Water and Irrigation Requirements of Glycine max (L.) Merr. in 1981–2020 in Central Poland, Central Europe
Abstract
:1. Introduction
2. Materials and Methods
- ETp = potential evapotranspiration, i.e., crop evapotranspiration in conditions without water deficits in soil (mm);
- ETo = reference evapotranspiration (mm);
- kc = crop coefficient, the quotient of evapotranspiration measured in conditions of sufficient humidity and reference evapotranspiration [31].
- ETo = reference evapotranspiration (mm);
- n = number of days in the month;
- p = evaporation coefficients for months and latitude according to Doorenbos and Pruitt [32];
- t = average monthly air temperature (°C).
- Np% = rainfall deficit with the probability occurrence of p% (mm period−1);
- ETp = multi-year average of potential evapotranspiration in the studied period (mm period−1);
- P = multi-year average of rainfall in the studied period (mm period−1);
- Ap% and Bp% = numerical coefficients describing the variability of evapotranspiration and rainfall for the meteorological station.
- Y = crop yield (kg ha−1);
- P = cumulative precipitation in the crop growth period (mm).
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prusiński, J. Cultivation, origin and use of legume cultivars in Poland. Pol. J. Agron. 2020, 41, 20–28. [Google Scholar]
- Karaca, C.; Tekelioglu, B.; Buyuktas, D.; Bastug, R. Relations between crop water stress index and stomatal conductance of soybean depending on cultivars. Fresenius Environ. Bull. 2018, 27, 4212–4219. [Google Scholar]
- Janeczko, A.; Biesaga-Kościelniak, J.; Dziurka, M.; Oklešťková, J.; Kocurek, M.; Szarek-Łukaszewska, G.; Janeczko, Z. Response of Polish cultivars of soybean (Glycine max (L.) Merr.) to brassinosteroid application. Acta Sci. Pol. Agric. 2011, 10, 33–50. [Google Scholar]
- Soja. Poradnik Agrotechniczny [Soybean. Agrotechnical Guideline]. Available online: https://www.agro.basf.pl/Documents/broszury/poradnik-agrotechniczny-soja-basf-2017.pdf?1570453654459 (accessed on 23 June 2021).
- Eck, H.V.; Mathers, A.C.; Musick, J.T. Plant water stress at various growth stages and growth and yield of soybeans. Field Crops Res. 1987, 17, 1–16. [Google Scholar] [CrossRef]
- Jerzak, M.J.; Czerwińska-Kayzer, D.; Florek, J.; Śmiglak-Krajewska, M. Determinanty produkcji roślin strączkowych jako alternatywnego źródła białka w ramach nowego obszaru polityki rolnej w Polsce [Determinants of legume production as an alternative source of protein in a new area of agricultural policy in Poland]. Rocz. Nauk Roln. 2012, 99, 113–120. [Google Scholar]
- Dorszewski, P.; Sobczyński, T.; Wenda-Piesik, A. Soja w Województwach Kujawsko-Pomorskim i Wielkopolskim—Innowacyjne Rozwiązania w Uprawie i Skarmianiu dla Gospodarstw Rolnych [Soybeans in Kuyavian-Pomeranian and Greater Poland Provinces—Innovative Solutions in Cultivation and Feeding for Farms]. Raport z badań dla Konsorcjum “Moja Soja″ [Research Report for the “Moja Soja” Consortium]. Kujawsko-Pomorski Ośrodek Doradztwa Rolniczego, Minikowo. 2019. Available online: http://www.mojasoja.eu/ (accessed on 20 September 2021).
- Wyniki Plonowania odmian Roślin Rolniczych w Doświadczeniach Porejestrowych w Województwie Łódzkim. Soja 2020. Porejestrowe Doświadczalnictwo Odmianowe. [Yield Results of Agricultural Plant Cultivars in Post-Registration Experiments in the Lodz Province. Soya 2020. Post-Registration Cultivar Experiments]; COBORU: Sulejów, Poland, 2021.
