Fenlong-Ridging Deep Tillage Integrated with Biochar and Fertilization to Improve Sugarcane Growth and Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sugarcane Planting and Crop Management
2.3. Soil Sampling and Analysis
2.4. Plant Sampling
2.5. Agronomic Traits and Yield
2.6. Root Study
2.7. Statistical Analysis
3. Results
3.1. The Effects of FT and Biochar on Soil Properties
3.1.1. Soil Bulk Density and Porosity
3.1.2. Soil Total Nitrogen
3.1.3. Soil Available Nitrogen
3.1.4. Soil Available P and K
3.1.5. Soil Organic Matter
3.2. The Effects of FT and Biochar on Root Growth
3.2.1. Morphology Index
3.2.2. Dry and Fresh Root Weight
3.3. The Effects on Agronomic Traits and Sugarcane Yield
Agronomic Traits and Sugarcane Yield
4. Discussion
4.1. FT Improve Sugarcane Growth and Yield
4.2. FT Needs Fertilizers to Improve Sugarcane Growth and Yield
4.3. FT Integrated with Biochar and Fertilization Improve Sugarcane Growth and Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surendran, U.; Ramesh, V.; Jayakumar, M.; Marimuthu, S.; Sridevi, G. Improved Sugarcane Productivity with Tillage and Trash Management Practices in Semi Arid Tropical Agro Ecosystem in India. Soil Tillage Res. 2016, 158, 10–21. [Google Scholar] [CrossRef]
- Zou, X.; Fu, M.; Wang, X.; Chen, F. Spatio-temporal changes and regional advantage analysis of sugarcane production in China from 1985 to 2018. J. China Agric. Univ. 2022, 27, 120–131. [Google Scholar] [CrossRef]
- Yao, P.; Qian, L.; Wang, Z.; Meng, H.; Ju, X. Assessing Drought, Flood, and High Temperature Disasters during Sugarcane Growth Stages in Southern China. Agriculture 2022, 12, 2117. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, X.; Mao, J.; Li, R.; Yu, X. Ecological Regin Division for China’s Main Sugarcane Producing Area Through Meteorological and Ecological Characters. Southwest China J. Agric. Sci. 2021, 34, 2281–2288. [Google Scholar] [CrossRef]
- Pang, Z.; Huang, J.; Fallah, N.; Lin, W.; Yuan, Z.; Hu, C. Combining N Fertilization with Biochar Affects Root-Shoot Growth, Rhizosphere Soil Properties and Bacterial Communities under Sugarcane Monocropping. Ind. Crops Prod. 2022, 182, 114899. [Google Scholar] [CrossRef]
- Acreche, M.M.; Saez, J.V.; Chalco Vera, J. Physiological Bases of Genetic Gains in Sugarcane Yield in Argentina. Field Crops Res. 2015, 175, 80–86. [Google Scholar] [CrossRef]
- Morrison, R.J.; Gawander, J.S. Changes in the Properties of Fijian Oxisols over 30 Years of Sugarcane Cultivation. Soil Res. 2016, 54, 418. [Google Scholar] [CrossRef]
- de Castro, S.G.Q.; Decaro, S.T.; Franco, H.C.J.; Graziano Magalhães, P.S.; Garside, A.; Mutton, M.A. Best Practices of Nitrogen Fertilization Management for Sugarcane under Green Cane Trash Blanket in Brazil. Sugar Tech 2017, 19, 51–56. [Google Scholar] [CrossRef]
- Marasca, I.; Fernandes, B.B.; Caternia, G.L.; Denadai, M.S.; Lanças, K.P. Chemical Properties of Ultisol in Different Tillage Systems under Sugarcane Cultivation. Energ Agric. 2016, 31, 200. [Google Scholar] [CrossRef]
