Unveiling the Effects of Phosphorus on the Mineral Nutrient Content and Quality of Alfalfa (Medicago sativa L.) in Acidic Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Measurement of Mineral Nutrient Contents in Plants
2.3. Forage Quality Analysis
2.4. Statistical Analysis
3. Results
3.1. Effects of P Application on Mineral Nutrient Contents in Alfalfa
3.2. Effect of P Application on Alfalfa Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, Z.; Yang, Z.; Lu, Z.; Luo, B.; Hao, Y.; Wang, X.; Yang, F.; Wang, S.; Chen, C.; Dong, R. Effect of genotype and environment on agronomical characters of alfalfa (Medicago sativa L.) in a typical acidic soil environment in southwest China. Front. Sustain. Food Syst. 2023, 7, 1144061. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, T.; Chen, Z.; Niu, J.; Cui, X.; Mao, Y.; Hassan, M.U.; Kareem, H.A.; Xu, N.; Sui, X.; et al. Occurrence, distribution, and genetic diversity of alfalfa (Medicago sativa L.) viruses in four major alfalfa-producing provinces of China. Front. Microbiol. 2022, 12, 771361. [Google Scholar] [CrossRef]
- Feng, Y.; Shi, Y.; Zhao, M.; Shen, H.; Xu, L.; Luo, Y.; Liu, Y.; Xing, A.; Kang, J.; Jing, H.; et al. Yield and quality properties of alfalfa (Medicago sativa L.) and their influencing factors in China. Eur. J. Agron. 2022, 141, 126637. [Google Scholar] [CrossRef]
- Wan, W.F.; Li, Y.J.; Li, H.G. Yield and quality of alfalfa (Medicago sativa L.) in response to fertilizer application in China: A meta-analysis. Front. Plant Sci. 2022, 13, 1051725. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, F.; Jiang, X.; Yang, X.; He, F.; Wang, Z.; Long, R.; Chen, L.; Yang, T.; Wang, C.; et al. Identification of genetic loci associated with crude protein content and fiber composition in alfalfa (Medicago sativa L.) using QTL mapping. Front. Plant Sci. 2021, 12, 608940. [Google Scholar] [CrossRef]
- Lu, Z.J.; Tian, Z.; Yang, Z.Y.; Yin, X.Y.; Dong, R. Comparative transcriptomic analysis reveals coordinated mechanisms of different genotypes of common vetch root in response to Al stress. Environ. Exp. Bot. 2023, 213, 105450. [Google Scholar] [CrossRef]
- Su, L.; Lv, A.; Wen, W.; Fan, N.; Li, J.; Gao, L.; Zhou, P.; An, Y. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis. Plant J. 2022, 112, 756–771. [Google Scholar] [CrossRef]
- Walworth, J.L.; Sumner, M.E. Alfalfa response to lime, phosphorus, potassium, magnesium, and molybdenum on acid ultisols. Fert. Res. 1990, 24, 167–172. [Google Scholar] [CrossRef]
- Sun, Q.B.; Shen, R.F.; Zhao, X.Q.; Chen, R.F.; Dong, X.Y. Phosphorus enhances Al resistance in Al-resistant Lespedeza bicolor but not in Al-sensitive L. cuneata under relatively high Al stress. Ann. Bot. 2008, 102, 795–804. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Liu, X.; Sun, Y.; Li, S.; Lu, W.; Ma, C. Optimizing the nutritional quality and phosphorus use efficiency of alfalfa under drip irrigation with nitrogen and phosphorus fertilization. Agron. J. 2020, 112, 3129–3139. [Google Scholar] [CrossRef]
- Gu, Y.J.; Han, C.L.; Kong, M.; Shi, X.Y.; Zdruli, P.; Li, F.M. Plastic film mulch promotes high alfalfa production with phosphorus-saving and low risk of soil nitrogen loss. Field Crop. Res. 2018, 229, 44–54. [Google Scholar] [CrossRef]