- Niedbała, G.; Kurasiak-Popowska, D.; Piekutowska, M.; Wojciechowski, T.; Kwiatek, M.; Nawracała, J. Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean (Glycine max [L.] Merrill) Cultivar Augusta. Agriculture 2022, 12, 754. [Google Scholar] [CrossRef]
- Gawęda, D.; Cierpiała, R.; Bujak, K.; Wesołowski, K. Soybean yield under different tillage systems. Acta Sci. Pol. Hortorum Cultus 2014, 13, 43–54. [Google Scholar]
- Wenda-Piesik, A. Odmiany soi do uprawy w Polsce północno-zachodniej [Soybean cultivars for cultivation in northwestern Poland]. Farmer 2016, 5, 42–43. [Google Scholar]
- Żarski, J.; Kuśmierek-Tomaszewska, R.; Dudek, S.; Kropkowski, M.; Kledzik, R. Identifying climatic risk to soybean cultivation in the transitional type of moderate climate in Central Poland. J. Cent. Eur. Agric. 2019, 20, 143–156. [Google Scholar] [CrossRef]
- Prusiński, J.; Baturo-Cieśniewska, A.; Borowska, M. Response of Soybean (Glycine max (L.) Merrill) to Mineral Nitrogen Fertilization and Bradyrhizobium japonicum Seed Inoculation. Agronomy 2020, 10, 1300. [Google Scholar] [CrossRef]
- Alcamo, J.; Moreno, J.M.; Nováky, B.; Hindi, M.; Corobov, R.; Devoy, R.J.N.; Giannakopoulos, C.; Martin, E.; Olesn, J.E.; Shvidenko, A. Eur. Climate Change 2007. Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 541–580. [Google Scholar]
- IPCC. AR4 Climate Change 2007. Fourth Assessment Report. Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/assessment-report/ar4/ (accessed on 10 January 2023).
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Climate models and their evaluation. In Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 589–662. [Google Scholar]
- Łabędzki, L.; Bąk, B.; Liszewska, M. Wpływ przewidywanej zmiany klimatu na zapotrzebowanie ziemniaka późnego na wodę [Impact of climate change on water needs of late potato]. Infrastruct. Ecol. Rural Areas 2013, 2, 155–165. [Google Scholar]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Prus, P.; Stachowski, P.; Kazula, M.J.; Szczepanek, M.; Ptach, W.; Pal-Fam, F.; et al. Response of Chosen American Asparagus officinalis L. Cultivars to Drip Irrigation on the Sandy Soil in Central Europe: Growth, Yield, and Water Productivity. Agronomy 2021, 11, 864. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Hicran, S.; Rolbiecki, S.; Jagosz, B.; Szczepanek, M.; Figas, A.; Atilgan, A.; Pal-Fam, F.; Pańka, D. Effect of subsurface drip fertigation with nitrogen on the yield of asparagus grown for the green spears on a light soil in central Poland. Agronomy 2022, 12, 241. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Wichrowska, D.; Ptach, W.; Prus, P.; Sadan, H.A.; Pal-Fam, F.; Stachowski, P.; et al. Effect of Drip Fertigation with Nitrogen on Yield and Nutritive Value of Melon Cultivated on a Very Light Soil. Agronomy 2021, 11, 934. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Stachowski, P.; Sadan, H.A.; Prus, P.; Pal-Fam, F. Requirements and effects of surface drip irrigation of mid-early potato cultivar Courage on a very light soil in Central Poland. Agronomy 2021, 11, 33. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Rolbiecki, S.; Piszczek, P.; Figas, A.; Jagosz, B.; Ptach, W.; Prus, P.; Kazula, M.J. Impact of nitrogen fertigation on watermelon yield grown on the very light soil in Poland. Agronomy 2020, 10, 213. [Google Scholar] [CrossRef]
- Rzekanowski, C.; Rolbiecki, S. The influence of drip irrigation on yields of some cultivars of apple trees in central Poland under different rainfall conditions during the vegetation season. Acta Hortic. 2000, 537, 929–936. [Google Scholar] [CrossRef]
- Rzekanowski, C. Kształtowanie się potrzeb nawodnieniowych roślin sadowniczych w Polsce [Shaping of irrigation needs for fruit plants in Poland]. Infrastruct. Ecol. Rural Areas 2009, 3, 19–27. [Google Scholar]
