H.; Guo, Q.Q.; Dan, W.H.; Li, R. Current situation and prospects of the studies of ecological industries and ecological products in eco-fragile areas. Environ. Res. 2021, 201, 111613. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Shang, Z.; Gao, J.; Boone, R.B. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 287, 106684. [Google Scholar] [CrossRef]
- Ravbar, N.; Šebela, S. The effectiveness of protection policies and legislative framework with special regard to karst landscapes: Insights from Slovenia. Environ. Sci. Policy 2015, 51, 106–116. [Google Scholar] [CrossRef]
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Emorphology; Wiley: Chichester, UK, 2007. [Google Scholar]
- Gunn, J. Karst groundwater in UNESCO protected areas: A global overview. Hydrogeol. J. 2020, 29, 297–314. [Google Scholar] [CrossRef]
- Xiong, K.N.; Li, J.; Long, M.Z. Features of soil and water loss and key issues in demonstration areas for combating karst rocky desertification. Acta Geogr. Sin. 2012, 67, 878–888. [Google Scholar]
- Yang, Q.; Jiang, Z.; Yuan, D.; Ma, Z.; Xie, Y. Temporal and spatial changes of karst rocky desertification in ecological reconstruction region of Southwest China. Environ. Earth Sci. 2014, 72, 4483–4489. [Google Scholar] [CrossRef]
- Trac, C.J.; Harrell, S.; Hinckley, T.M.; Henck, A.C. Reforestation programs in Southwest China: Reported success, observed failure, and the reasons why. J. Mt. Sci. 2007, 4, 275–292. [Google Scholar] [CrossRef]
- Wu, J.; Shen, M.Y. Medicinal plant resources and eco—Industry development strategy in karst area of southwest China. World For. Res. 2020, 33, 66–74. [Google Scholar]
- Su, W.C. Rare and endangered plants in Guizhou karst regions with the consideration of their conservation. Resour. Environ. Yangtze Basin 2002, 11, 111–116. [Google Scholar]
- Yan, H.X.; Huang, C.Y.; Zhang, Z.B.; Cui, X.Q.; Deng, J.L.; Guan, S.K.; Pu, C.Y. Tissue culture and plant regeneration of leaves of Primulina guigangensis. Chin. J. Trop. Crops 2019, 40, 98–106. [Google Scholar]
- Gao, J.X.; Fan, X.S. Connotation, Traits and Research Trends of Eco-Assets. Res. Environ. Sci. 2007, 20, 137–143. [Google Scholar]
- Zhang, L.B.; Yu, H.Y.; Li, D.Q.; Jia, Z.Y.; Wu, F.C.; Liu, X. Connotation and value implementation mechanism of ecological products. Trans. Chin. Soc. Agric. Mach. 2019, 50, 173–183. [Google Scholar]
- Costanza, R. Economic growth, carrying capacity, and the environment. Ecol. Econ. 1995, 15, 89–90. [Google Scholar] [CrossRef]
- He, C.; Xing, K.; Chi, Y.; Song, S.; Fang, J.; He, S. Effect of landscape type change on spatial and temporal evolution of ecological assets in a karst plateau-mountain area. Int. J. Environ. Res. Public Health 2022, 19, 4477. [Google Scholar] [CrossRef]
- Xiao, D.; Tan, Y.; Liu, X.; Yang, R.; Zhang, W.; He, X.; Wang, K. Effects of different legume species and densities on arbuscular mycorrhizal fungal communities in a karst grassland ecosystem. Sci. Total Environ. 2019, 678, 551–558. [Google Scholar] [CrossRef]
- Song, S.Z.; Xiong, K.N.; Chi, Y.K.; He, C.; Fang, J.Z.; He, S.Y. Effect of Cultivated Pastures on Soil Bacterial Communities in the Karst Rocky Desertification Area. Front. Microbiol. 2022, 13, 922989. [Google Scholar] [CrossRef]
- Sun, Q.Z.; Liu, R.L.; Chen, J.Y.; Zhang, Y.P. Effects of planting grass on soil erosion in karst demonstration areas of rock desertification integrated rehabilitation in Guizhou Province. J. Soil Water Conserv. 2013, 27, 67–72. [Google Scholar]
- Xiong, K.N.; Xu, L.X.; Liu, K.X.; Guo, W.; Yang, S.M.; Liu, C.M.; Zhang, J.H. Coupling relationship between the development of ecological animal husbandry and the control of rocky desertification in karst mountain area. J. Domest. Anim. Ecol. 2016, 37, 72–79. [Google Scholar]
- Wang, Z.; Deng, X.; Song, W.; Li, Z. What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. Catena 2017, 150, 100–107. [Google Scholar] [CrossRef]
