A Novel Approach to Mapping the Spatial Distribution of Fruit Trees Using Phenological Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Construction of Optimal Identifying Feature
2.4. Sensitivity Analysis of Vegetation Indices
2.5. Construction of Decision Tree
2.6. Accuracy Evaluation Method
3. Results and Discussion
3.1. Characteristics of Different Fruit Trees at Different Growth Stages
3.2. Production of Decision Tree
3.3. Spatial Distribution of Litchi Fruit Trees
3.4. Accuracy Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Li, M.Z.; Cheng, S.L.; Meng, Z.G. Development status and countermeasures of major fruit trees in China. Agric. Sci. Technol. Newsl. 2023, 92, 11–16. Available online: http://tongxun.aiijournal.com/CN/Y2023/V0/I9/11 (accessed on 28 November 2023).
- Liang, C.X.; Huang, Q.H.; Wang, S.; Wang, C.; Yu, Q.Y.; Wu, W.B. Identification of citrus orchards based on multi-temporal remote sensing vegetation index. J. Agric. Eng. 2021, 37, 168–176. [Google Scholar] [CrossRef]
- Wang, H.; Magagi, R.; Goïta, K.; Trudel, M.; McNairn, H.; Powers, J. Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm. Remote Sens. Environ. 2019, 231, 111234. [Google Scholar] [CrossRef]
- Luo, Y.Z.; Bai, B.; Yu, X.Y.; Peng, X.Y. Analysis of research situation of remote sensing monitoring of agriculture in China based on scientific knowledge mapping. Liaoning Agric. Sci. 2023, 30–34. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhang, H.Y.; He, W.; Zhang, L.P. Cross-phenological-region crop mapping framework using Sentinel-2 time series Imagery, A new perspective for winter crops in China. ISPRS J. Photogramm. Remote Sens. 2022, 193, 200–215. [Google Scholar] [CrossRef]
- He, T.T.; Guo, J.W.; Xiao, W.; Xu, S.C.; Chen, H. A novel method for identification of disturbance from surface coal mining using all available Landsat data in the GEE platform. ISPRS J. Photogramm. Remote Sens. 2023, 205, 17–33. [Google Scholar] [CrossRef]
- Song, W.Y.; Wang, C.; Dong, T.F.; Wang, Z.H.; Wang, C.X.; Mu, X.D.; Zhang, H.X. Hierarchical extraction of cropland boundaries using Sentinel-2 time-series data in fragmented agricultural landscapes. Comput. Electron. Agric. 2023, 212, 108097. [Google Scholar] [CrossRef]
- Tehrani, N.A.; Farhanj, F.; Janalipour, M. Introducing a novel dust source identification method based on edge points and paths extracted from integration of time-series MODIS products. Remote Sens. Appl. Soc. Environ. 2023, 32, 101054. [Google Scholar] [CrossRef]
- Cui, C.; Liu, Y.S.; Chen, L.; Liang, S.; Shan, M.; Zhao, J.W.; Liu, Y.X.; Yu, S.B.; Sun, Y.L.; Mao, J. Assessing public health and economic loss associated with black carbon exposure using monitoring and MERRA-2 data. Environ. Pollut. 2022, 313, 120190. [Google Scholar] [CrossRef]
- Graesser, J.; Ramankutty, N. Detection of cropland field parcels from Landsat imagery. Remote Sens. Environ. 2017, 21, 165–180. [Google Scholar] [CrossRef]
- Li, H.J.; Li, Z.; Lei, Y.P.; Li, C.Q.; Zhou, K. Comparison of NDVI and EVI based on EOS/MODIS data. Prog. Geogr. 2007, 26, 26–32. [Google Scholar] [CrossRef]
- Qi, N.; Yang, H.; Shao, G.W.; Chen, R.Q.; Wu, B.G.; Xu, B.; Feng, H.K.; Yang, G.J.; Zhao, C.J. Mapping tea plantations using multitemporal spectral features by harmonised Sentinel-2 and Landsat images in Yingde, China. Comput. Electron. Agric. 2023, 212, 108108. [Google Scholar] [CrossRef]
- Mazumder, B.; Khan, M.S.I.; Uddin, K.M.M. Biorthogonal wavelet based entropy feature extraction for identification of maize leaf diseases. J. Agric. Food Res. 2023, 14, 100756. [Google Scholar] [CrossRef]