- Stachowski, P.; Markiewicz, J. The need of irrigation in central Poland on the example of Kutno county. Ann. Set Environ. Prot. 2011, 13, 1453–1472. [Google Scholar]
- Łabędzki, L. Potrzeby i stan nawodnień w województwie kujawsko-pomorskim [Irrigation needs and condition in the Kuyavian-Pomeranian Province]. In Proceedings of the Warsztaty dla Interesariuszy Projektu OPERA [Workshops for the Stakeholders of the OPERA Project], Minikowo, Poland, 27 November 2017. [Google Scholar]
- Kaca, E.; Rek-Kaca, G. Względna przyrodnicza zasadność rozwoju nawodnień w skali województw w Polsce [Relative nature of the development of irrigation in the scale of provinces in Poland]. In Proceedings of the XXIII Sympozjum Nawadniania Roślin “Nawadnianie Roślin w Świetle Zrównoważonego Rozwoju Obszarów Wiejskich—Aspekty Przyrodniczo-Produkcyjne i Techniczno-Infrastrukturalne” [Proceedings of the Symposium on Plant Irrigation “Irrigation of Plants in the Light of Sustainable Rural Development—Natural, Production and Technical and Infrastructural Aspects”], Bydgoszcz-Fojutowo, Poland, 11–14 June 2019; pp. 33–35. [Google Scholar]
- Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Łangowski, A.; Sadan, H.A.; Ptach, W.; Stachowski, P.; Kasperska-Wołowicz, W.; Pal-Fam, F.; Liberacki, D. The water needs of grapevines in central Poland. Agronomy 2021, 11, 416. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Biniak-Pieróg, M.; Żyromski, A.; Kasperska-Wołowicz, W.; Jagosz, B.; Stachowski, P.; Liberacki, D.; Kanecka-Geszke, E.; Sadan, A.H.; Rolbiecki, R.; et al. Effect of Forecast Climate Changes on Water Needs of Giant Miscanthus Cultivated in the Kuyavia Region in Poland. Energies 2021, 14, 6628. [Google Scholar] [CrossRef]
- Łabędzki, L.; Szajda, J.; Szuniewicz, J. Ewapotranspiracja upraw rolniczych—Terminologia, definicje, metody obliczania—Przegląd stanu wiedzy [Evapotranspiration of agricultural crops—Terminology, definitions, calculation methods. Review]. IMUZ Falenty 1996, 33, 1–15. [Google Scholar]
- Łabędzki, L. Susze rolnicze. Zarys problematyki oraz metody monitorowania i klasyfikacji [Agricultural droughts. Outline of the issues and methods of monitoring and classification]. In Woda. Środowisko. Obszary Wiejskie. Rozprawy Naukowe i Monografie [Water. Environment. Rural Areas. Scientific Dissertations and Monographs]; IMUZ: Falenty, Poland, 2006; Volume 17, pp. 1–107. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; FAO Irrigation and Drainage Paper 24; Food and Agriculture Organization: Rome, Italy, 1977. [Google Scholar]
- Doorenbos, J.; Kassam, A. Yield Response to Water; FAO Irrigation and Drainage Paper 33; Food and Agriculture Organization: Rome, Italy, 1979. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop. Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Żakowicz, S. Podstawy Technologii Nawadniania Rekultywowanych Składowisk Odpadów Komunalnych [Fundamentals of Irrigation Technology for Reclaimed Municipal Waste Dumas]; SGGW: Warszawa, Poland, 2010. [Google Scholar]
- Tabaszewski, J. Elementy Inżynierii Wodnej [Elements of Water Engineering]; ART: Olsztyn, Poland, 1980. [Google Scholar]
- Żakowicz, S.; Hewelke, P. Basics of Environmental Engineering; SGGW: Warszawa, Poland, 2002. [Google Scholar]
- Żakowicz, S.; Hewelke, P.; Gnatowski, T. Podstawy Infrastruktury Technicznej w Przestrzeni Produkcyjnej [Basics of Technical Infrastructure in Production Space]; SGGW: Warszawa, Poland, 2009. [Google Scholar]
- Platt, C. Problemy Rachunku Prawdopodobieństwa i Statystyki Matematycznej [Probability Theory and Mathematical Statistics]; PWN: Warszawa, Poland, 1978. [Google Scholar]
- Central Statistical Office. Statistics Poland—Local Data Bank. Available online: https://bdl.stat.gov.pl/ (accessed on 4 July 2023).