- Schils, R.L.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Price, J.P.N. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Huang, Y. Spatial and temporal changes in ecosystem service values in karst areas in southwestern China based on land use changes. Environ. Sci. Pollut. Res. 2021, 28, 45724–45738. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Taklo, S.K.; Tooranloo, H.S.; Parizi, Z.S. Green Innovation: A Systematic Literature Review. J. Clean. Prod. 2020, 279, 122474. [Google Scholar] [CrossRef]
- Xiao, J.; Xiong, K.N. A review of agroforestry ecosystem services and its enlightenment on the ecosystem improvement of rocky desertification control. Sci. Total Environ. 2022, 852, 158538. [Google Scholar] [CrossRef]
- Rogers, H.H.; Runion, G.B.; Krupa, S.V. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ. Pollut. 1994, 83, 155–189. [Google Scholar] [CrossRef]
- Asner, G.P.; Beatty, S.W. Effects of an African grass invasion on Hawaiian shrubland nitrogen biogeochemistry. Plant Soil 1996, 186, 205–211. [Google Scholar] [CrossRef]
- Decaëns, T.; Jiménez, J.J.; Barros, E.; Chauvel, A.; Blanchart, E.; Fragoso, C.; Lavelle, P. Soil macrofaunal communities in permanent pastures derived from tropical forest or savanna. Agric. Ecosyst. Environ. 2004, 103, 301–312. [Google Scholar] [CrossRef]
- Hickman, K.R.; Hartnett, D.C.; Cochran, R.C.; Owensby, C.E. Grazing Management Effects on Plant Species Diversity in Tallgrass Prairie. J. Range Manag. 2004, 57, 58. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: The Assessment Series (Four Volumes and Summary); Island Press: Washington, DC, USA, 2005; Volume 10. [Google Scholar]
- Patra, A.K.; Abbadie, L.; Clays-Josserand, A.; Degrange, V.; Grayston, S.J.; Loiseau, P.; Le Roux, X. Effects of grazing on microbial functional groups involved in soil ndynamics. Ecol. Monogr. 2005, 75, 65–80. [Google Scholar] [CrossRef]
- Golodets, C.; Kigel, J.; Sternberg, M. Plant diversity partitioning in grazed Mediterranean grassland at multiple spatial and temporal scales. J. Appl. Ecol. 2011, 48, 1260–1268. [Google Scholar] [CrossRef]
- Wrage, N.; Strodthoff, J.; Cuchillo, H.M.; Isselstein, J.; Kayser, M. Phytodiversity of temperate permanent grasslands: Ecosystem services for agriculture and livestock management for diversity conservation. Biodivers. Conserv. 2011, 20, 3317–3339. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, W.W.; Martinez-Murillo, J.F.; Pereira, P. Loess Plateau: From degradation to restoration. Sci. Total Environ. 2020, 738, 104206. [Google Scholar] [CrossRef] [PubMed]
- Porqueddu, C.; Ates, S.; Louhaichi, M.; Kyriazopoulos, A.P.; Moreno, G.; del Pozo, A.; Nichols, P.G.H. Grasslands in “Old World” and “New World” Mediterranean-climate zones: Past trends, current status and future research priorities. Grass Forage Sci. 2016, 71, 1–35. [Google Scholar] [CrossRef]
- Coyle, C.; Creamer, R.E.; Schulte, R.P.O.; O’Sullivan, L.; Jordan, P. A Functional Land Management conceptual framework under soil drainage and land use scenarios. Environ. Sci. Policy 2016, 56, 39–48. [Google Scholar] [CrossRef]
- Vargas, L.; Hein, L.; Remme, R.P. Accounting for ecosystem assets using remote sensing in the Colombian Orinoco River basin lowlands. Earth Resour. Environ. Remote Sens./GIS Appl. VII. 2016, 11, 26008. [Google Scholar] [CrossRef]
- Wei, J.X.; Hu, A.; Gan, X.Y.; Zhao, X.D.; Huang, Y. Spatial and Temporal Characteristics of Ecosystem Service Trade-Off and Synergy Relationships in the Western Sichuan Plateau, China. Forests 2022, 13, 1845. [Google Scholar] [CrossRef]
- You, X.; He, D.J.; Xiao, Y.; Fu, W.J.; Song, C.S.; Ouyang, Z.Y. Assessment of Eco-assets in a county area: A case of Pingbian County. Acta Ecol. Sin. 2020, 40, 5220–5229. [Google Scholar]
- Zhang, X.Z.; Wang, X.D.; Gao, Q.Z.; Hou, T.P.; Shen, Z.X.; Fang, J.P. Research in ecological restoration and reconstruction technology for degraded alpine ecosystem, boosting the protection and construction of ecological security barrier in Tibet. Acta Ecol. Sin. 2016, 36, 7083–7087. [Google Scholar]
- Zhao, X.J.; Su, J.D. Study on ecological protection redline in Qilian Mountains based on remote sensing and GIS. Soil Water Conserv. China 2019, 8, 33–37+69. [Google Scholar]
- Qi, J.; Xin, X.; John, R.; Groisman, P.; Chen, J. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt. Ecol. Process. 2017, 6, 22. [Google Scholar] [CrossRef]
