Responses of Growth, Enzyme Activity, and Flower Bud Differentiation of Pepper Seedlings to Nitrogen Concentration at Different Growth Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design
2.3. Growth Measurement
2.3.1. Plant Growth Parameters
2.3.2. Photosynthetic Pigment Content
2.3.3. Enzyme Activity
2.3.4. Flower Buds of Pepper Seedlings
2.3.5. Flower Organs of Pepper Seedlings
2.3.6. Comprehensive Evaluation Methods
2.3.7. Regression Model
2.4. Date Analysis
3. Results
3.1. Effects of Nitrogen Concentration at Different Growth Stages on Biomass and Seedling Quality Index of Pepper Seedlings
3.2. Effects of Nitrogen Concentration at Different Growth Stages on Root Growth of Pepper Seedlings
3.3. Effects of Nitrogen Concentration at Different Growth Stages on Photosynthetic Pigment Content of Pepper Seedlings
3.4. Effects of Nitrogen Concentration at Different Growth Stages on Enzyme Activity of Pepper Seedlings
3.5. Effects of Nitrogen Concentration at Different Growth Stages on Flower Bud Differentiation, Flowering and Flower Organ Development of Pepper
3.6. Correlation Analysis between Morphological and Physiological Indicators of Pepper Seedlings
3.7. Comprehensive Evaluation Based on Entropy Weight and TOPSIS
3.8. Regression Models of Nitrogen Concentration at Different Growth Stages on Shoot Fresh Weight, Shoot Dry Weight, Flower Bud Diameter, and Glutamine Synthetase Activity of Pepper Seedlings
4. Discussion
4.1. Effects of Nitrogen Concentration at Different Growth Stages on Growth of Pepper Seedlings
4.2. Influences of Nitrogen Concentration at Different Growth Stages on Photosynthetic Pigment of Pepper Seedlings
4.3. Impacts of Nitrogen Concentration at Different Growth Stages on Enzyme Activity Related to Carbon and Nitrogen Metabolism of Pepper Seedlings
4.4. Effects of Nitrogen Concentration at Different Growth Stages on Flower Bud Differentiation and Flowering of Pepper Seedlings
4.5. The Optimal Nitrogen Application Strategy of Different Growth Stages
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.L.; Supit, I.; Hutjes, R.; Zhang, F.; Wang, X.Z.; Chen, X.J.; Zhang, F.S.; Chen, X.P. Modelling growth of chili pepper (Capsicum annuum L.) with the WOFOST model. Agric. Syst. 2023, 209, 103688. [Google Scholar] [CrossRef]
- Zhou, M.; Sun, H.; Xu, X.; Yang, J.J.; Wang, G.B.; Wei, Z.X.; Xu, T.B.; Yin, J.J. Study on the method and mechanism of seedling picking for pepper (Capsicum annuum L.) plug seedlings. Agriculture 2024, 14, 11. [Google Scholar] [CrossRef]
- Mori, N.; Hasegawa, S.; Takimoto, R.; Horiuchi, R.; Watanabe, C.; Onizaki, D.; Koeda, S. Identification of QTLs conferring resistance to begomovirus isolate of PepYLCIV in Capsicum chinense. Euphytica 2022, 218, 20. [Google Scholar] [CrossRef]
- Li, L.; Tian, S.L.; Jiang, J.; Wang, Y. Regulation of nitric oxide to Capsicum under lower light intensities. S. Afr. J. Bot. 2020, 132, 268–276. [Google Scholar] [CrossRef]
- Andrés Lobato-Ureche, M.; Micaela Pérez-Rodriguez, M.; Malovini, E.; Piccoli, P.N.; Monasterio, R.P.; Carmen, C.A. Native plant growth promoting rhizobacteria improve the growth of pepper seedlings and modify the phenolic compounds profile. Rhizosphere 2023, 28, 100800. [Google Scholar] [CrossRef]