- Franco, A.L.C.; Cherubin, M.R.; Cerri, C.E.P.; Guimarães, R.M.L.; Cerri, C.C. Relating the Visual Soil Structure Status and the Abundance of Soil Engineering Invertebrates across Land Use Change. Soil Tillage Res. 2017, 173, 49–52. [Google Scholar] [CrossRef]
- Canisares, L.P.; Cherubin, M.R.; Silva, L.F.S.; Franco, A.L.C.; Cooper, M.; Mooney, S.J.; Cerri, C.E.P. Soil Microstructure Alterations Induced by Land Use Change for Sugarcane Expansion in Brazil. Soil Use Manag. 2020, 36, 189–199. [Google Scholar] [CrossRef]
- Lamptey, S.; Li, L.; Xie, J.; Coulter, J.A. Tillage System Affects Soil Water and Photosynthesis of Plastic-Mulched Maize on the Semiarid Loess Plateau of China. Soil Tillage Res. 2020, 196, 104479. [Google Scholar] [CrossRef]
- Munkholm, L.J.; Heck, R.J.; Deen, B. Long-Term Rotation and Tillage Effects on Soil Structure and Crop Yield. Soil Tillage Res. 2013, 127, 85–91. [Google Scholar] [CrossRef]
- Zhang, Y.; Bo, G.; Shen, M.; Shen, G.; Yang, J.; Dong, S.; Shu, Z.; Wang, Z. Differences in Microbial Diversity and Environmental Factors in Ploughing-Treated Tobacco Soil. Front. Microbiol. 2022, 13, 924137. [Google Scholar] [CrossRef] [PubMed]
- Martíni, A.F.; Valani, G.P.; Boschi, R.S.; Bovi, R.C.; Simões da Silva, L.F.; Cooper, M. Is Soil Quality a Concern in Sugarcane Cultivation? A Bibliometric Review. Soil Tillage Res. 2020, 204, 104751. [Google Scholar] [CrossRef]
- Marasca, I.; Lemos, S.V.; Silva, R.B.; Guerra, S.P.S.; Lanças, K.P. Soil Compaction Curve of an Oxisol under Sugarcane Planted after In-Row Deep Tillage. Rev. Bras. Ciênc. Solo 2015, 39, 1490–1497. [Google Scholar] [CrossRef]
- Lampurlanés, J.; Angás, P.; Cantero-Martínez, C. Root Growth, Soil Water Content and Yield of Barley under Different Tillage Systems on Two Soils in Semiarid Conditions. Field Crops Res. 2001, 69, 27–40. [Google Scholar] [CrossRef]
- Wei, B.; Liu, B.; Gan, X.; Shen, Z.; Hu, P.; Li, Y.; Wu, Y.; Lu, L. Effect of Fenlong cultivation on yield and quality of rice. Sci. Agric. Sin. 2012, 45, 3946–3954. [Google Scholar] [CrossRef]
- Wei, B.; Shen, Z.; Gan, X.; Liu, B.; Lu, L.; Hu, P.; Li, Y.; Wu, Y. Effects of Fenlong cultivation on yield and quality of dryland crops. J. Agric. Sci. Technol. 2012, 14, 101–105. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.; Li, Z.; Wei, B.; Chen, X.; Han, S.; Liang, X.; Li, S. Fenlong tillage increase soil nutrient availability, and benefit vascular tissue structure and nutrient absorption of sugarcane. J. Plant Nutr. Fertil. 2021, 27, 204–214. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, W.; Meng, J. Advances and prospects in research of biochar utilization in agriculture. Sci. Agric. Sin. 2013, 46, 3324–3333. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does Biochar Improve Soil Water Retention? A Systematic Review and Meta-Analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Baiamonte, G.; Crescimanno, G.; Parrino, F.; De Pasquale, C. Effect of Biochar on the Physical and Structural Properties of a Sandy Soil. Catena 2019, 175, 294–303. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to Improve Soil Fertility. A Review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Maqsood, A.M.; Awan, K.U.; Aziz, T.; Arshad, H.; Ashraf, N.; Ali, M. Nitrogen Management in Calcareous Soils: Problems and Solutions. Pak. J. Agric. Sci. 2016, 53, 79–95. [Google Scholar] [CrossRef]