- Wenda-Piesik, A. Innowacyjne Rozwiązania w Uprawie i Ochronie soi w Warunkach Województw Kujawsko-Pomorskiego i Wielkopolskiego [Innovative Solutions in the Cultivation and Protection of Soybean in the Conditions of the Kujawsko-Pomorskie and Wielkopolskie Provinces]. In Proceedings of the Conference Summarizing the Operation Entitled “Soybean in the Kujawsko-Pomorskie and Wielkopolskie Voivodships, Innovative Solutions in Cultivation and Feeding on Farms”], Minikowo, Poland, 21 November 2019; Available online: http://www.mojasoja.eu/wp-content/uploads/2020/02/ODR_podsumowanie_MojaSoja_AWP.pdf (accessed on 10 July 2023).
- Kasperska-Wołowicz, W.; Rolbiecki, S.; Sadan, A.H.; Rolbiecki, R.; Jagosz, B.; Stachowski, P.; Liberacki, D.; Bolewski, T.; Prus, P.; Pal-Fam, F. Impact of the projected climate change on soybean water needs in the Kuyawia region in Poland. J. Water Land Dev. 2021, 51, 199–207. [Google Scholar]
- Suyker, A.E.; Verma, S.B. Evapotranspiration of irrigated and rainfed maize–soybean cropping systems. Agric. For. Meteorol. 2009, 149, 443–452. [Google Scholar] [CrossRef]
- Specht, J.E.; Chase, K.; Macrander, M.; Graef, G.L.; Chung, J.; Markwell, J.P.; Germann, M.; Orf, J.H.; Lark, K.G. Soybean response to water: A QTL Analysis of Drought Tolerance. Crop Sci. 2001, 41, 493–509. [Google Scholar] [CrossRef]
- Pejić, B.; Maksimović, L.; Cimpeanu, S.; Bucur, D.; Milić, S.; Ćupina, B. Response of soybean to water stress at specific growth stages. J. Food Agric. Environ. 2011, 9, 280–284. [Google Scholar]
- Vučić, N.; Bošnjak, D. Potential evapotranspiration of soybean grown in climatic conditions of Vojvodina. J. Sci. Agric. Res. 1980, 41, 569–575. [Google Scholar]
- Rolbiecki, S.; Rolbiecki, R.; Rzekanowski, C. Response of black currant (Ribes nigrum L.) cv. ‘Titania’ to micro-irrigation under loose sandy soil conditions. Acta Hortic. 2002, 585, 649–652. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Żarski, J.; Rzekanowski, C. Requirements and effects of drip irrigation of mid-early potato on a very light soil in moderate climate. Fresenius Environ. Bull. 2015, 24, 3895–3902. [Google Scholar]
- Kaca, E. Methodology of assessing the relative environmental validity of developing drainage and irrigation on a regional scale. J. Water Land Dev. 2017, 35, 101–112. [Google Scholar] [CrossRef]
- Kasperska-Wołowicz, W.; Bolewski, T. Zmienność temperatury powietrza w Bydgoszczy w latach 1931–2013 [Variability of air temperature in Bydgoszcz in the years 1931–2013]. Woda Środ. Obsz. Wiej. 2015, 15, 25–43. [Google Scholar]
- Cox, W.J.; Jolliff, G.D. Growth and yield of sunflower and soybean under soil water deficits. Agron. J. 1986, 78, 226–230. [Google Scholar] [CrossRef]