- Cole, J.C.; Smith, M.W.; Penn, C.J.; Cheary, B.S.; Conaghan, K.J. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci. Hortic. 2016, 211, 420–430. [Google Scholar] [CrossRef]
- He, H.; Peng, Q.; Wang, X.; Fan, C.; Pang, J.; Lambers, H.; Zhang, X. Growth, morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils. Plant Soil 2017, 416, 565–584. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Sun, Y.; Ma, C.; Gu, X.; Zhang, Q. Yield, nutrient quality and water and phosphorus recovery efficiencies of alfalfa under different drip irrigation and phosphorus levels in Northern Xinjiang, China. Grass Forage Sci. 2022, 77, 189–200. [Google Scholar] [CrossRef]
- Mainetti, A.; Ravetto Enri, S.; Pittarello, M.; Lombardi, G.; Lonati, M. Main ecological and environmental factors affecting forage yield and quality in alpine summer pastures (NW-Italy, Gran Paradiso National Park). Grass Forage Sci. 2023, 78, 254–267. [Google Scholar] [CrossRef]
- Aziz, T.; Lambers, H.; Nicol, D.; Ryan, M.H. Mechanisms for tolerance of very high tissue phosphorus concentrations in P tilotus polystachyus. Plant Cell Environ. 2015, 38, 790–799. [Google Scholar] [CrossRef]
- Mardamootoo, T.; Du Preez, C.C.; Barnard, J.H. Phosphorus management issues for crop production: A review. Afr. J. Agr. Res. 2021, 17, 939–952. [Google Scholar] [CrossRef]
- Amadou, I.; Faucon, M.P.; Houben, D. Role of soil minerals on organic phosphorus availability and phosphorus uptake by plants. Geoderma 2022, 428, 116125. [Google Scholar] [CrossRef]
- Alloush, G.A.; Zeto, S.K.; Clark, R.B. Phosphorus source, organic matter, and arbuscular mycorrhiza effects on growth and mineral acquisition of chickpea grown in acidic soil. J. Plant Nutr. 2000, 23, 1351–1369. [Google Scholar] [CrossRef]
- Kassir, L.N.; Darwish, T.; Shaban, A.; Olivier, G.; Ouaini, N. Mobility and bioavailability of selected trace elements in Mediterranean red soil amended with phosphate fertilizers: Experimental study. Geoderma 2012, 189, 357–368. [Google Scholar] [CrossRef]
- Kamran, M.; Yan, Z.; Jia, Q.; Chang, S.; Ahmad, I.; Ghani, M.U.; Hou, F. Irrigation and nitrogen fertilization influence on alfalfa yield, nutritive value, and resource use efficiency in an arid environment. Field Crop. Res. 2022, 284, 108587. [Google Scholar] [CrossRef]
- Barker, D.J.; Culman, S.W. Fertilization and Nutrient Management. In Forages: The Science of Grassland Agriculture, 7th ed.; The Ohio State University: Columbus, OH, USA, 2020; Volume II. [Google Scholar]
- Huang, D.; Gong, X.; Liu, Y.; Zeng, G.; Lai, C.; Bashir, H.; Zhou, L.; Wang, D.; Xu, P.; Cheng, M.; et al. Effects of calcium at toxic concentrations of cadmium in plants. Planta 2017, 245, 863–873. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Liu, Y.; Pang, J.; Yong, J.W.H.; Chen, Y.; Bai, C.; Gille, C.; Shi, Q.; Wu, D.; Han, X.; et al. Supplementary calcium restores peanut (Arachis hypogaea) growth and photosynthetic capacity under low nocturnal temperature. Front. Plant Sci. 2020, 10, 1637. [Google Scholar] [CrossRef] [PubMed]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef]
- Vrataric, M.; Sudaric, A.; Kovacevic, V.; Duvnjak, T.; Krizmanic, M.; Mijic, A. Response of soybean to foliar fertilization with magnesium sulfate. Cereal. Res. Commun. 2006, 34, 709–712. [Google Scholar] [CrossRef]
Parameter | Limestone Soil | Yellow Soil |
---|---|---|
pH (H2O 1:5) | 6.01 | 5.46 |
Total N (g/kg) | 2.94 | 1.99 |