- Gang, C.; Zhou, W.; Wang, Z.; Chen, Y.; Li, J.; Chen, J.; Qi, J.; Odeh, I.; Groisman, P.Y. Comparative Assessment of Grassland NPP Dynamics in Response to Climate Change in China, North America, Europe and Australia from 1981 to 2010. J. Agron. Crop. Sci. 2014, 201, 57–68. [Google Scholar] [CrossRef]
- Sun, L.Q. The application of farming systems theory to ecological constructions in pasture area—An example in aletai city Xinjiang China. Grass Feed. Livest. 2004, 4, 5–8. [Google Scholar]
- Wang, H.; Zhou, S.; Li, X.; Liu, H.; Chi, D.; Xu, K. The influence of climate change and human activities on ecosystem service value. Ecol. Eng. 2016, 87, 224–239. [Google Scholar] [CrossRef]
- Fei, L.; Shuwen, Z.; Jiuchun, Y.; Kun, B.; Qing, W.; Junmei, T.; Liping, C. The effects of population density changes on ecosystem services value: A case study in Western Jilin, China. Ecol. Indic. 2016, 61, 328–337. [Google Scholar] [CrossRef]
- Li, Y.; Yang, R.B.; Bi, J.P. Analysis on the pattern of ecological capital in CZT region. Econ. Geogr. 2015, 35, 184–188. [Google Scholar]
- Zhang, S.Q.; Yang, P.; Xia, J.; Wang, W.Y.; Cai, W.; Chen, N.C.; Hu, S.; Luo, X.A.; Li, J.; Zhan, C.S. Land use/land cover prediction and analysis of the middle reaches of the Yangtze River under different scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef]
- Ferreira, L.M.R.; Esteves, L.S.; Souza, E.P.D.; de Souza, E.P.; dos Santos, C.A.C. Impact of the Urbanisation Process in the Availability of Ecosystem Services in a Tropical Ecotone Area. Ecosystems 2019, 22, 266–282. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Toler, H.D.; Allen, F.L.; Augé, R.M. Correction: Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time. PLoS ONE 2020, 15, e0233402. [Google Scholar] [CrossRef]
- Zhang, X.J.; Ma, W.; Wang, Z.W. Effects of mowing regime on community characteristics and forage yield and quality in Hulun Buir, China. Chin. J. Appl. Ecol. 2022, 33, 1555–1562. [Google Scholar]
- Hu, J.J.; Zhou, Q.P.; Cao, Q.H.; Hu, J. Effects of ecological restoration measures on vegetation and soil properties in semi-humid sandy land on the southeast Qinghai-Tibetan Plateau, China. Glob. Ecol. Conserv. 2022, 33, e02000. [Google Scholar] [CrossRef]
- Beal-Neves, M.; Vogel Ely, C.; Westerhofer Esteves, M.; Blochtein, B.; Lahm, R.A.; Quadros, E.L.; Abreu Ferreira, P.M. The Influence of Urbanization and Fire Disturbance on Plant-Floral Visitor Mutualistic Networks. Diversity 2020, 12, 14. [Google Scholar] [CrossRef]
- Schaub, S.; Finger, R.; Buchmann, N.; Steiner, V.; Klaus, V.H. The costs of diversity: Higher prices for more diverse grassland seed mixtures. Environ. Res. Lett. 2021, 16, 094011. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Lu, X.X. Design and Construction of Plant Germplasm Banks. Chin. Bull. Bot. 2006, 23, 119–125. [Google Scholar]
- Xiao-Fei, J.; Ming-hong, Y.; Shi-qie, B.; Da-xu, L.; Xiong, L.; Qi, W.; Yu, Z. Establishment of Quantitative Model for Analyzing Crude Protein in Phalaris arundinacea L. by Near Infrared Spectroscopy (NIRS). Spectrosc. Spectr. Anal. 2019, 39, 1731–1735. [Google Scholar]
- Yang, C. Species, Harm, prevention and Control status and Future Development Trend of alien species Invasion in Guizhou. J. Agric. Catastrophology 2020, 10, 144–148+150. [Google Scholar]
- Hou, M.L.; Ge, G.T.; Sun, L.; Zhou, T.R.; Zhang, Y.C.; Jia, Y.S. Effects of Formic Acid, Cellulose and Lactic Acid Bacteria on Silage Quality of Natural Forage of Typical Steppe. Chin. J. Anim. Nutr. 2015, 27, 2977–2986. [Google Scholar]
- Qin, Y.; Zeng, X.G.; Xu, Z.H. Promoting the supply side reform of ecological products based on PPP model. J. Arid Land Resour. Environ. 2018, 32, 7–12. [Google Scholar]
- Lemaire, G. Research priorities for grassland science: The need of long term integrated experiments networks. Rev. Bras. Zootec. 2007, 36, 93–100. [Google Scholar] [CrossRef]
- Plieninger, T.; Huntsinger, L. Complex Rangeland Systems: Integrated Social-Ecological Approaches to Silvopastoralism. Rangel. Ecol. Manag. 2018, 71, 519–525. [Google Scholar] [CrossRef]