- Rapson, T.D.; Dacres, H. Analytical Techniques for Measuring Nitrous Oxide. TrAC Trends Anal. Chem. 2014, 54, 65–74. [Google Scholar] [CrossRef]
- Baresel, C.; Andersson, S.; Yang, J.; Andersen, M.H. Comparison of Nitrous Oxide (N2O) Emissions Calculations at a Swedish Wastewater Treatment Plant Based on Water Concentrations versus off-Gas Concentrations. Adv. Clim. Chang. Res. 2016, 7, 185–191. [Google Scholar] [CrossRef]
- Thapa, R.; Chatterjee, A. Wheat Production, Nitrogen Transformation, and Nitrogen Losses as Affected by Nitrification and Double Inhibitors. Agron. J. 2017, 109, 1825–1835. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, L.; Zhang, Y.; Yang, L.; Yu, C.; Yin, G.; Doane, T.A.; Wu, Z.; Zhu, P.; Ma, X. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application. PLoS ONE 2016, 11, e0154091. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Meng, J.; Han, X.; Lan, Y.; Zhang, W. Past, Present, and Future of Biochar. Biochar 2019, 1, 75–87. [Google Scholar] [CrossRef]
- Mao, J.-D.; Johnson, R.L.; Lehmann, J.; Olk, D.C.; Neves, E.G.; Thompson, M.L.; Schmidt-Rohr, K. Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration. Environ. Sci. Technol. 2012, 46, 9571–9576. [Google Scholar] [CrossRef]
- Fallah, N.; Yang, Z.; Tayyab, M.; Zhang, C.; Abubakar, A.Y.; Lin, Z.; Pang, Z.; Allison, A.; Zhang, H. Depth-Dependent Influence of Biochar Application on the Abundance and Community Structure of Diazotrophic under Sugarcane Growth. PLoS ONE 2021, 16, e0253970. [Google Scholar] [CrossRef]
- Butphu, S.; Rasche, F.; Cadisch, G.; Kaewpradit, W. Eucalyptus Biochar Application Enhances Ca Uptake of Upland Rice, Soil Available P, Exchangeable K, Yield, and N Use Efficiency of Sugarcane in a Crop Rotation System. J. Plant Nutr. Soil Sci. 2020, 183, 58–68. [Google Scholar] [CrossRef]
- Todd, J.; Glaz, B.; Irey, M.S.; Zhao, D.; Hu, C.; El-Hout, N. Sugarcane Genotype Selection on a Sand Soil with and without Added Mill Mud. Agron. J. 2014, 106, 315–323. [Google Scholar] [CrossRef]
- Jiang, B.; Xu, X.; Zhang, D.; Li, W.; Liang, S.; Xu, H.; Wang, Y.; Bai, X. Effect of biochar and tillage on nitrogen absorption and yield of maize under reduced fertilizer. J. Northeast Agric. Univ. 2019, 50, 23–31. [Google Scholar] [CrossRef]
- Liu, Z.; Li, P.; Huang, S.; Jin, X.; Zhang, A. Effects of wheat straw-derived biochar application on soil carbon content under different tillage practices. Environ. Sci. 2021, 42, 3000–3009. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, X.; Li, L.; Fan, Y.; Zhang, M.; Zhang, Y.; Yang, X.; Liang, T.; Zhai, Z.; Dai, H. Effects of biochar on tobacco yield, quality and soil nutrients under deep tillage and green manure treatments. Tob. Sci. Technol. 2021, 54, 14–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Y.; Zhang, L.; Liu, T.; Ji, Y. Effects of biochar combined with subsoiling on soil aggregates and organic carbon. Bull. Soil Water Conserv. 2022, 42, 368–375+385. [Google Scholar] [CrossRef]
