Environmental Impact Assessment of Rice–Wheat Rotation Considering Annual Nitrogen Application Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Yield Measurement
2.3. Life Cycle Assessment
2.3.1. Goal and Scope Definition
2.3.2. Inventory Analysis
2.3.3. Impact Assessment
2.4. Statistical Analysis
3. Results
3.1. Grain Yield of Rice–Wheat Rotation under Different N-Application Treatments
3.2. Environmental Impact of Rice–Wheat Rotation under Different N-Application Treatments
3.2.1. Area-Based Environmental Impact and Hotspot Analysis
3.2.2. Yield-Based Environmental Impact
3.2.3. Profit-Based Environmental Impact
3.2.4. Weighting Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Huang, J.; Yu, X.; Zhang, Z.; Peng, S.; Liu, B.; Tao, X.; He, A.; Deng, N.; Zhou, Y.; Cui, K.; et al. Exploration of feasible rice-based crop rotation systems to coordinate productivity, resource use efficiency and carbon footprint in central China. Eur. J. Agron. 2022, 141, 126633. [Google Scholar] [CrossRef]
- Singh, P.; Singh, G.; Gupta, A.; Sodhi, G.P.S. Data envelopment analysis based energy optimization for improving energy efficiency in wheat established following rice residue management in rice-wheat cropping system. Energy 2023, 284, 128615. [Google Scholar] [CrossRef]
- Cai, S.; Zhao, X.; Pittelkow, C.M.; Fan, M.; Zhang, X.; Yan, X. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 2023, 615, 73–79. [Google Scholar] [CrossRef] [PubMed]
- NBSC. China Statistical Yearbook [WWW Document]. 2022. Available online: https://www.stats.gov.cn/sj/ndsj/2021/indexch.htm (accessed on 6 November 2023).
- Conant, R.T.; Berdanier, A.B.; Grace, P.R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Glob. Biogeochem. Cycles 2013, 27, 558–566. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.J.M.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J.; et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Xu, X.; Zhang, J.; Huang, S.; He, P.; Zhou, W. Nitrogen balance acts an indicator for estimating thresholds of nitrogen input in rice paddies of China. Environ. Pollut. 2021, 290, 118091. [Google Scholar] [CrossRef]
- Cheng, Y.; Elrys, A.S.; Wang, J.; Xu, C.; Ni, K.; Zhang, J.; Wang, S.; Cai, Z.; Pacholski, A. Application of enhanced-efficiency nitrogen fertilizers reduces mineral nitrogen usage and emissions of both N2O and NH3 while sustaining yields in a wheat-rice rotation system. Agric. Ecosyst. Environ. 2022, 324, 107720. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, H.; Wang, C.; Zhang, J.; Zhou, S. Optimizing fertilizer management mitigated net greenhouse gas emissions in a paddy rice-upland wheat rotation system: A ten-year in situ observation of the Yangtze River Delta, China. Agric. Ecosyst. Environ. 2023, 356, 108640. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, Y.; Zhao, M.; Yin, B.; Zhu, Z. The assessment of nitrate leaching in a rice–wheat rotation system using an improved agronomic practice aimed to increase rice crop yields. Agric. Ecosyst. Environ. 2017, 241, 100–109. [Google Scholar] [CrossRef]
- van Grinsven, H.J.M.; Ebanyat, P.; Glendining, M.; Gu, B.; Hijbeek, R.; Lam, S.K.; Lassaletta, L.; Mueller, N.D.; Pacheco, F.S.; Quemada, M.; et al. Establishing long-term nitrogen response of global cereals to assess sustainable fertilizer rates. Nat. Food 2022, 3, 122–132. [Google Scholar] [CrossRef]
- Goucher, L.; Bruce, R.; Cameron, D.D.; Lenny Koh, S.C.; Horton, P. The environmental impact of fertilizer embodied in a wheat-to-bread supply chain. Nat. Plants 2017, 3, 17012. [Google Scholar] [CrossRef] [PubMed]