- Zhao, T. A Study on the Delineation of Ecological Protection Red Lines for Grasslands in Six Northern Provinces. Master’s Thesis, Northwest A&F University, Xianyang, China, 2018. [Google Scholar]
- Wei, Y.; He, S.; Li, G.; Chen, X.; Shi, L.; Lei, G.; Su, Y. Identifying Nature–Community Nexuses for Sustainably Managing Social and Ecological Systems: A Case Study of the Qianjiangyuan National Park Pilot Area. Sustainability 2019, 11, 6182. [Google Scholar] [CrossRef]
- Hu, Z.T.; Liu, D.; Qi, L.S. Grassland Eco-compensation: Ecological Performance, Income Effect and Policy Satisfaction. China Popul. Resour. Environ. 2016, 26, 165–176. [Google Scholar]
- Yu, Y.; Wu, Y.; Wang, P.; Zhang, Y.L.; Yang, L.E.; Cheng, X.; Yan, J.Z. Grassland Subsidies Increase the Number of Livestock on the Tibetan Plateau: Why Does the “Payment for Ecosystem Services” Policy Have the Opposite Outcome? Sustainability 2021, 13, 6208. [Google Scholar] [CrossRef]
- Yu, D.; Lu, N.; Fu, B. Establishment of a comprehensive indicator system for the assessment of biodiversity and ecosystem services. Landsc. Ecol. 2017, 32, 1563–1579. [Google Scholar] [CrossRef]
- Zhao, T.Q.; Ouyang, Z.Y.; Zhen, H.; Wang, X.K.; Miao, H. Analyses on grassland ecosystem services and its indexes for assessment. Chin. J. Ecol. 2004, 6, 155–160. [Google Scholar]
- Song, P.F.; Hao, Z.Q. Some ideas about ecological assets assessment. Chin. J. Ecol. 2007, 18, 2367–2373. [Google Scholar]
- Nagy, R.K.; Bell, L.W.; Schellhorn, N.A.; Zalucki, M.P. Role of grasslands in pest suppressive landscapes: How green are my pastures? Austral Entomol. 2020, 59, 227–237. [Google Scholar] [CrossRef]
- Ye, D.; Zhang, Y.F.; Li, Q.L.; Zhang, X.; Chu, C.L.; Ju, M.T. Assessing the Spatiotemporal Development of Ecological Civilization for China’s Sustainable Development. Sustainability 2022, 14, 8779. [Google Scholar] [CrossRef]
- Huang, R.B.; Zhao, Q. Discussion of preparation and audit on natural resource balance sheet. Audit. Res. 2015, 1, 37–43. [Google Scholar]
- Dong, Z.F.; Qing, K.Y.; Liu, J.Y. Framework and method of natural resource assets evaluation in national key ecological functional areas. Ecol. Econ. 2022, 38, 13–21. [Google Scholar]
- Liang, Y.J.; Liu, L.J. Integration of ecosystem services and landscape pattern: A review. Acta Ecol. Sin. 2018, 38, 7159–7167. [Google Scholar]
- Ouyang, Z.Y.; Song, C.S.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.G.; Ruckelshaus, M.; Shi, F.Q.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef]
- Boland, J.J.; Freeman, A.M. The Benefits of Environmental Improvement: Theory and Practice; The Johns Hopkins University Press: Baltimore, MD, USA, 1979. [Google Scholar]
- Zhou, C.; Li, G.P. A review of evaluation methods of ecosystem services: Also on the theoretical progress of contingent valuation method. Ecol. Econ. 2018, 34, 207–214. [Google Scholar]
- Daily, G.C.; Söderqvist, T.; Aniyar, S.; Arrow, K.; Dasgupta, P.; Ehrlich, P.R.; Walker, B. The value of nature and the nature of value. Science 2000, 289, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Benson, J.F.; Willis, K.G. Valuing informal recreation on the Forestry Commission estate. Q. J. For. 1992, 16, 63–65. [Google Scholar]
- Muscutt, A.; Harris, G.; Bailey, S.; Davies, D. Buffer zones to improve water quality: A review of their potential use in UK agriculture. Agric. Ecosyst. Environ. 1993, 45, 59–77. [Google Scholar] [CrossRef]
- Zhou, C.X. Construction and Application of Ecological Asset Valuation Methods in Pingjiang County. Master’s Thesis, Hunan Agriculture University, Changsha, China, 2016. [Google Scholar]
- Gao, Y.M.; Wu, W.J.; Jiang, H.Q.; Duan, Y.; Zhou, X.F.; Ma, G.X. Spatiotemporal changes of water conservation services value based on global terrestrial ecosystem. Res. Environ. Sci. 2021, 34, 2696–2705. [Google Scholar]
- Ma, C.X.; Liu, J.J.; Kang, W.B.; Sun, S.H.; Ren, J.H. Evaluation of forest ecosystem carbon fixation and oxygen release services in Shaanxi Province from 1999 to 2003. Acta Ecol. Sin. 2010, 30, 1412–1422. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Van Den Belt, M. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Odum, H.T. Environmental Accounting: Energy and Environ-Mental Decision-Making; John and Wiley and Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Sannigrahi, S.; Bhatt, S.; Rahmat, S.; Paul, S.K.; Sen, S. Estimating global ecosystem service values and its response to land surface dynamics during 1995–2015. J. Environ. Manag. 2018, 223, 115–131. [Google Scholar] [CrossRef]