- Xiao, L.; Yuan, G.; Feng, L.; Bi, D.; Wei, J.; Shen, G.; Liu, Z. Coupled Effects of Biochar Use and Farming Practice on Physical Properties of a Salt-Affected Soil with Wheat–Maize Rotation. J. Soils Sediments 2020, 20, 3053–3061. [Google Scholar] [CrossRef]
- Zhou, L.; Wei, B.; Gan, X.; Liu, B.; Shen, Z.; Li, Y.; Zhou, J.; Lao, C.; Hu, P.; Wu, Y. Effects of smash-ridging cultivation on the growth and yield of sugarcane. J. Anhui Agric. Sci. 2017, 45, 29–31. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, W.; Zhao, Z.; Jiang, W.; Zhang, P.; Sun, X.; Xue, Q. Soil Compaction and Maize Root Distribution under Subsoiling Tillage in a Wheat–Maize Double Cropping System. Agronomy 2023, 13, 394. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Wei, B. Establishment of the “Fenlong energy theory” and conjecture of the “Fenlong dark matter flow”. Meteorol. Environ. Res. 2021, 12, 11–16. [Google Scholar] [CrossRef]
- Duan, M.; Long, Y.; Fan, H.; Ma, L.; Han, S.; Li, S.; Wei, B.; Wang, L. Fenlong-Ridging Promotes Microbial Activity in Sugarcane: A Soil and Root Metabarcoding Survey. Agriculture 2022, 12, 244. [Google Scholar] [CrossRef]
- Li, L.; Shen, Z.; Qin, F.; Yang, W.; Zhou, J.; Yang, T.; Han, X.; Wang, Z.; Wei, M. Effects of Tillage and N Applications on the Cassava Rhizosphere Fungal Communities. Agronomy 2023, 13, 237. [Google Scholar] [CrossRef]
- Zhu, S.; Xiao, J.; Han, S.; Li, X.; Li, Z.; Wei, B.; Zhang, D.; Wang, R.; Li, R.; Yang, L.; et al. Transcriptomics Combined with Photosynthetic Physiology and Leaf Structure Analysis Revealed Increased Sugarcane Yield by Fenlong-Ridging. Agronomy 2023, 13, 1196. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Tillage Management Impacts on Soil Compaction, Erosion and Crop Yield in Stagnosols (Croatia). Catena 2018, 160, 376–384. [Google Scholar] [CrossRef]
- Wei, B.; Shen, Z.; Zhou, J.; Zhou, L.; Hu, P.; Zhang, X. Study on effect and mechanism of improving saline-alkali soil by Fenlong tillage. Soils 2020, 52, 699–703. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, N.; Hu, Y.; Liu, J.; Man, B.; Wang, X. Effect of Fenlong tillage on soil characteristics and yield of sweet sorghum farmland. Soil Fertil. Sci. China 2022, 11, 190–198. [Google Scholar] [CrossRef]
- Li, H.; Wei, B.H.; Huang, J.L.; Li, Z.G.; Wang, L.Q.; Liang, X.Y.; Li, S.L. Effects of Fenlong Cultivation on Root Cell Structure and Enzyme of Respiratory Metabolic of Sugarcane. Sci. Agric. Sin. 2021, 54, 522–532. [Google Scholar]
- Ynag, W.; Qin, F.; Liu, Y.; Han, X.; Zhou, J.; Wei, M.; Shen, Z.; Wei, B. Effects of Fenlong tillage and reducing nitrogen treatment on soil greenhouse gas emissions and soil enzyme activities in cassava field. J. South. Agric. 2021, 52, 2426–2437. [Google Scholar] [CrossRef]
- Qin, F.; Yang, W.; Peng, X.; Li, L.; Yang, T.; Zhou, J.; Wei, M.; Shen, Z. Difference in the diversity of bacterial community structure in rhizosphere and non-rhizosphere soil of cassava in Fenlong tillage. Southwest China J. Agric. Sci. 2022, 35, 729–739. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, L.; Lu, G.; Cao, X.; Wei, S.; Li, Z.; Wang, X. The effect of powder ridge cultivation on sugarcane yield and sugar. Sugarcane Canesugar 2018, 06, 37–40. [Google Scholar]