- Fathi, A. Role of nitrogen (N) in plant growth, photosynthesis pigments, and N use efficiency: A review. Agrisost 2022, 28, 1–8. [Google Scholar] [CrossRef]
- Flores-Saavedra, M.; Villanueva, G.; Gramazio, P.; Vilanova, S.; Mauceri, A.; Abenavoli, M.R.; Sunseri, F.; Prohens, J.; Plazas, M. Nitrogen use efficiency, growth and physiological parameters in different tomato genotypes under high and low N fertilisation conditions. Plant Physiol. Biochem. 2024, 208, 108447. [Google Scholar] [CrossRef]
- Zhou, H.P.; Kang, S.Z.; Li, F.S.; Du, T.S.; Shukla, M.K.; Li, X.J. Nitrogen application modified the effect of deficit irrigation on tomato transpiration, and water use efficiency in different growth stages. Sci. Hortic. 2020, 263, 109112. [Google Scholar] [CrossRef]
- Navarro-Morillo, I.; Blasco, B.; Cámara-Zapata, J.; Muñoz-Acero, J.; Simón-Grao, S.; Alfosea-Simón, M.; Plasencia, M.; García-Sanchez, F. Corn Steep Liquor application on pepper plants (Capsicum annum L.) stimulates growth under nitrogen-deficient growing conditions. Sci. Hortic. 2015, 328, 112955. [Google Scholar] [CrossRef]
- Alhrout, H.H. Response of growth and yield components of sweet pepper to tow different kinds of fertilizers under greenhouse conditions in Jordan. J. Agric. Sci. 2017, 9, 265–272. [Google Scholar] [CrossRef]
- Sun, L.; Li, B.; Yao, M.Z.; Mao, L.Z.; Zhao, M.Y.; Niu, H.F.; Xu, Z.Y.; Wang, T.L.; Wang, J.K. Moderate water deficit and nitrogen application rate are conducive to improving the nitrogen uptake and yield of greenhouse tomatoes. Rhizosphere 2023, 28, 100789. [Google Scholar] [CrossRef]
- Papadimitriou, D.M.; Daliakopoulos, L.N.; Lydakis-Simantiris, N.; Cheiladaki, I.; Manios, T.; Savvas, D. Nitrogen source and supply level impact water uptake, yield, and nutrient status of golden thistle in a soilless culture. Sci. Hortic. 2024, 336, 113384. [Google Scholar] [CrossRef]
- Shang, C.Q.; Hou, Q.D.; Qiao, G.; Tian, T.; Wen, X.P. CpSPL10-CpELF4 module involves in the negative regulation of flower bud differentiation in Chinese cherry. Int. J. Biol. Macromol. 2024, 280, 135964. [Google Scholar] [CrossRef]
- Zhou, C.B.; Cai, Y.; Yang, Z.A.; Wang, H.M.; Deng, F.; Bai, Z.P.; Gong, W. Nitrogen, phosphorus and potassium fertilization promotes Zanthoxylum armatum ‘Hanyuan Putao Qingjiao’ fower bud diferentiation in Sichuan, China. Hortic. Environ. Biotechnol. 2020, 61, 651–661. [Google Scholar] [CrossRef]
- Bibiano Ferreira, R.B.; Leonel, S.; Pacce Pereira Lima, G.; Leonel, M.; Otávio Minatel, I.; Mirellys Azevedo Souza, J.; Charles Monteiro, G.; Souza Silva, M. Contents of nitrogen compounds during bud break and peach tree performance in response to budburst-inducing products. Sci. Hortic. 2022, 305, 111388. [Google Scholar] [CrossRef]
- Wan, C.; Mi, L.; Chen, B.; Li, J.; Huo, H.; Xu, J.; Chen, X. Effects of nitrogen during nursery stage on flower bud differentiation and early harvest after transplanting in strawberry. Braz. J. Bot. 2017, 41, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.T.; Chang, Y.C.A. Effects of Nitrogen and the Various Forms of Nitrogen on Phalaenopsis Orchid—A Review. Horttechnology 2017, 27, 144–149. [Google Scholar] [CrossRef]
- Ushio, A.; Fukuta, N. Effects of Nitrogen Fertilization Levels in Nutrient Solution Applied before/after Flower Budding on Blasting in Winter-flowering of Eustoma grandiflorum (Raf.) Shinn. Hortic. Res. 2010, 9, 191–196. [Google Scholar] [CrossRef]