- Akhtar, M.; Zhao, Y.Y.; Gao, G.L.; Gulzar, Q.; Hussain, A. Assessment of spatiotemporal variations of ecosystem service values and hotspots in a dryland: A case-study in Pakistan. Land Degrad. Dev. 2022, 33, 1383–1397. [Google Scholar] [CrossRef]
- Li, J.Y.; Chen, H.X.; Zhang, C.; Pan, T. Variations in ecosystem service value in response to land use/land cover changes in Central Asia from 1995–2035. PeerJ 2019, 7, e7665. [Google Scholar] [CrossRef] [PubMed]
- Mbaabu, P.R.; Olago, D.; Gichaba, M.; Eckert, S.; Eschen, R.; Oriaso, S.; Choge, S.K.; Linders, T.E.; Schaffner, U. Restoration of degraded grasslands, but not invasion by Prosopis juliflora, avoids trade-offs between climate change mitigation and other ecosystem services. Sci. Rep. 2020, 10, 20391. [Google Scholar] [CrossRef]
- Tang, Y.K.; Wu, Y.T.; Wu, K.; Guo, Z.W.; Liang, C.Z.; Wang, M.J.; Chang, P.J. Changes in trade-offs of grassland ecosystem services and functions under different grazing intensities. Chin. J. Plant Ecol. 2019, 43, 408–417. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhang, Y.L.; Lu, C.X.; Zheng, D.; Cheng, S.K. Study on valuation of rangeland ecosystem services of China. J. Nat. Resour. 2001, 16, 47–53. [Google Scholar]
- Xiao, Q.; Hu, D.; Xiao, Y. Assessing changes in soil conservation ecosystem services and causal factors in the Three Gorges Reservoir region of China. J. Clean. Prod. 2017, 163, S172–S180. [Google Scholar] [CrossRef]
- Grizzetti, B.; Lanzanova, D.; Liquete, C.; Reynaud, A.; Cardoso, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy 2016, 61, 194–203. [Google Scholar] [CrossRef]
- Bartkowski, B. Are diverse ecosystems more valuable? Economic value of biodiversity as result of uncertainty and spatial interactions in ecosystem service provision. Ecosyst. Serv. 2017, 24, 50–57. [Google Scholar] [CrossRef]
- Wu, D.; Shao, Q.Q.; Liu, J.Y. Assessment of Water Regulation Service of Forest and Grassland Ecosystems in Three-River Headwaters Region. Bull. Soil Water Conserv. 2016, 36, 206–210. [Google Scholar]
- Yu, X.; Gaodi, X.; Kai, A.N. The function and economic value of soil conservation of ecosystems in Qinghai-Tibet Plateau. Acta Ecol. Sin. 2003, 23, 2367–2378. [Google Scholar]
- Jing, X.D.; Tian, G.L.; Li, M.R.; Javeed, S.A. Research on the Spatial and Temporal Differences of China’s Provincial Carbon Emissions and Ecological Compensation Based on Land Carbon Budget Accounting. Int. J. Environ. Res. Public Health 2022, 18, 12892. [Google Scholar] [CrossRef] [PubMed]
- Bo, W.J.; Xiao, Y.; Wang, L.Y.; Wang, X.K.; Ouyang, Z.Y. Assessment of the status of ecological assets and variation of its characteristics: A case study of Hinggan League, Inner Mongolia. Acta Ecol. Sin. 2019, 39, 5425–5432. [Google Scholar]
- Huang, B.B.; Zheng, H.; Xiao, Y.; Kong, L.Q.; Ouyang, Z.Y.; Wang, X.K. Effectiveness and Driving Forces of Ecological Asset Protection in National Key Ecological Function Regions. Environ. Conform. Assess. 2019, 11, 14–23. [Google Scholar]
- Xu, X.B.; Chen, S.; Yang, G.S. Spatial and temporal change in ecological assets in the Yangtze River Delta of China 1995–2007. Acta Ecol. Sin. 2012, 32, 7667–7675. [Google Scholar]
- Pang, L.H.; Chen, Y.M.; Fen, C.Y. Assessment of ecological products supplying capacities of natural reserve-A case of Hulun Buir Hui River Reserve. J. Arid Land Resour. Environ. 2014, 28, 110–116. [Google Scholar]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Bai, X.Y.; Wang, S.J.; Qing, L.Y.; Tian, Y.C.; Luo, G.J.; Li, Y. Ecosystem services evaluation of typical rocky desertiifcation areas based on InVEST model—A case study at Qinglong Country, Guizhou Provice. J. Earth Environ. 2014, 5, 328–338. [Google Scholar]
- Guo, H.; Dong, S.W.; Wu, D.; Pei, S.X.; Xin, X.B. Calculation and analysis of equivalence factor and yield factor of ecological footprint based on ecosystem services value. Acta Ecol. Sin. 2020, 40, 1405–1412. [Google Scholar]