- Giuliana, V.; Lucia, M.; Marco, R.; Simone, V. Environmental life cycle assessment of rice production in northern Italy: A case study from Vercelli. Int. J. Life Cycle Assess. 2022. [Google Scholar] [CrossRef]
- Zhen, H.; Feng, X.; Waqas, M.A.; Cascante, M.Q.; Ju, X.; Qiao, Y.; Lohrum, N.; Knudsen, M.T. Solutions to neutralize greenhouse gas emissions of the rice value chain—A case study in China. Sustain. Prod. Consum. 2023, 35, 444–452. [Google Scholar] [CrossRef]
- Cai, S.; Pittelkow, C.M.; Zhao, X.; Wang, S. Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits. J. Clean. Prod. 2018, 195, 289–300. [Google Scholar] [CrossRef]
- Chen, Z.; Li, P.; Jiang, S.; Chen, H.; Wang, J.; Cao, C. Evaluation of resource and energy utilization, environmental and economic benefits of rice water-saving irrigation technologies in a rice-wheat rotation system. Sci. Total Environ. 2021, 757, 143748. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Das, T.K.; Rana, K.S.; Biswas, D.R.; Das, D.K.; Singh, G.; Bhattacharyya, R.; Datta, D.; Rathi, N.; Bhatia, A. Energy budgeting and carbon footprint of contrasting tillage and residue management scenarios in rice-wheat cropping system. Soil Tillage Res. 2022, 223, 105445. [Google Scholar] [CrossRef]
- Xu, X.; Ma, F.; Zhou, J.; Du, C. Control-released urea improved agricultural production efficiency and reduced the ecological and environmental impact in rice-wheat rotation system: A life-cycle perspective. Field Crops Res. 2022, 278, 108445. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Q.; Zhang, J. Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission. Crop J. 2017, 5, 151–158. [Google Scholar] [CrossRef]
- ISO 14044:2006; Environmental Management-Life Cycle Assessment-Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 28 October 2023).
- Xu, Q.; Hu, K.; Yao, Z.; Zuo, Q. Evaluation of carbon, nitrogen footprint and primary energy demand under different rice production systems. Ecol. Indic. 2020, 117, 106634. [Google Scholar] [CrossRef]
- IPCC. N2O Emissions from Managed Soils, and CO2 Emissions from Lime and Urea Application. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2019, pp. 1–48. Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html (accessed on 6 November 2023).
- Liu, S.; Lin, F.; Wu, S.; Ji, C.; Sun, Y.; Jin, Y.; Li, S.; Li, Z.; Zou, J. A meta-analysis of fertilizer-induced soil NO and combined NO+N2O emissions. Glob. Change Biol. 2017, 23, 2520–2532. [Google Scholar] [CrossRef]
- Xie, Z.; Fan, P.; Wu, H.; Cheng, K.; Pan, G. Deriving volatile factors and estimating direct ammonia emissions for crop cultivation in China. Huanjing Kexue Xuebao/Acta Sci. Circumstantiae 2020, 40, 4180–4188. [Google Scholar] [CrossRef]
- Xia, Y.Q.; Yang, W.X.; Shi, W.M.; Yan, X.Y. Estimation of nitrogen occurrence from non-point sources in intensive planting industry in China. J. Ecol. Rural Environ. 2018, 34, 782–787. [Google Scholar]
- Han, X.F.; Xie, D.T.; Gao, M.; Wang, Z.F.; Chen, C. Effects of reduced-phosphorus fertilizer and combinations of organic fertilizers on phosphorus leaching in purple paddy soil with conventional paddy-upland rotation tillage. Acta Ecol. Sin. 2017, 37, 3525–3532. [Google Scholar]
- Gong, R.; Liu, Q.; Rong, X.; Zhang, Y. Effects of phosphorus fertilizer reduction on leaching loss of different phosphorus forms in upland land of central And Southern China. J. Soil Water Conserv. 2015, 29, 106–110. [Google Scholar]