- Ningoji, S.N.; Thimmegowda, M.N.; Mudalagiriyappa; Vasanthi, B.G.; Shivaramu, H.S.; Hegde, M. Effect of automated sensor-driven irrigation and fertigation on green pepper (Capsicum annuum L.) growth, phenology, quality and production. Sci. Hortic. 2024, 334, 113306. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Chachar, Z.; Li, J.; Xiao, G.; Wang, Q.; Hayat, F.; Deng, L.; Narejo, M.N.; Bozdar, B.; et al. Micronutrients and their effects on Horticultural crop quality, productivity and sustainability. Sci. Hortic. 2024, 323, 112512. [Google Scholar] [CrossRef]
- Dong, F.; Qi, Y.; Wang, Y.N.; Wang, C.Z.; Zhu, J.; Wang, C.P.; Ma, L.; Zhang, J.H.; Lv, X.H. Screening of flower bud differentiation conditions and changes in metabolite content of Phalaenopsis pulcherrima. S. Afr. J. Bot. 2024, 171, 529–535. [Google Scholar] [CrossRef]
- Djaman, K.; Mel, V.C.; Ametonou, F.Y.; El-Namaky, R.; Diallo, M.D.; Koudahe, K. Effect of nitrogen fertilizer dose and application timing on yield and nitrogen use efficiency of irrigated hybrid rice under semi-arid conditions. J. Agric. Sci. Food Res. 2018, 9, 2–7. Available online: https://www.researchgate.net/publication/325424688 (accessed on 2 July 2024).
- Lou, T. Study on Photothermal Model of Floral Initiation and Subsequent Reproductive Organs Development and Yield Formation in Rapeseed; Huazhong Agricultural University: Wuhan, China, 2021. [Google Scholar] [CrossRef]
- Li, Q.L.; Gao, H.Y.; Zhang, X.D.; Ni, J.H.; Mao, H.P. Describing lettuce growth using morphological features combined with nonlinear models. Agronomy 2022, 12, 860. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.W.; Wei, J.; Feng, D.L. Study and practice of flower bud differentiation of solanaceous and melon vegetables in teaching experiment. Res. Explor. Lab. 2020, 39, 4. [Google Scholar]
- Yu, X.M.; Zhang, J.W.; Zhang, Y.H.; Ma, L.L.; Jiao, X.C.; Zhao, M.F.; Li, J.M. Identification of optimal irrigation and fertilizer rates to balance yield, water and fertilizer productivity, and fruit quality in greenhouse tomatoes using TOPSIS. Sci. Hortic. 2023, 311, 11829. [Google Scholar] [CrossRef]
- Hao, X.; Jia, J.D.; Mi, J.Q.; Yang, S.; Khattak, A.M.; Zheng, L.H.; Gao, W.L.; Wang, M.J. An optimization model of light intensity and nitrogen concentration coupled with yield and quality. Plant Growth Regul. 2021, 92, 319–331. [Google Scholar] [CrossRef]
- Yan, Z.N.; Wang, L.; Wang, Y.F.; Chu, Y.Y.; Lin, D.; Yang, Y.J. Morphological and physiological properties of greenhouse-grown cucumber seedlings as influenced by supplementary light-emitting diodes with same daily light integral. Horticulturae 2021, 7, 361. [Google Scholar] [CrossRef]
- Xing, J.P.; Feng, Y.; Zhang, Y.S.; Wang, Y.B.; Li, Z.H.; Zhang, M.C. Ethylene accelerates maize leaf senescence in response to nitrogen deficiency by regulating chlorophyll metabolism and autophagy. Crop J. 2024, in press. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, L.; Shen, C.; Ji, Z.; Zhang, H.; Zhang, T.; Li, Y.; Yu, J.; Yang, N.; He, Y.; et al. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. Plant Cell 2021, 33, 566–580. [Google Scholar] [CrossRef]