- Dudek, S.; Kuśmierek-Tomaszewska, R.; Żarski, J. Wpływ deszczowania i nawożenia azotem na plonowanie dwóch odmian soi na obszarze deficytowym w wodę [Influence of sprinkler irrigation and nitrogen fertilization on yields of two soybean cultivars on the water deficit area]. In Proceedings of the XXIII Sympozjum Nawadniania Roślin „Nawadnianie Roślin w Świetle Zrównoważonego Rozwoju Obszarów Wiejskich—Aspekty Przyrodniczo-Produkcyjne i Techniczno-Infrastrukturalne” [Proceedings of the Symposium on Plant Irrigation “Irrigation of Plants in the Light of Sustainable Rural Development—Natural, Production and Technical and Infrastructural Aspects”], Bydgoszcz-Fojutowo, Poland, 11–14 June 2019; p. 52. [Google Scholar]
- Bošnjak, D.; Pejić, B. Water balancing as a functional approach to irrigation scheduling for soybean in the Province of Vojvodina. In Proceedings of the 3rd ESA Congress, Abano-Padova, Italy, 18–22 September 1994; pp. 80–81. [Google Scholar]
- Kazek, M. Wpływ Odmiany, Inokulacji i Hydrożelu na Plonowanie i Jakość nasion Konwencjonalnej soi (Glicine max (L.) Merr.) [Effect of Cultivar, Inoculation and Hydrogel on the Yield and Quality of Conventional Soybeans (Glicine max (L.) Merr.)]. Ph.D. Thesis, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland, 2020. [Google Scholar]
- Kasperska-Wołowicz, W.; Łabędzki, L.; Bąk, B. Okresy posuszne w rejonie Bydgoszczy [Dry periods in the Bydgoszcz region]. Woda Środ. Obsz. Wiej. 2003, 3, 39–56. [Google Scholar]
- Du, Y.; Zhao, Q.; Chen, L.; Yao, X.; Xie, F. Effect of Drought Stress at Reproductive Stages on Growth and Nitrogen Metabolism in Soybean. Agronomy 2020, 10, 302. [Google Scholar] [CrossRef]
- Stojmenova, L.; Alexieva, S. Impacts of climate condition on soybean yield. Pochvoznanie. Agrokhimiya Ekol. 2009, 43, 10–14. [Google Scholar]
- Alahdadi, I.; Tajik, M.; Iran-Nejad, H.; Armandpisheh, O. The effect of biofertilizer on soybean seed vigor and field emergence. J. Food Agric. Environ. 2009, 7, 420–426. [Google Scholar]
- Sionit, N.; Kramer, P.J. Effect of water stress during different stages of growth of soybean. Agron. J. 1977, 69, 274–278. [Google Scholar] [CrossRef]
- Karam, F.; Masaad, R.; Sfeir, T.; Mounzer, O.; Rouphael, Y. Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agric. Water Manag. 2005, 75, 226–244. [Google Scholar] [CrossRef]
- Kadhem, F.A.; Specht, J.E.; Williams, J.H. Soybean irrigation serially timed during stages Rl to R6. I. Agronomic responses. Agron. J. 1985, 77, 291–298. [Google Scholar] [CrossRef]
- Elmore, R.W. Soybean yield and yield component response to limited capacity sprinkler irrigation systems. Prod. Agric. 1988, 1, 196–201. [Google Scholar] [CrossRef]