- Shu, M.Y.; Zhou, L.F.; Gu, X.H.; Yun, T.; Ma, Q.; Yang, G.J.; Zhou, C.Q. Monitoring of maize lodging using multi-temporal Sentinel-1 SAR data. Adv. Space Res. 2020, 65, 470–480. [Google Scholar] [CrossRef]
- Singh, S.K.; Prasad, R.; Srivastava, P.K.; Yadav, S.A.; Yadav, V.P.; Sharma, J. Incorporation of first-order backscattered power in Water Cloud Model for improving the Leaf Area Index and Soil Moisture retrieval using dual-polarized Sentinel-1 SAR data. Remote Sens. Environ. 2023, 296, 113756. [Google Scholar] [CrossRef]
- Luo, C.; Liu, H.J.; Lu, L.P.; Liu, Z.R.; Kong, F.C.; Zhang, X.L. Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine. J. Integr. Agric. 2021, 7, 1944–1957. [Google Scholar] [CrossRef]
- Luis, F.C.R.; Laurindo, A.G.; Simio, J.P.D.; Belloli, T.F.; Fernandes, P.C.B. Object-based classification of vegetation species in a subtropical wetland using Sentinel-1 and Sentinel-2A images. Sci. Remote Sens. 2021, 3, 100017. [Google Scholar] [CrossRef]
- Yu, T.Y.; Ni, W.J.; Liu, J.L.; Zhao, R.Q.; Zhang, Z.Y.; Sun, G.Q. Extraction of tree heights in mountainous natural forests from UAV leaf-on stereoscopic imagery based on approximation of ground surfaces. Remote Sens. Environ. 2023, 293, 113613. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Adrian, J.; Sagan, V.; Maitiniyazi, M. Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 175, 215–235. [Google Scholar] [CrossRef]
- Liu, P.L.; Huang, J.J.; Cai, Z.; Chen, H.T.; Huang, X.; Yang, S.N.; Su, Z.X.; Azam, M.; Chen, H.; Shen, J. Influence of girdling on growth of litchi (Litchi chinensis) roots during cold-dependent floral induction. Sci. Hortic. 2022, 297, 110928. [Google Scholar] [CrossRef]
- Topouzelis, K.; Psyllos, A. Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS J. Photogramm. Remote Sens. 2012, 68, 135–143. [Google Scholar] [CrossRef]
- Jin, S.L.; Zhang, W.D.; Yang, P.F.; Zheng, Y.; An, J.L.; Zhang, Z.Y.; Qu, P.X.; Pan, X.P. Spatial-spectral feature extraction of hyperspectral images for wheat seed identification. Comput. Electr. Eng. 2022, 101, 108077. [Google Scholar] [CrossRef]
- Wu, G.S.; Fang, Y.L.; Jiang, Q.Y.; Cui, M.; Li, N.; Ou, Y.M.; Diao, Z.H.; Zhang, B.H. Early identification of strawberry leaves disease utilizing hyperspectral imaging combing with spectral features, multiple vegetation indices and textural features. Comput. Electron. Agric. 2023, 204, 107553. [Google Scholar] [CrossRef]
- Xu, P.; Fu, L.X.; Xu, K.; Sun, W.B.; Tan, Q.; Zhang, Y.P.; Zha, X.T.; Yang, R.B. Investigation into maize seed disease identification based on deep learning and multi-source spectral information fusion techniques. J. Food Compos. Anal. 2023, 119, 105254. [Google Scholar] [CrossRef]
- Rouhollah, N.; Fusun, B.S.; Saygin, A.; Ziyadin, C.; Aliihsan, S.; Mustafa, U. Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Appl. Sci. 2019, 9, 655. [Google Scholar] [CrossRef]
- Bhogapurapu, N.; Dey, S.; Bhattacharya, A.; Mandal, D.; Juan, M.L.S.; McNairn, H.; Carlos, L.M.; Rao, Y.S. Dual-polarimetric descriptors from Sentinel-1 GRD SAR data for crop growth assessment. ISPRS J. Photogramm. Remote Sens. 2021, 178, 20–35. [Google Scholar] [CrossRef]
- Raman, M.G.; Kaliaperumal, R.; Pazhanivelan, S.; Kannan, B. Rice area estimation using parameterized classification of Sentinel 1A SAR data. The international archives of the photogrammetry. Remote Sens. Spat. Inf. Sci 2019, XLII-3, 141–147. [Google Scholar] [CrossRef]