Total P (g/kg) | 0.56 | 0.35 |
Total K (g/kg) | 24.08 | 7.25 |
Total Mg (g/kg) | 6.82 | 2.31 |
Total Ca (g/kg) | 20.51 | 5.28 |
NH4+-N (mg/kg) | 31.57 | 19.67 |
NO3−-N (mg/kg) | 4.75 | 1.41 |
Available P (mg/kg) | 3.02 | 7.99 |
Available N (mg/kg) | 132.72 | 33.05 |
Available K (g/kg) | 0.31 | 0.17 |
Exchangeable Al content (mg/kg) | 397 | 832 |
Character | Significance of Sources of Variability | |||||||
---|---|---|---|---|---|---|---|---|
df | G | P | S | G × P | G × S | P × S | G × P × S | |
Plant K content (mg) | 1.48 | 447.8 *** | 652.70 *** | 895.7 *** | 180.2 *** | 37.8 *** | 121.4 *** | 121.4 *** |
Plant Ca content (mg) | 1.48 | 2201.5 *** | 405.32 *** | 645.5 *** | 18.1 *** | 427.1 *** | 78.1 *** | 78.1 *** |
Plant Mg content (mg) | 1.48 | 224.6 *** | 87.2 *** | 642.9 *** | 6 *** | 33.9 *** | 15.8 *** | 15.8 *** |
Plant P content (mg) | 1.48 | 1684.9 *** | 219.2 *** | 723.8 *** | 24 *** | 335.1 *** | 33.2 *** | 33.2 *** |
Ether extract (%) | 1.48 | 809.1 *** | 296.3 *** | 107.4 *** | 38.3 *** | 49.8 *** | 103.3 *** | 103.3 *** |
Crude protein | 1.48 | 432.2 *** | 303 *** | 822.3 *** | 14.5 *** | n.s | 60.8 *** | 60.8 *** |
Neutral detergent fibre | 1.48 | 343.4 *** | 150.3 *** | 921 *** | 9.1 *** | 32.9 *** | 10.31 *** | 10.31 *** |
Acid Detergent Lignin | 1.48 | 158.2 *** | 722.7 *** | 115.5 *** | 192.3 *** | 330 *** | 330 *** | 210.6 *** |
Shoot dry mass (g) | 1.48 | 104.1 *** | 48.1 *** | 290.3 *** | 18 *** | 93.9 *** | 29.2 *** | 18.1 *** |
Soil Type | Cultivar | mg P kg−1 Soil | |||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 40 | 80 | 120 | ||
Limestone soil | Longzhong | 1.09 ± 0.12 Db | 1.64 ± 0.18 Cb | 2.28 ± 0.13 Ab | 2.19 ± 0.11 Ab | 1.96 ± 0.08 Ba | 1.78 ± 0.11 Cb |
Trifecta | 1.24 ± 0.16 Da | 1.81 ± 0.17 Ca | 2.85 ± 0.22 Aa | 2.57 ± 0.21 Aa | 2.27 ± 0.15 Ba | 2.19 ± 0.13 Ca | |
yellow soil | Longzhong | 0.19 ± 0.03 Db | 0.34 ± 0.04 Cb | 0.53 ± 0.06 Aa | 0.48 ± 0.07 Bb | 0.42 ± 0.02 Bb | 0.40 ± 0.06 Bb |
Trifecta | 0.25 ± 0.02 Da | 0.42 ± 0.03 Ca | 0.60 ± 0.07 Ba | 0.70 ± 0.04 Aa | 0.64 ± 0.09 Ba | 0.52 ± 0.07 Ba |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Hao, Y.; Wang, X.; He, J.; Zhao, X.; Chen, J.; Gu, X.; Zhang, M.; Yang, F.; Dong, R. Unveiling the Effects of Phosphorus on the Mineral Nutrient Content and Quality of Alfalfa (Medicago sativa L.) in Acidic Soils. Agronomy 2024, 14, 2271. https://doi.org/10.3390/agronomy14102271
Li Z, Hao Y, Wang X, He J, Zhao X, Chen J, Gu X, Zhang M, Yang F, Dong R. Unveiling the Effects of Phosphorus on the Mineral Nutrient Content and Quality of Alfalfa (Medicago sativa L.) in Acidic Soils. Agronomy. 2024; 14(10):2271. https://doi.org/10.3390/agronomy14102271
Chicago/Turabian StyleLi, Zhou, Yunfei Hao, Xiaowen Wang, Jin He, Xuechun Zhao, Jihui Chen, Xinyao Gu, Mingjun Zhang, Feng Yang, and Rui Dong. 2024. "Unveiling the Effects of Phosphorus on the Mineral Nutrient Content and Quality of Alfalfa (Medicago sativa L.) in Acidic Soils" Agronomy 14, no. 10: 2271. https://doi.org/10.3390/agronomy14102271
APA StyleLi, Z., Hao, Y., Wang, X., He, J., Zhao, X., Chen, J., Gu, X., Zhang, M., Yang, F., & Dong, R. (2024). Unveiling the Effects of Phosphorus on the Mineral Nutrient Content and Quality of Alfalfa (Medicago sativa L.) in Acidic Soils. Agronomy, 14(10), 2271. https://doi.org/10.3390/agronomy14102271