- Correa, J.; Postma, J.A.; Watt, M.; Wojciechowski, T. Soil Compaction and the Architectural Plasticity of Root Systems. J. Exp. Bot. 2019, 70, 6019–6034. [Google Scholar] [CrossRef]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The Effect of Deep Tillage on Crop Yield—What Do We Really Know? Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Alcántara, V.; Don, A.; Well, R.; Nieder, R. Deep Ploughing Increases Agricultural Soil Organic Matter Stocks. Glob. Chang. Biol. 2016, 22, 2939–2956. [Google Scholar] [CrossRef] [PubMed]
- Berglund, L.M.; DeLuca, T.H.; Zackrisson, O. Activated Carbon Amendments to Soil Alters Nitrification Rates in Scots Pine Forests. Soil Biol. Biochem. 2004, 36, 2067–2073. [Google Scholar] [CrossRef]
- Schulz, H.; Dunst, G.; Glaser, B. Positive Effects of Composted Biochar on Plant Growth and Soil Fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef]
- Lin, Y.; Munroe, P.; Joseph, S.; Henderson, R.; Ziolkowski, A. Water Extractable Organic Carbon in Untreated and Chemical Treated Biochars. Chemosphere 2012, 87, 151–157. [Google Scholar] [CrossRef]
- Cayuela, M.L.; Sánchez-Monedero, M.A.; Roig, A.; Hanley, K.; Enders, A.; Lehmann, J. Biochar and Denitrification in Soils: When, How Much and Why Does Biochar Reduce N2O Emissions? Sci. Rep. 2013, 3, 1732. [Google Scholar] [CrossRef]
- Kalinichenko, V.P.; Sharshak, V.K.; Bezuglova, O.S.; Ladan, E.P.; Genev, E.D.; Illarionov, V.V.; Zinchenko, V.E.; Morkovskoi, N.A.; Chernenko, V.V.; Il’ina, L.P. Changes in the Soils of Solonetzic Associations in 30 Years after Their Reclamation with the Use of Moldboard Plowing, Deep Tillage with a Three-Tier Plow, and Deep Rotary Tillage. Eurasian Soil Sci. 2011, 44, 927–938. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.; Liu, J.; Yuan, J.; Liang, Y.; Ren, J.; Cai, H. Effects of Maize Straw and Its Biochar Application on Organic and Humic Carbon in Water-Stable Aggregates of a Mollisol in Northeast China: A Five-Year Field Experiment. Soil Tillage Res. 2019, 190, 1–9. [Google Scholar] [CrossRef]
- Zhang, M.; Hou, R.; Li, T.; Fu, Q.; Zhang, S.; Su, A.; Xue, P.; Yang, X. Study of Soil Nitrogen Cycling Processes Based on the 15N Isotope Tracking Technique in the Black Soil Areas. J. Clean. Prod. 2022, 375, 134173. [Google Scholar] [CrossRef]
- Mandal, S.; Thangarajan, R.; Bolan, N.S.; Sarkar, B.; Khan, N.; Ok, Y.S.; Naidu, R. Biochar-Induced Concomitant Decrease in Ammonia Volatilization and Increase in Nitrogen Use Efficiency by Wheat. Chemosphere 2016, 142, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Abujabhah, I.S.; Bound, S.A.; Doyle, R.; Bowman, J.P. Effects of Biochar and Compost Amendments on Soil Physico-Chemical Properties and the Total Community within a Temperate Agricultural Soil. Appl. Soil Ecol. 2016, 98, 243–253. [Google Scholar] [CrossRef]