- Alvarez, R.D.D.; Apan, A. Deep learning U-Net classification of Sentinel-1 and 2 fusions effectively demarcates tropical montane forest deforestation. Remote Sens. Appl. Soc. Environ. 2023, 29, 100887. [Google Scholar] [CrossRef]
- Dai, X.M.; Chen, S.S.; Jia, K.; Jiang, H.; Sun, Y.H.; Li, D.; Zheng, Q.; Huang, J. A Decision-Tree Approach to Identifying Paddy Rice Lodging with Multiple Pieces of Polarization Information Derived from Sentinel-1. Remote Sens. 2022, 15, 240. [Google Scholar] [CrossRef]
- Octavio, L.-G.; Ernesto, R.-S.; Miguel, A. M-P. Towards improving decision tree induction by combining split evaluation measures. Knowl.-Based Syst. 2023, 277, 110832. [Google Scholar] [CrossRef]
- Li, L.W.; Li, N.; Lu, D.S. Mapping tea gardens spatial distribution in northwestern Zhejiang Province using multi-temporal Sentinel-2 imagery. J. Zhejiang AF Univ. 2019, 36, 841–848. [Google Scholar] [CrossRef]
- Shen, Q. Survey of Live Resources and Genetic Diversity of Early-Maturing Litchi in Southwestern Guangxi. Master’s Thesis, Guangxi University, Nanning, China, 2012. [Google Scholar]
- Zhu, M.Q.; She, B.; Huang, L.S.; Zhang, D.Y.; Xu, H.F.; Yang, X.Y. Identification of soybean based on Sentinel-1/2 SAR and MSI imagery under a complex planting structure. Ecol. Inform. 2022, 72, 101825. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Y.J. Extraction of pre-wintering area of winter wheat in Hengshui City based on Sentinel-1 and Sentinel-2 data. Sci. Technol. Inf. 2021, 19, 92–94. [Google Scholar] [CrossRef]
- Zhao, L.C.; Li, Q.Z.; Chang, Q.R.; Shang, J.L.; Du, X.; Liu, J.G.; Dong, T. In-season crop type identification using optimal feature knowledge graph. ISPRS J. Photogramm. Remote Sens. 2022, 194, 250–266. [Google Scholar] [CrossRef]
- Mao, L.; Jin, C.; Song, Z.; Li, J. Characterization of climate change in Maoming City from 1980 to 2021. Meteorol. Hydrol. Mar. Instrum. 2023, 40, 67–69+72. [Google Scholar] [CrossRef]
- Xiao, Y.C.; Wang, H.G.; Zhang, L.; Xu, W.L. Two methods of selecting Gaussian kernel parameters for one-class SVM and their application to fault detection. Knowl.-Based Syst. 2014, 59, 75–84. [Google Scholar] [CrossRef]
- Ma, Z.F.; Liu, J.H.; Aoki, Y.; Wei, S.J.; Liu, X.L.; Cui, Y.C.; Hu, J.; Zhou, C.; Qin, S.H.; Huang, T.; et al. Towards big SAR data era, An efficient Sentinel-1 Near-Real-Time InSAR processing workflow with an emphasis on co-registration and phase unwrapping. ISPRS J. Photogramm. Remote Sens. 2022, 188, 86–300. [Google Scholar] [CrossRef]
- Chang, W.T.; Wang, H.; Ning, X.G.; Zhang, H.C. Information extraction of Zalong wetland by fusing Sentinel-2 red edge band and Sentinel-1 radar band images. Wetl. Sci. 2020, 18, 10–19. [Google Scholar] [CrossRef]
- Xue, Y.J.; Beauseroy, P. Transfer learning for one class SVM adaptation to limited data distribution change. Pattern Recognition Lett. 2017, 100, 7–123. [Google Scholar] [CrossRef]
- He, X.; Mourot, G.; Maquin, D.; Ragot, J.; Beauseroy, P.; Smolarz, A.; Grall-maës, E. Multi-task learning with one-class SVM. Neurocomputing 2014, 133, 416–426. [Google Scholar] [CrossRef]
- Xia, J.; Su, T.; Liu, L.N.; Wang, J.; Zhu, F.; Liao, J. Rice area extraction based on multi-temporal Sentinel-1A data. Jiangsu J. Agric. 2022, 38, 666–674. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Liu, C.; Wang, J.B. Study on Remote Sensing Extraction of Gannan Citrus Orchards Supported by Google Earth Engine Platform. J. Geo-Inf. Sci. 2018, 20, 9. [Google Scholar] [CrossRef]
- Mushava, J.; Murray, M. Flexible loss functions for binary classification in gradient-boosted decision trees: An application to credit scoring. Expert Syst. Appl. 2024, 238, 121876. [Google Scholar] [CrossRef]