- Wang, R.; Min, J.; Kronzucker, H.J.; Li, Y.; Shi, W. N and P runoff losses in China’s vegetable production systems: Loss characteristics, impact, and management practices. Sci. Total Environ. 2019, 663, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, W.; Yang, J.; Cheng, K.; Smith, P.; Sun, J.; Xu, X.; Yue, Q.; Pan, G. Exploring the environmental impact of crop production in China using a comprehensive footprint approach. Sci. Total Environ. 2022, 824, 153898. [Google Scholar] [CrossRef] [PubMed]
- Van Calker, K.J.; Berentsen, P.B.M.; De Boer, I.M.J.; Giesen, G.W.J.; Huirne, R.B.M. An LP-model to analyse economic and ecological sustainability on Dutch dairy farms: Model presentation and application for experimental farm “de Marke”. Agric. Syst. 2004, 82, 139–160. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Saber, Z.; van Zelm, R.; Pirdashti, H.; Schipper, A.M.; Esmaeili, M.; Motevali, A.; Nabavi-Pelesaraei, A.; Huijbregts, M.A.J. Understanding farm-level differences in environmental impact and eco-efficiency: The case of rice production in Iran. Sustain. Prod. Consum. 2021, 27, 1021–1029. [Google Scholar] [CrossRef]
- Liang, L.; Lal, R.; Ridoutt, B.G.; Du, Z.; Wang, D.; Wang, L.; Wu, W.; Zhao, G. Life Cycle Assessment of China’s agroecosystems. Ecol. Indic. 2018, 88, 341–350. [Google Scholar] [CrossRef]
- Sleeswijk, A.W.; van Oers, L.F.C.M.; Guinée, J.B.; Struijs, J.; Huijbregts, M.A.J. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Sci. Total Environ. 2008, 390, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhong, G.; Lin, J.; Ding, Y.; Li, G.; Wang, S.; Liu, Z.; Tang, S.; Ding, C. Effect of nitrogen management during the panicle stage in rice on the nitrogen utilization of rice and succeeding wheat crops. Eur. J. Agron. 2015, 70, 41–47. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Liu, T.; Fu, H.; Yuan, X.; Cheng, Q.; Liao, Q.; Zhang, Y.; Li, W.; Sun, Y.; et al. Strategies for Fertilizer Managements to Achieve Higher Yields and Environmental and Fertilizer Benefits of the Rice Production in China. Sci. Total Environ. 2023, 904, 166325. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Li, J.; Liang, H.; Ding, Z.; Shi, X.; Chen, Y.; Dou, Z.; Dai, Q.; Gao, H. Coupling life cycle assessment and global sensitivity analysis to evaluate the uncertainty and key processes associated with carbon footprint of rice production in Eastern China. Front. Plant Sci. 2022, 13, 990105. [Google Scholar] [CrossRef]
- Yan, J.; Liu, Y.; Zhang, R.; Cui, C.; Zheng, Y.; Zhuang, M. Toward Sustainable Maize Production for Smallholders through Optimized Strategies in North China. Front. Agric. Sci. Eng. 2022, 9, 547–557. [Google Scholar] [CrossRef]
- Zhan, X.; Adalibieke, W.; Cui, X.; Winiwarter, W.; Reis, S.; Zhang, L.; Bai, Z.; Wang, Q.; Huang, W.; Zhou, F. Improved Estimates of Ammonia Emissions from Global Croplands. Environ. Sci. Technol. 2021, 55, 1329–1338. [Google Scholar] [CrossRef]
- Li, S.H.; Guo, L.J.; Cao, C.G.; Li, C.F. Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China. Environ. Sci. Pollut. Res. 2021, 28, 5742–5754. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Chen, J.; Hu, N.; Zhu, L. Evaluation on environmental consequences and sustainability of three rice-based rotation systems in Quanjiao, China by an integrated analysis of life cycle, emergy and economic assessment. J. Clean. Prod. 2021, 310, 127493. [Google Scholar] [CrossRef]