- Li, B.W.; Yang, Z.F.; Cai, Y.P.; Xie, Y.L.; Guo, H.J.; Wang, Y.Y.; Zhang, P.; Li, B.; Jia, Q.P.; Huang, Y.P.; et al. Prediction and valuation of ecosystem service based on land use/land cover change: A case study of the Pearl River Delta. Ecol. Eng. 2022, 179, 106612. [Google Scholar] [CrossRef]
- Hulst, R. On the dynamics of vegetation: Markov chains as models of succession. Plant Ecol. 1979, 40, 3–14. [Google Scholar] [CrossRef]
- Zhao, G.L.; Hu, Y.C. Study on Ecosystem Service Value Changes Based on CLUE-S Models in Guangxi Karst Mountainous Area. Res. Soil Water Conserv. 2014, 21, 198–203+210+345. [Google Scholar]
- Liu, X.Y.; Mou, Y.T. Research progress in the ecosystem services function and value of grasslands. Acta Prataculturae Sin. 2012, 21, 286–295. [Google Scholar]
- Suttie, J.M.; Reynolds, S.G.; BaTello, C. Grasslands of the World; Food and Agriculture Organization of the United Nation: Rome, Italy, 2005; pp. 1–21. [Google Scholar]
- Yan, Y.; Zhu, J.Y.; Wu, G.; Zhan, Y.J. Review and prospective applications of demand, supply, and consumption of ecosystem services. Acta Ecol. Sin. 2017, 37, 2489–2496. [Google Scholar]
- Ma, L.; Liu, H.; Peng, J.; Wu, J.S. A review of ecosystem services supply and demand. Acta Geogr. Sin. 2017, 72, 1277–1289. [Google Scholar]
- Yi, D.; Xiao, S.C.; Han, Y.; Ou, M.H. Review on supply and demand of ecosystem service and the construction of systematic frame-work. Chin. J. Appl. Ecol. 2021, 32, 3942–3952. [Google Scholar]
- Xu, Y.; He, Z.W. Supply and demand balance analysis of ecological assets in Shenza County, northern Tibet based on RS and GIS. Comput. Tech. Geophys. Geochem. Explor. 2014, 36, 375–379. [Google Scholar]
- Msofe, N.K.; Sheng, L.; Lyimo, J. Land Use Change Trends and Their Driving Forces in the Kilombero Valley Floodplain, Southeastern Tanzania. Sustainability 2019, 11, 505. [Google Scholar] [CrossRef]
- Pang, Y.; Yu, C.Q.; Tu, Y.L.; Sun, W.; Luo, L.M.; Miao, Y.J.; Wu, J.X. The relationship between plant functional traits and multiple ecosystem services in a Tibetan grassland ecosystem. Acta Ecol. Sin. 2015, 35, 6821–6828. [Google Scholar]
- Li, M.H.; Wang, X.Y.; Chen, J.C. Assessment of Grassland Ecosystem Services and Analysis on Its Driving Factors: A Case Study in Hulunbuir Grassland. Front. Ecol. Evol. 2022, 10, 841943. [Google Scholar] [CrossRef]
- Yang, W.N.; Zhen, L.; Wei, Y.J. Food consumption and its local dependence: A case study in the Xilin Gol Grassland, China. Environ. Dev. 2019, 34, 100470. [Google Scholar] [CrossRef]
- Bernhardt, J.R.; O’Connor, M.I. Aquatic biodiversity enhances multiple nutritional benefits to humans. Proc. Natl. Acad. Sci. USA 2021, 118, e1917487118. [Google Scholar] [CrossRef] [PubMed]
- Bohnert, D.W.; Stephenson, M.B. Supplementation and sustainable grazing systems. J. Anim. Sci. 2016, 94, 15–25. [Google Scholar] [CrossRef]
- Fan, X.S.; Gao, J.X.; Weng, W. Exploratory Study on Eco-Assets Transferring and the Valuating Models. Res. Environ. Sci. 2007, 20, 160–164. [Google Scholar]
- Bisseleua, D.H.B.; Missoup, A.D.; Vidal, S. Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conserv. Biol. 2009, 23, 1176–1184. [Google Scholar] [CrossRef]
- Huang, L.; Ning, J.; Zhu, P.; Zheng, Y.; Zhai, J. The conservation patterns of grassland ecosystem in response to the forage-livestock balance in North China. J. Geogr. Sci. 2021, 31, 518–534. [Google Scholar] [CrossRef]
- Paudel, S.; Cobb, A.B.; Boughton, E.H.; Spiegal, S.; Boughton, R.K.; Silveira, M.L.; Swain, H.M.; Reuter, R.; Goodman, L.E.; Steiner, J.L. A framework for sustainable management of ecosystem services and disservices in perennial grassland agroecosystems. Ecosphere 2021, 12, e03837. [Google Scholar] [CrossRef]
- Loucougaray, G.; Dobremez, L.; Gos, P.; Pauthenet, Y.; Nettier, B.; Lavorel, S. Assessing the Effects of Grassland Management on Forage Production and Environmental Quality to Identify Paths to Ecological Intensification in Mountain Grasslands. Environ. Manag. 2015, 56, 1039–1052. [Google Scholar] [CrossRef]