- Shammi, S.A.; Meng, Q. Use time-series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecol. Indic. 2021, 121, 107124. [Google Scholar] [CrossRef]
- Sah, S.; Haldar, D.; Chandra, S.; Nain, A.S. Discrimination and monitoring of rice cultural types using dense time series of Sentinel-1 SAR data. Ecol. Inform. 2023, 76, 102–136. [Google Scholar] [CrossRef]
- Wang, Z.X.; Liu, C.; Chen, W.B.; Lin, X. Preliminary Comparison of MODIS-NDVI and MODIS-EVI in Eastern Asia. Geomat. Inf. Sci. Wuhan Univ. 2006, 31, 407–410. [Google Scholar] [CrossRef]
- Teshome, F.T.; Bayabil, H.K.; Hoogenboom, G.; Schaffer, B.; Singh, A.; Ampatzidis, Y. Unmanned aerial vehicle (UAV) imaging and machine learning applications for plant phenotyping. Comput. Electron. Agric. 2023, 212, 108064. [Google Scholar] [CrossRef]
- Wang, L.M.; Liu, J.; Ji, F.H. Current status and development trend of remote sensing technology application in Chinese agriculture. China Agron. Bull. 2021, 37, 138–143. [Google Scholar] [CrossRef]
- Marino, S. Understanding the spatio-temporal behavior of crop yield, yield components, and weed pressure using time series Sentinel-2-data in an organic farming system. Eur. J. Agron. 2023, 145, 126785. [Google Scholar] [CrossRef]
- Deng, X.Y.; Liu, Q.; Deng, Y.; Sankaran, M. An improved method to construct basic probability assignments based on the confusion matrix for classification problems. Inf. Sci. 2016, 340–341, 250–261. [Google Scholar] [CrossRef]
- Woźniak, E.; Rybicki, M.; Kofman, W.; Aleksandrowicz, S.; Wojtkowski, C.; Lewiński, S.; Bojanowski, J.; Musiał, J.; Milewski, T.; Slesiński, P.; et al. Multi-temporal phenological indices derived from time series Sentinel-1 images to country-wide crop classification. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102683. [Google Scholar] [CrossRef]
- Richard, R.; Waqar, S.Q.; Hamid, J.; Ayesha, Z.; Alina, M.; Eisa, A.; Umar, S.K.; Nasir, R. A new method for pixel classification for rice variety identification using spectral and time series data from Sentinel-2 satellite imagery. Comput. Electron. Agric. 2022, 193, 106731. [Google Scholar] [CrossRef]
- Testa, S.; Soudani, K.; Boschetti, L.; Borgogno, E. MODIS-derived EVI, NDVI, and WDRVI time series to estimate phenological metrics in French deciduous forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 132–144. [Google Scholar] [CrossRef]
- Chauhan, S.; Srivastava, H.S.; Patel, P. Wheat crop biophysical parameters retrieval using hybrid-polarized RISAT-1 SAR data. Remote Sens. Environ. 2018, 216, 28–43. [Google Scholar] [CrossRef]
- Azadnejad, S.; Maghsoudi, Y.; Perissin, D. Evaluation of polarimetric capabilities of dual polarized Sentinel-1 and TerraSAR-X data to improve the PSInSAR algorithm using amplitude dispersion index optimization. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101950. [Google Scholar] [CrossRef]
- Ren, C.S.; Huang, W.J.; Ye, H.C.; Cui, B. Extraction of banana forest information and accuracy analysis using Gaofen-2 data. Remote Sens. Inf. 2017, 32, 78–84. [Google Scholar] [CrossRef]
- Shu, M.; Li, S.; Wei, J.; Che, Y.P.; Li, B.G.; Ma, T.Y. Extraction of citrus crown parameters using UAV platform. Trans. Chin. Soc. Agric. Eng. 2021, 37, 68–76. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications, A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Zhao, X.; Nishina, K.; Akitsu, T.K.; Jiang, L.; Masutomi, Y.; Nasahara, K.N. Feature-based algorithm for large-scale rice phenology detection based on satellite images. Agric. For. Meteorol. 2023, 329, 109283. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Firozjaei, M.K.; Li, H.; Biswas, A. Surface biophysical features fusion in remote sensing for improving land crop/cover classification accuracy. Sci. Total Environ. 2022, 838, 156520. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Cai, J.Z.; He, Y. Sea surface wind speed inversion based on RADARSAT-2 quad-polarized SAR images. Mar. Forecast. 2021, 38, 42–54. [Google Scholar] [CrossRef]