- Lin, L.; Yanju, S.; Ying, X.; Zhisheng, Z.; Bin, W.; You, L.; Zichuan, S. Comparing rice production systems in China: Economic output and carbon footprint. Sci. Total Environ. 2021, 791, 147890. [Google Scholar] [CrossRef]
- Singh, R.; Singh, A.; Sheoran, P.; Fagodiya, R.K.; Rai, A.K.; Chandra, P.; Rani, S.; Yadav, R.K.; Sharma, P.C. Energy efficiency and carbon footprints of rice–wheat system under long-term tillage and residue management practices in western Indo-Gangetic Plains in India. Energy 2022, 244, 122655. [Google Scholar] [CrossRef]
- Biswakarma, N.; Pooniya, V.; Zhiipao, R.R.; Kumar, D.; Shivay, Y.S.; Das, T.K.; Roy, D.; Das, B.; Choudhary, A.K.; Swarnalakshmi, K.; et al. Agriculture, Ecosystems and Environment Identification of a resource-efficient integrated crop management practice for the rice-wheat rotations in south Asian Indo-Gangetic Plains. Agric. Ecosyst. Environ. 2023, 357, 108675. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, S.; Xu, J.; Wang, J.; Li, Z.; Wu, J.; Zhang, J. Lowering nitrogen inputs and optimizing fertilizer types can reduce direct and indirect greenhouse gas emissions from rice-wheat rotation systems. Eur. J. Soil Biol. 2020, 97, 103152. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, Y.; Wen, Z.; Chang, Y.; Pan, Y.; Sun, Y.; Ma, X.; Sha, Z.; Li, Z.; Kang, J.; et al. Increasing importance of ammonia emission abatement in PM2.5 pollution control. Sci. Bull. 2022, 67, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Lesk, C.; Coffel, E.; Winter, J.; Ray, D.; Zscheischler, J.; Seneviratne, S.I.; Horton, R. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2021, 2, 683–691. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, C.; Müller, C.; Wang, C.; Ciais, P.; Janssens, I.; Peñuelas, J.; Asseng, S.; Li, T.; Elliott, J.; et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 2020, 3, 908–916. [Google Scholar] [CrossRef]
Reference | Site | GWArea (t CO2 eq ha−1) | GWYield(t CO2 eq t−1) |
---|---|---|---|
[14] | Jiangsu, China | 11.3–13.3 | 1.5–1.8 |
[40] | Hubei, China | 15.3–22.6 | 1.0–1.3 |
[41] | Anhui, China | 9.1 | – |
[15] | Hubei, China | 7.1 | – |
[42] | Hubei, China | 26.9 | – |
[16] | New Delhi, India | 3.2–8.8 | 0.3–0.8 |
[1] | Hubei, China | 8.6–11.2 | – |
[43] | Karnal, India | 6.4–8.1 | 0.1–0.6 |
[37] | Jiangsu, China | 9.3–45.1 | 1.4–2.4 |
[44] | New Delhi, India | 8.9–10.7 | 0.1–0.3 |
This study | Jiangsu, China | 7.5–19.5 | 0.8–1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Liu, X.; Chen, Y.; Xu, Q.; Dai, Q.; Wei, H.; Xu, K.; Zhang, H. Environmental Impact Assessment of Rice–Wheat Rotation Considering Annual Nitrogen Application Rate. Agronomy 2024, 14, 151. https://doi.org/10.3390/agronomy14010151
Yang Y, Liu X, Chen Y, Xu Q, Dai Q, Wei H, Xu K, Zhang H. Environmental Impact Assessment of Rice–Wheat Rotation Considering Annual Nitrogen Application Rate. Agronomy. 2024; 14(1):151. https://doi.org/10.3390/agronomy14010151
Chicago/Turabian StyleYang, Yulin, Xiaohu Liu, Yinglong Chen, Qiang Xu, Qigen Dai, Huanhe Wei, Ke Xu, and Hongcheng Zhang. 2024. "Environmental Impact Assessment of Rice–Wheat Rotation Considering Annual Nitrogen Application Rate" Agronomy 14, no. 1: 151. https://doi.org/10.3390/agronomy14010151
APA StyleYang, Y., Liu, X., Chen, Y., Xu, Q., Dai, Q., Wei, H., Xu, K., & Zhang, H. (2024). Environmental Impact Assessment of Rice–Wheat Rotation Considering Annual Nitrogen Application Rate. Agronomy, 14(1), 151. https://doi.org/10.3390/agronomy14010151