- Abujabhah, I.S.; Doyle, R.B.; Bound, S.A.; Bowman, J.P. Assessment of Bacterial Community Composition, Methanotrophic and Nitrogen-Cycling Bacteria in Three Soils with Different Biochar Application Rates. J. Soils Sediments 2018, 18, 148–158. [Google Scholar] [CrossRef]
- Li, X.; Wei, B.; Xu, X.; Zhou, J. Effect of Deep Vertical Rotary Tillage on Soil Properties and Sugarcane Biomass in Rainfed Dry-Land Regions of Southern China. Sustainability 2020, 12, 10199. [Google Scholar] [CrossRef]
- Shan, F.; Li, D.; Zhu, J.; Kang, S.; Wang, J. Effects of Vertical Smashing Rotary Tillage on Root Growth Characteristics and Yield of Broccoli. Agriculture 2022, 12, 928. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In Situ Effects of Biochar on Aggregation, Water Retention and Porosity in Light-Textured Tropical Soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Bruun, E.W.; Petersen, C.T.; Hansen, E.; Holm, J.K.; Hauggaard-Nielsen, H. Biochar Amendment to Coarse Sandy Subsoil Improves Root Growth and Increases Water Retention. Soil Use Manag. 2014, 30, 109–118. [Google Scholar] [CrossRef]
- Xiang, Y.; Deng, Q.; Duan, H.; Guo, Y. Effects of Biochar Application on Root Traits: A Meta-Analysis. GCB Bioenergy 2017, 9, 1563–1572. [Google Scholar] [CrossRef]
- Osaki, M.; Shinano, T.; Matsumoto, M.; Zheng, T.; Tadano, T. A Root-Shoot Interaction Hypothesis for High Productivity of Field Crops. Soil Sci. Plant Nutr. 1997, 43, 1079–1084. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, Q.; Wang, X.; Chen, X.; Wang, Y.; Mao, Z. Effects of Biochar on Replant Disease by Amendment Soil Environment. Commun. Soil Sci. Plant Anal. 2021, 52, 673–685. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Liu, J.; Xue, J. A review of research advances in the effects of biochar on soil nitrogen cycling and its functional microorganisms. J. Ecol. Rural. Environ. 2022, 38, 689–701. [Google Scholar] [CrossRef]
- Li, Y.-R.; Song, X.-P.; Wu, J.-M.; Li, C.-N.; Liang, Q.; Liu, X.-H.; Wang, W.-Z.; Tan, H.-W.; Yang, L.-T. Sugar Industry and Improved Sugarcane Farming Technologies in China. Sugar Tech 2016, 18, 603–611. [Google Scholar] [CrossRef]
Planting Method | Treatments | Bulk Density (g·cm−3) | Porosity (%) | ||
---|---|---|---|---|---|
Soil Layer (cm) | Soil Layer (cm) | ||||
0–20 | 20–40 | 0–20 | 20–40 | ||
Newly planted sugarcane | CT-CF | 1.14 ± 0.03 a | 1.23 ± 0.03 a | 57.14 ± 0.24 c | 55.58 ± 0.98 c |
FT-CF | 0.81 ± 0.02 b | 0.90 ± 0.02 c | 65.81 ± 0.79 b | 63.65 ± 0.98 b | |
CT-CFB | 1.15 ± 0.03 a | 1.19 ± 0.02 b | 58.67 ± 1.37 c | 57.69 ± 1.02 c | |
FT-CFB | 0.84 ± 0.02 b | 0.82 ± 0.02 d | 67.48 ± 0.64 a | 66.17 ± 0.98 a | |
p-value | |||||
Tillage | <0.001 | <0.001 | <0.001 | <0.001 | |
Biochar | 0.561 | <0.001 | 0.011 | 0.011 | |
Tillage×Biochar | 0.561 | 0.161 | 0.821 | 0.710 | |
Ratoon sugarcane | CT-CF | 1.18 ± 0.06 a | 1.24 ± 0.04 a | 54.47 ± 0.79 c | 51.83 ± 1.50 c |
FT-CF | 0.86 ± 0.02 b | 0.89 ± 0.02 c | 68.06 ± 1.45 a | 64.20 ± 1.37 a | |
CT-CFB | 1.13 ± 0.04 a | 1.13 ± 0.04 b | 57.44 ± 0.79 b | 56.23 ± 1.51 b | |
FT-CFB | 0.88 ± 0.02 b | 0.85 ± 0.02 c | 68.55 ± 1.24 a | 66.23 ± 1.52 a | |
p-value | |||||
Tillage | <0.001 | <0.001 | <0.001 | <0.001 | |
Biochar | 0.537 | 0.009 | 0.043 | 0.004 | |