- Dogan, E.; Kirnak, H.; Copur, O. Deficit irrigation during soybean reproductive stages and CRPGRO-soybean simulations under semi-arid climatic conditions. Field Crops Res. 2007, 103, 154–159. [Google Scholar] [CrossRef]
- Łabędzki, L.; Kanecka-Geszke, E.; Bąk, B.; Słowińska, S. Estimation of reference evapotranspiration using the FAO Penman-Monteith method for climatic conditions of Poland. In Evapotranspiration; Łabędzki, L., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Abdelraouf, R.E.; El-Shawadfy, M.A.; Dewedar, O.M.; Hozayn, M. Field and modelling study for deficit irrigation strategy on roots volume and water productivity of wheat. J. Water Land Dev. 2021, 49, 129–138. [Google Scholar]
- Shams, B.M.; Boroumandnasab, S.; Maleki, A. Effect of different irrigation regimes on yield water use efficiency and harvest index of soybean cultivars in Khorramabad. J. Irrig. Sci. Eng. 2014, 37, 13–20. [Google Scholar]
- Crabtree, R.J.; Yassin, A.A.; Kargougou, I.; McNew, R.W. Effects of alternate-furrow irrigation: Water conservation on the yields of two soybean cultivars. Agric. Water Manag. 1985, 10, 253–264. [Google Scholar] [CrossRef]
- Bellaloui, N.; Mengistu, A. Seed composition is influenced by irrigation regimes and cultivar differences in soybean. Irrig. Sci. 2008, 25, 261–268. [Google Scholar] [CrossRef]
- Marković, M.; Josipović, M.; Ravlić, M.; Josipović, A.; Zebec, V. Deficit irrigation of soybean (Glycine max (L.) Merr.) based on monitoring of soil moisture, in sub-humid area of eastern Croatia. Rom. Agric. Res. 2016, 33, 1–8. [Google Scholar]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 23 May 2023).
- Kropkowski, M. Ocena Potrzeb i Efektów Nawadniania soi (Glycine max (L) Meril.) na Obszarze Deficytowym w Wodę [Evaluation of the Needs and Effects of Irrigation of Soybean (Glycine max (L) Meril.) in a Water Deficit Area]. Ph.D. Thesis, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland, 2023. [Google Scholar]
- Chmura, K.; Chylińska, E.; Dmowski, Z.; Nowak, L. Rola czynnika wodnego w kształtowaniu plonu wybranych roślin polowych [role of the water factor in yield formation of chosen field crops]. Infrastruct. Ecol. Rural Areas 2009, 9, 33–44. [Google Scholar]
- Dzieżyc, J. Rolnictwo w Warunkach Nawadniania [Agriculture under Irrigation Conditions]; PWN: Warszawa, Poland, 1988. [Google Scholar]
Province | Station | Altitude (m.a.m.s.l.) | Latitude | Longitude |
---|---|---|---|---|
Kuyavian–Pomeranian | Bydgoszcz | 46 | 53°08′ | 18°01′ |
Masovian | Warszawa | 106 | 52°09′ | 20°59′ |
Greater Poland | Poznań | 86 | 52°25′ | 16°50′ |
Lodz | Łódź | 184 | 51°44′ | 19°24′ |
Months of Soybean Growing Season | |||||
---|---|---|---|---|---|
21–30 April | 1–31 May | 1–30 June | 1–31 July | 1–31 August | 1–10 September |