- Shackleton, S.E.; Shackleton, R.T. Local knowledge regarding ecosystem services and disservices from invasive alien plants in the arid Kalahari, South Africa. J. Arid Environ. 2017, 159, 22–33. [Google Scholar] [CrossRef]
- Sánchez-Romero, R.; Balvanera, P.; Castillo, A.; Mora, F.; García-Barrios, L.E.; González-Esquivel, C.E. Management strategies, silvopastoral practices and socioecological drivers in traditional livestock systems in tropical dry forests: An integrated analysis. For. Ecol. Manag. 2021, 479, 118506. [Google Scholar] [CrossRef]
- Yu, G.R.; Yang, M. Ecological Economics Foundation Research on Ecological Values, Ecological Asset Management, and Value Realization: Scientific Concepts, Basic Theories, and Realization Paths. Chin. J. Appl. Ecol. 2022, 33, 1153–1165. [Google Scholar]
- Zhu, X.-C.; Ma, M.-G.; Tateno, R.; He, X.-H.; Shi, W.-Y. Effects of Vegetation Restoration on Soil Carbon Dynamics in Karst and Non-Karst Regions in Southwest China: A Synthesis of Multi-Source Data. Plant Soil 2021, 475, 45–59. [Google Scholar] [CrossRef]
- Song, S.Z.; Xiong, K.N.; Chi, Y.K.; Guo, W.; Liao, J.J. Study on Improvement of Degraded Grassland in Rocky Desertification Control in the Karst in Southern China. J. Domest. Anim. Ecol. 2019, 40, 82–87+96. [Google Scholar]
- Yang, M.D. On the fragility karst environment. Yunnan Geogr. Environ. Res. 1990, 1, 21–29. [Google Scholar]
- Li, C.L.; Dai, H.Q.; Peng, X.D.; Yuan, Y.F. Characteristics of Nutrient Loss in Runoff of Underground Pore (Fissure) on the Karst Bare Slopes. J. Soil Water Conserv. 2016, 30, 19–23+114. [Google Scholar]
- Chi, Y.K.; Xiong, K.N.; Song, S.Z.; Xiao, H.; Zhang, Y.; Xu, L.X. Study on photosynthetic differences between monoculture and mixed sowing forage grass in rocky desertification area. J. Domest. Anim. Ecol. 2016, 37, 53–59. [Google Scholar]
- Li, L.; Wang, Y.S.; Wang, K. Interspecific competition and co-existence in permanent grasses + Trifolium repens mixed pasture in Karst region. Pratacultural Sci. 2014, 31, 1943–1950. [Google Scholar]
- He, F.Y.; Xiong, K.N.; Zhu, D.Y. Research progress on moisture effects of agroforestry in karst mountains. China Forage 2020, 7, 22–27. [Google Scholar]
Literature Databases | Primary Search Terms (in Title, Abstract, and Keywords) | Search within Results | No. of Initially Acquired Publications | No. of Final Publications | |
---|---|---|---|---|---|
CNKI and WOS | Retrieval string | “Ecosystem” AND “Structural optimization” | “Karst” and “Grassland” OR “Meadow” OR “Pasture” OR “Rangeland” OR “Steppe” OR “Prairie” OR “Savanna” | 1658 | 181 |
“Ecosystem” AND “Function enhancement” | 817 | 84 | |||
“Ecosystem” AND “Ecological assets” AND “Ecological products” | 196 | 30 | |||
“Ecosystem” AND “Ecological assets” AND “Services” | 1199 | 129 | |||
“Ecosystem” AND “Ecological products” AND “Services” | 371 | 64 | |||
Total | 4241 | 488 |
Evaluation Indicator | Method Type | Method | Equation | Formula Meaning | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|---|---|
Organic matter production function | Direct market method | Market value method | is the product value in CNY; is the output of product category i in t; and P1 is the unit price of product category i in CNY·t−1. | Evaluation is objective, with real-time data providing value and credibility. | Market prices follow the “supply and demand” law of economic development and are highly volatile; the data must be comprehensive and large in size. | [94] | |
Entertainment and leisure functions | Expense method | V is the cultural recreation value of the study area; is the research and cultural value; is the average research value per unit area of ecosystem; and is the unit ecosystem area. is the recreational leisure value; F is the travel cost expenditure replaced by tourism income; T is the travel time value; and Q is other expenses. | The ecological value of cultural tourism areas can be directly quantified. | The method is limited and can only estimate the value of ecotourism areas. | [95] | ||