Tillage×Biochar | 0.152 | 0.145 | 0.137 | 0.178 |
Planting Method | Treatments | Total N (g·kg−1) | Available N (mg·kg−1) | ||||
---|---|---|---|---|---|---|---|
Seeding | Elongation | Maturation | Seeding | Elongation | Maturation | ||
Newly planted sugarcane | CT-CF | 2.25 ± 0.07 b | 1.48 ± 0.04 c | 1.75 ± 0.05 b | 287.47 ± 7.06 d | 292.04 ± 7.34 d | 132.77 ± 4.17 d |
FT-CF | 1.65 ± 0.04 d | 1.60 ± 0.042 b | 1.47 ± 0.04 c | 291.58 ± 7.01 c | 319.34 ± 5.78 b | 237.04 ± 4.18 b | |
CT-CFB | 2.43 ± 0.06 a | 1.69 ± 0.04 a | 1.89 ± 0.05 a | 293.42 ± 7.29 b | 305.10 ± 6.68 c | 185.73 ± 5.14 c | |
FT-CFB | 1.98 ± 0.05 c | 1.59 ± 0.04 b | 1.76 ± 0.05 b | 302.60 ± 7.29 a | 344.15 ± 6.52 a | 274.67 ± 4.55 a | |
p-value | |||||||
Tillage | <0.001 | 0.003 | <0.001 | <0.001 | <0.001 | <0.001 | |
Biochar | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Tillage×Biochar | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | <0.001 | |
Ratoon sugarcane | CT-CF | 1.74 ± 0.06 b | 1.57 ± 0.04 b | 1.29 ± 0.03 c | 333.00 ± 5.77 d | 352.54 ± 8.97 d | 117.37 ± 4.62 d |
FT-CF | 1.70 ± 0.04 b | 1.48 ± 0.04 c | 1.26 ± 0.03 d | 382.40 ± 6.65 b | 387.36 ± 6.92 b | 134.83 ± 5.49 b | |
CT-CFB | 1.87 ± 0.05 a | 1.67 ± 0.04 a | 1.35 ± 0.03 a | 350.42 ± 5.95 c | 383.02 ± 8.99 c | 131.00 ± 2.82 c | |
FT-CFB | 1.79 ± 0.05 ab | 1.39 ± 0.04 d | 1.31 ± 0.03 b | 398.03 ± 9.43 a | 399.17 ± 7.08 a | 140.50 ± 3.00 a | |
p-value | |||||||
Tillage | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Biochar | <0.001 | 0.017 | <0.001 | <0.001 | <0.001 | <0.001 | |
Tillage×Biochar | 0.314 | <0.001 | 0.041 | 0.638 | <0.001 | 0.005 |
Planting Method | Treatments | Available P (mg·kg−1) | Available K (mg·kg−1) | ||||
---|---|---|---|---|---|---|---|
Seeding | Elongation | Maturation | Seeding | Elongation | Maturation | ||
Newly planted sugarcane | CT-CF | 11.96 ± 0.34 c | 11.44 ± 0.20 d | 11.27 ± 0.20 d | 714.17 ± 16.64 c | 744.53 ± 17.86 c | 575.79 ± 13.81 c |
FT-CF | 13.07 ± 0.23 b | 13.02 ± 0.24 b | 12.80 ± 0.22 b | 716.28 ± 17.18 c | 736.29 ± 17.66 d | 532.68 ± 12.78 d | |
CT-CFB | 13.28 ± 0.23 b | 12.69 ± 0.23 c | 11.87 ± 0.24 c | 768.51 ± 18.44 b | 801.54 ± 19.23 b | 610.41 ± 14.64 b | |
FT-CFB | 14.30 ± 0.25 a | 15.858 ± 0.28 a | 13.69 ± 0.24 a | 789.53 ± 18.94 a | 821.56 ± 19.71 a | 635.42 ± 15.24 a | |
p-value | |||||||
Tillage | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.116 | |
Biochar | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Tillage×Biochar | <0.001 | <0.001 | 0.025 | <0.001 | <0.001 | <0.001 | |
Ratoon sugarcane | CT-CF | 8.85 ± 0.13 d | 10.81 ± 0.78 d | 6.17 ± 0.11 c | 985.56 ± 23.64 a | 588.90 ± 14.13 c | 715.74 ± 17.17 c |
FT-CF | 10.53 ± 0.19 b | 13.61 ± 0.24 b | 6.27 ± 0.12 c | 836.66 ± 20.07 b | 569.03 ± 13.65 d | 598.20 ± 14.35 d | |
CT-CFB | 9.88 ± 0.14 c | 11.45 ± 0.20 c | 6.80 ± 0.12 b | 1001.67 ± 24.03 a | 612.41 ± 14.69 b | 789.53 ± 18.94 b | |
FT-CFB | 11.69 ± 0.18 a | 15.58 ± 0.28 a | 6.99 ± 0.13 a | 989.66 ± 23.74 a | 645.43 ± 15.48 a | 804.54 ± 19.30 a | |
p-value | |||||||
Tillage | <0.001 | <0.001 | <0.001 | 0.001 | 0.207 | <0.001 | |