0.13 | 0.62 | 0.84 | 0.94 | 0.73 | 0.12 |
Latitude N (°) | Months | ||||||
---|---|---|---|---|---|---|---|
IV | V | VI | VII | VIII | IX | X | |
50 | 0.31 | 0.34 | 0.36 | 0.35 | 0.32 | 0.28 | 0.24 |
52 | 0.31 | 0.35 | 0.37 | 0.36 | 0.33 | 0.28 | 0.24 |
54 | 0.31 | 0.36 | 0.38 | 0.37 | 0.33 | 0.28 | 0.23 |
Statistical Characteristic | Province a | Months of Soybean Growing Season | |||||
---|---|---|---|---|---|---|---|
21–30 IV | 1–31 V | 1–30 VI | 1–31 VII | 1–31 VIII | 1–10 IX | ||
Minimum (mm) | K–P | 2 | 54 | 97 | 113 | 74 | 2 |
M | 2 | 57 | 96 | 111 | 74 | 2 | |
GP | 2 | 52 | 92 | 108 | 72 | 2 | |
L | 2 | 52 | 90 | 106 | 71 | 2 | |
Maximum (mm) | K–P | 3 | 79 | 131 | 146 | 96 | 3 |
M | 4 | 76 | 128 | 145 | 97 | 3 | |
GP | 3 | 75 | 128 | 146 | 97 | 4 | |
L | 3 | 73 | 124 | 140 | 95 | 3 | |
Median (mm) | K–P | 3 | 67 | 107 | 128 | 84 | 3 |
M | 3 | 66 | 106 | 127 | 84 | 3 | |
GP | 3 | 65 | 102 | 125 | 83 | 3 | |
L | 3 | 63 | 102 | 121 | 83 | 3 | |
Standard Deviation (mm) | K–P | 0.2 | 4.9 | 6.4 | 7.6 | 4.5 | 0.2 |
M | 0.3 | 4.3 | 6.3 | 7.0 | 4.4 | 0.2 | |
GP | 0.3 | 4.8 | 7.0 | 8.2 | 5.0 | 0.3 | |
L | 0.3 | 4.4 | 6.3 | 7.7 | 4.4 | 0.2 | |
Variability Coefficient (%) | K–P | 8.9 | 7.4 | 6.0 | 6.0 | 5.4 | 7.4 |
M | 10.6 | 6.5 | 5.9 | 5.6 | 5.1 | 7.3 | |
GP | 10.1 | 7.4 | 6.8 | 6.7 | 6.0 | 10.3 | |
L | 11.0 | 7.0 | 6.2 | 6.3 | 5.3 | 7.8 |
Period | Provinces of Central Poland | |||
---|---|---|---|---|
Kuyavian–Pomeranian | Masovian | Greater Poland | Lodz | |
Linear Correlation Coefficient (r) | ||||
May–August | 0.400 ** | 0.579 *** | 0.646 *** | 0.581 *** |
June–August | 0.432 *** | 0.611 *** | 0.659 *** | 0.606 *** |
July | 0.184 n.s. | 0.357 ** | 0.389 ** | 0.335 ** |
Tendency of Water Requirements (mm decade−1) | ||||
May–August | 4.8 | 7.0 | 9.2 | 6.9 |
June–August | 4.8 | 6.8 | 8.8 | 6.8 |
July | 1.2 | 2.2 | 2.8 | 2.2 |
Years | Provinces of Central Poland | Mean for Provinces of Central Poland | |||
---|---|---|---|---|---|
Kuyavian–Pomeranian | Masovian | Greater Poland | Lodz | ||
April–September (May–August) a | |||||
Normal (N50%) | 143 | 107 | 131 | 110 | 123 |
Medium dry (N25%) | 230 | 201 | 217 | 198 | 212 |
Very dry (N10%) | 293 | 267 | 279 | 261 | 275 |
June–August | |||||
Normal (N50%) | 127 | 102 | 115 | 104 | 112 |
Medium dry (N25%) | 197 | 177 | 185 | 175 | 184 |
Very dry (N10%) | 248 | 230 | 236 | 225 | 235 |
July | |||||
Normal (N50%) | 49 | 46 | 42 | 41 | 45 |
Medium dry (N25%) | 78 | 75 | 71 | 70 | 73 |
Very dry (N10%) | 98 | 96 | 92 | 90 | 94 |
Year | Provinces of Central Poland | Central Poland | |||
---|---|---|---|---|---|
Kuyavian–Pomeranian | Masovian | Greater Poland | Lodz | ||
2016 | 6.2 | 5.6 | 5.7 | 4.5 | 5.5 |
2017 | 5.3 | 3.8 | 6.6 | 4.7 | 5.1 |