Satellite | Resolution | Work Pattern | Flight Direction | Polarization Scheme |
---|---|---|---|---|
Sentinel-1A (GRD) | 10 m | Interferometric Wide Swath (IW) | Ascending | VV, VH |
Sentinel-2A (Level-lC) | 10 m | / | Ascending | B2, B3, B4, B8 |
Satellite | Acquisition Date | Number of Scenes | Growth Stage |
---|---|---|---|
S-1A | 11 January 2018 (0111) 14 January 2022 (0114), 19 February 2022 (0219) | 6 | The branch growth period of litchi and citrus |
S-1A | 15 March 2022 (0315), 8 April 2022 (0408) | 4 | The bud differentiation and anthesis of litchi and citrus. The branch growth period of longan |
S-1A | 11 May 2018 (0511), 23 May 2018 (0523), 4 June 2018 (0604) 2 May 2022 (0502), 14 May 2022 (0514) 26 May 2022 (0526), 7 June 2022 (0607) | 14 | The fruit growth and ripening of litchi. The bud differentiation and anthesis of longan |
S-1A | 10 June 2018 (0610), 22 June 2018 (0622) 7 June 2022 (0607), 19 June 2022 (0619) 13 July 2022 (0713), 25 July 2022 (0725) | 12 | The harvest period of litchi. The fruit growth and ripening of citrus and longan |
S-1A | 6 August 2018 (0806), 15 August 2018 (0815) 6 August 2022 (0806), 30 August 2022 (0830) | 8 | The fruit growth and ripening of citrus. The harvest period of longan |
S-1A | 20 September 2018 (0920), 14 October 2018 (1014) 11 September 2022 (0911), 23 September 2022 (0923), 17 October 2022 (1017) | 10 | The harvest period of longan |
S-1A | 19 November 2018 (1119), 13 December 2018 (1213) 22 November 2022 (1122), 16 December 2022 (1216) | 8 | / |
S-2A | 30 September 2018, 9 September 2022, 29 October 2022 | 6 | / |
Category | Litchi | Other Forest and Vegetation | Cropland | Total | User’s Accuracy |
---|---|---|---|---|---|
Litchi | 265 | 11 | 4 | 280 | 94.64% |
Other forest and vegetation | 14 | 193 | 19 | 226 | 85.40% |
Cropland | 2 | 17 | 169 | 188 | 89.89% |
Total | 281 | 221 | 192 | 694 | - |
Producer’s accuracy | 94.31% | 87.33% | 88.02% | - | - |
Overall accuracy = 90.34% | Kappa = 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Wang, X.; Li, D.; Yu, W.; Feng, Z.; Lu, X.; Wang, S.; Zhang, Z.; Gao, X.; Fan, J. A Novel Approach to Mapping the Spatial Distribution of Fruit Trees Using Phenological Characteristics. Agronomy 2024, 14, 150. https://doi.org/10.3390/agronomy14010150
Han L, Wang X, Li D, Yu W, Feng Z, Lu X, Wang S, Zhang Z, Gao X, Fan J. A Novel Approach to Mapping the Spatial Distribution of Fruit Trees Using Phenological Characteristics. Agronomy. 2024; 14(1):150. https://doi.org/10.3390/agronomy14010150
Chicago/Turabian StyleHan, Liusheng, Xiangyu Wang, Dan Li, Wenjie Yu, Zhaohui Feng, Xingqiang Lu, Shengshuai Wang, Zhiyi Zhang, Xin Gao, and Junfu Fan. 2024. "A Novel Approach to Mapping the Spatial Distribution of Fruit Trees Using Phenological Characteristics" Agronomy 14, no. 1: 150. https://doi.org/10.3390/agronomy14010150
APA StyleHan, L., Wang, X., Li, D., Yu, W., Feng, Z., Lu, X., Wang, S., Zhang, Z., Gao, X., & Fan, J. (2024). A Novel Approach to Mapping the Spatial Distribution of Fruit Trees Using Phenological Characteristics. Agronomy, 14(1), 150. https://doi.org/10.3390/agronomy14010150