Environmental purification function | Recovery and protection cost method | is the value of the ecosystem’s ability to absorb or deter pollutants; is the capacity of the ecosystem to absorb pollutant i; is the area of the ecosystem to absorb pollutants; is the cost of treatment of pollutant i. | Ecological value can be quantified in terms of ecological restoration costs or protection costs. | Estimates are low, and the loss in value of ecosystem services that have been destroyed cannot be accurately estimated. | [96] | ||
Soil conservation function | Alternative market approach | Opportunity cost method | In the first formula, V is the value of ecosystem soil fixation; i is the different ecosystems; is the opportunity cost of soil erosion per unit area of ecosystem type i; and is the area of abandoned land of ecosystem type i. In the second formula, F is the area of abandoned land; L is the total reduction in soil erosion for ecosystem type i; and T is the average thickness of surface soil in the study area. | A more comprehensive way to calculate the ecological home value of ecological resources. | Cannot account for the value of scarce resources. | [97] | |
Water-supporting function | Alternative engineering method | V | V is the value of cultured water, in CNY·m−2·a−1; P is the amount of precipitation, in mm; K is the ratio of flow-producing precipitation to total precipitation, a constant; R is the coefficient of runoff reduction benefit, a constant; and C is the cost invested in the construction of 1 m−3 reservoir construction. | Approximates the value of damaged ecosystems. | The cost of alternative work makes it difficult to fully value the multiple functional benefits of ecosystems. | [98] | |
Carbon sequestration | Shadow engineering method | V is the value of carbon sequestration, in CNY; P is the price of industrial oxygen production, in CNY·g−1·c−1; and Q is the fixed price of CO2, in CNY·g−1·c−1. | Use alternative market techniques to find market prices for common public goods. | The selection of shadow prices is highly subjective and uncertain, and the prices of the selected commodities fluctuate significantly. | [99] | ||
Biodiversity maintenance function | Simulated market method | Conditional value method (CVM) | V is the value of biodiversity, in USD; P is the number of people that are willing to pay, in units; and is the average price, in CNY. | For non-use (non-market) types of ecosystem services, the economic value of consulting public goods from a consumer’s perspective is estimated scientifically and rationally. | The ambiguity in consumer awareness creates preference problems that are difficult to solve. | [100] |
Scope of Application | Method | Advantages | Disadvantages | Reference |
---|---|---|---|---|
Calculation of the value of various types of services | Energy value theory method | Calculation of different categories and different natures of EAs; the establishment of a unified standard solar radiation energy calculation formula; the flexible use of different energy value conversion rates; the elimination of objective factors; and thus, it has broader application prospects. | Current scientific and technological developments limit the widespread use of this method. | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, K.; He, C.; Chi, Y. Research Progress on Grassland Eco-Assets and Eco-Products and Its Implications for the Enhancement of Ecosystem Service Function of Karst Desertification Control. Agronomy 2023, 13, 2394. https://doi.org/10.3390/agronomy13092394
Xiong K, He C, Chi Y. Research Progress on Grassland Eco-Assets and Eco-Products and Its Implications for the Enhancement of Ecosystem Service Function of Karst Desertification Control. Agronomy. 2023; 13(9):2394. https://doi.org/10.3390/agronomy13092394
Chicago/Turabian StyleXiong, Kangning, Cheng He, and Yongkuan Chi. 2023. "Research Progress on Grassland Eco-Assets and Eco-Products and Its Implications for the Enhancement of Ecosystem Service Function of Karst Desertification Control" Agronomy 13, no. 9: 2394. https://doi.org/10.3390/agronomy13092394
APA StyleXiong, K., He, C., & Chi, Y. (2023). Research Progress on Grassland Eco-Assets and Eco-Products and Its Implications for the Enhancement of Ecosystem Service Function of Karst Desertification Control. Agronomy, 13(9), 2394. https://doi.org/10.3390/agronomy13092394