2018 | 7.5 | 5.6 | 9.5 | 4.6 | 6.8 |
2019 | 11.4 | 6.2 | 12.1 | 7.7 | 9.3 |
2020 | 4.5 | 3.5 | 7.4 | 4.1 | 4.9 |
2021 | 6.7 | 3.2 | 6.8 | 5.1 | 5.5 |
2022 | 9.7 | 7.3 | 12.9 | 7.4 | 9.3 |
Mean | 7.3 | 5.0 | 8.7 | 5.4 | 6.6 * |
Maximum | 11.4 | 7.3 | 12.9 | 7.7 | 12.9 * |
Minimum | 4.5 | 3.2 | 5.7 | 4.1 | 3.2 * |
Standard Deviation | 2.4 | 1.5 | 2.9 | 1.5 | 2.5 * |
Period | Trend Equation | R2 | Tendency (°C decade−1) |
---|---|---|---|
Kuyavian–Pomeranian Province | |||
June–August | y = 0.0406x + 17.874 | R2 = 0.1952 *** | 0.4 |
July | y = 0.0262x + 19.006 | R2 = 0.0339 n.s. | 0.3 |
Masovian Province | |||
June–August | y = 0.0577x + 17.720 | R2 = 0.3848 *** | 0.6 |
July | y = 0.0477x + 18.813 | R2 = 0.1277 ** | 0.5 |
Greater Poland Province | |||
June–August | y = 0.0739x + 16.813 | R2 = 0.4480 *** | 0.7 |
July | y = 0.0607x + 17.906 | R2 = 0.1516 ** | 0.6 |
Lodz Province | |||
June–August | y = 0.0572x + 16.821 | R2 = 0.3726 *** | 0.6 |
July | y = 0.049x + 17.794 | R2 = 0.1123 ** | 0.5 |
Period | Provinces of Central Poland | |||
---|---|---|---|---|
Kuyavian–Pomeranian | Masovian | Greater Poland | Lodz | |
Linear correlation coefficient (r) | ||||
June–August | 0.080 n.s. | 0.261 n.s. | 0.028 n.s. | 0.068 n.s. |
July | 0.117 n.s. | 0.185 n.s. | 0.127 n.s. | 0.030 n.s. |
Tendency of rainfall (mm decade−1) | ||||
June–August | 5.1 | 16.5 | 1.7 | –3.9 |
July | 4.1 | 8.7 | 5.5 | –1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolbiecki, S.; Kasperska-Wołowicz, W.; Jagosz, B.; Sadan, H.A.; Rolbiecki, R.; Szczepanek, M.; Kanecka-Geszke, E.; Łangowski, A. Water and Irrigation Requirements of Glycine max (L.) Merr. in 1981–2020 in Central Poland, Central Europe. Agronomy 2023, 13, 2429. https://doi.org/10.3390/agronomy13092429
Rolbiecki S, Kasperska-Wołowicz W, Jagosz B, Sadan HA, Rolbiecki R, Szczepanek M, Kanecka-Geszke E, Łangowski A. Water and Irrigation Requirements of Glycine max (L.) Merr. in 1981–2020 in Central Poland, Central Europe. Agronomy. 2023; 13(9):2429. https://doi.org/10.3390/agronomy13092429
Chicago/Turabian StyleRolbiecki, Stanisław, Wiesława Kasperska-Wołowicz, Barbara Jagosz, Hicran A. Sadan, Roman Rolbiecki, Małgorzata Szczepanek, Ewa Kanecka-Geszke, and Ariel Łangowski. 2023. "Water and Irrigation Requirements of Glycine max (L.) Merr. in 1981–2020 in Central Poland, Central Europe" Agronomy 13, no. 9: 2429. https://doi.org/10.3390/agronomy13092429
APA StyleRolbiecki, S., Kasperska-Wołowicz, W., Jagosz, B., Sadan, H. A., Rolbiecki, R., Szczepanek, M., Kanecka-Geszke, E., & Łangowski, A. (2023). Water and Irrigation Requirements of Glycine max (L.) Merr. in 1981–2020 in Central Poland, Central Europe. Agronomy, 13(9), 2429. https://doi.org/10.3390/agronomy13092429