Biochar | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Tillage×Biochar | <0.001 | 0.001 | <0.001 | 0.002 | 0.001 | <0.001 |
Planting Method | Treatments | Organic Matter Content (g·kg−1) | ||
---|---|---|---|---|
Seeding | Elongation | Maturation | ||
Newly planted | CT-CF | 38.48 ± 1.18 c | 40.11 ± 1.06 c | 39.53 ± 0.79 c |
FT-CF | 35.81 ± 0.95 d | 38.84 ± 1.03 d | 36.31 ± 0.96 d | |
CT-CFB | 41.56 ± 1.10 a | 45.64 ± 1.21 a | 42.37 ± 1.12 b | |
FT-CFB | 40.14 ± 1.02 b | 44.60 ± 1.16 b | 43.50 ± 0.91 a | |
p-value | ||||
Tillage | <0.001 | <0.001 | <0.001 | |
Biochar | <0.001 | <0.001 | <0.001 | |
Tillage×Biochar | <0.001 | 0.924 | <0.001 | |
Ratoon sugarcane | CT-CF | 37.95 ± 1.01 c | 39.66 ± 0.93 c | 43.70 ± 1.16 c |
FT-CF | 32.69 ± 0.85 d | 39.77 ± 1.16 c | 42.00 ± 1.11 d | |
CT-CFB | 43.64 ± 1.16 a | 46.36 ± 1.26 a | 48.51 ± 1.08 a | |
FT-CFB | 42.25 ± 0.97 b | 45.37 ± 1.20 b | 47.39 ± 1.29 b | |
p-value | ||||
Tillage | <0.001 | <0.001 | <0.001 | |
Biochar | <0.001 | <0.001 | <0.001 | |
Tillage×Biochar | <0.001 | <0.001 | <0.001 |
Planting Method | Treatments | Seedling Rate (%) | Tillering Rate (%) | Yield (kg·ha−1) |
---|---|---|---|---|
Newly planted sugarcane | CT-CF | 31.83 ± 1.07 d | 51.23 ± 2.05 d | 109,997 ± 2585 c |
FT-CF | 39.80 ± 1.33 c | 60.08 ± 2.18 c | 130,773 ± 3074 b | |
CT-CFB | 46.45 ± 1.12 b | 60.91 ± 2.44 b | 167,499 ± 3937 a | |
FT-CFB | 53.16 ± 1.89 a | 68.38 ± 3.11 a | 173,679 ± 3886 a | |
p-value | ||||
Tillage | <0.001 | <0.001 | <0.001 | |
Biochar | <0.001 | <0.001 | <0.001 | |
Tillage×Biochar | 0.010 | 0.008 | 0.008 | |
Ratoon sugarcane | CT-CF(a) | 37.13 ± 1.69 d | 56.44 ± 2.26 d | 92,743 ± 2179.94 c |
FT-CF(b) | 42.42 ± 1.44 c | 63.04 ± 2.52 b | 112,256 ± 2638.61 b | |
CT-CFB(c) | 43.81 ± 1.47 b | 60.88 ± 2.43 c | 114,864 ± 3512.61 b | |
FT-CFB(d) | 67.50 ± 2.26 a | 72.35 ± 2.89 a | 123,425 ± 2858 a | |
p-value | ||||
Tillage | <0.001 | <0.001 | <0.001 | |
Biochar | <0.001 | <0.001 | <0.001 | |
Tillage×Biochar | <0.001 | <0.001 | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Zhu, S.; Han, S.; Wei, B.; He, Z.; Li, Z.; Li, R.; Wang, L.; Chen, L.; Li, S. Fenlong-Ridging Deep Tillage Integrated with Biochar and Fertilization to Improve Sugarcane Growth and Yield. Agronomy 2023, 13, 2395. https://doi.org/10.3390/agronomy13092395
Xiao J, Zhu S, Han S, Wei B, He Z, Li Z, Li R, Wang L, Chen L, Li S. Fenlong-Ridging Deep Tillage Integrated with Biochar and Fertilization to Improve Sugarcane Growth and Yield. Agronomy. 2023; 13(9):2395. https://doi.org/10.3390/agronomy13092395
Chicago/Turabian StyleXiao, Jiming, Shuifang Zhu, Shijian Han, Benhui Wei, Zhenli He, Zhigang Li, Ruiling Li, Lin Wang, Liyi Chen, and Suli Li. 2023. "Fenlong-Ridging Deep Tillage Integrated with Biochar and Fertilization to Improve Sugarcane Growth and Yield" Agronomy 13, no. 9: 2395. https://doi.org/10.3390/agronomy13092395
APA StyleXiao, J., Zhu, S., Han, S., Wei, B., He, Z., Li, Z., Li, R., Wang, L., Chen, L., & Li, S. (2023). Fenlong-Ridging Deep Tillage Integrated with Biochar and Fertilization to Improve Sugarcane Growth and Yield. Agronomy, 13(9), 2395. https://doi.org/10.3390/agronomy13092395