- Feng, K.X.; Wang, W.; Rong, J.S.; Liang, J.B.; Mi, J.D.; Wu, Y.B.; Wang, Y. Construction of recombinant Pichia pastoris strains for ammonia reduction by the gdhA and glnA regulatory genes in laying hens. Ecotoxicol. Environ. Saf. 2022, 234, 113376. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Li, Q.; Sun, T.S.; Chai, S.; Wang, C.L.; Bai, L.Q.; Sun, M.T.; Li, Y.S.; Qin, X.; Zhang, Z.H.; et al. Sugars promote graft union development in the heterograft of cucumber onto pumpkin. Hortic. Res. 2021, 8, 146. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.Y.; Chi, Y.H.; Yin, X.M. Research on the driving effect of marine economy on the high-quality development of regional economy—Evidence from China’s coastal areas. Reg. Stud. Mar. Sci. 2024, 74, 103550. [Google Scholar] [CrossRef]
- Wang, H.D.; Qu, Y.; Wen, Z.J.; Cheng, M.H.; Zhang, F.C.; Fan, J.L.; Yang, Q.L.; Liu, X.G.; Wang, X.K. Interactive effects of irrigation and N fertilization management on fruit yield, quality and water-N productivity of greenhouse cherry tomato. Sci. Hortic. 2024, 328, 112895. [Google Scholar] [CrossRef]
- Gao, H.Y.; Gong, L.Y.; Ni, J.H.; Li, Q.L. Metabolomics analysis of lettuce (Lactuca sativa L.) affected by low potassium supply. Agriculture 2022, 12, 1153. [Google Scholar] [CrossRef]
- Liu, H.; Wu, Z.Z.; Zhang, W.Z.; Wang, L.S.; Li, Z.M.; Liu, H. Synergistic effect between green light and nitrogen concentration on nitrate primary metabolism in lettuce (Lactuca sativa L.). Sci. Hortic. 2024, 328, 112848. [Google Scholar] [CrossRef]
- Jia, Z.H.; Zhang, J.; Jiang, W.; Wei, M.; Zhao, L.; Li, G.B. Different nitrogen concentrations affect strawberry seedlings nitrogen form preferences through nitrogen assimilation and metabolic pathways. Sci. Hortic. 2024, 332, 113236. [Google Scholar] [CrossRef]
- Han, L.H.; Mo, M.H.; Gao, Y.S.; Ma, H.R.; Xiang, D.G.; Ma, G.X.; Mao, H.P. Effects of new compounds into substrates on seedling qualities for efficient transplanting. Agronomy 2022, 12, 983. [Google Scholar] [CrossRef]
- Ren, H.; Liu, Z.; Wang, X.B.; Zhou, W.B.; Zhou, B.Y.; Zhao, M.; Li, C.F. Long-term excessive nitrogen application decreases spring maize nitrogen use efficiency via suppressing root physiological characteristics. J. Integr. Agric. 2024, in press. [Google Scholar] [CrossRef]
- Xia, Z.Q.; Gong, Y.X.; Yang, Y.; Wu, M.K.; Bai, J.X.; Zhang, S.B.; Lu, H.D. Effects of root-zone warming, nitrogen supply and their interactions on root-shoot growth, nitrogen uptake and photosynthetic physiological characteristics of maize. Plant Physiol. Biochem. 2024, 214, 108887. [Google Scholar] [CrossRef]
- Wu, Y.W.; Li, Q.; Jin, R.; Chen, W.; Liu, X.L.; Kong, F.L.; Ke, Y.P.; Shi, H.C.; Yuan, J.C. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. J. Integr. Agric. 2019, 18, 1246–1256. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Huang, Z.Y.; Li, Y.F.; Lu, X.L.; Li, G.R.; Qi, S.S.; Khan, I.U.; Li, G.L.; Dai, Z.C.; Du, D.L. The degradability of microplastics may not necessarily equate to environmental friendliness: A case study of cucumber seedlings with disturbed photosynthesis. Agriculture 2024, 14, 53. [Google Scholar] [CrossRef]
- Zhong, C.; Bai, Z.G.; Zhu, L.F.; Zhang, J.H.; Zhu, C.Q.; Huang, J.L.; Jin, Q.Y.; Cao, X.C. Nitrogen-mediated alleviation of photosynthetic inhibition under moderate water deficit stress in rice (Oryza sativa L.). Environ. Exp. Bot. 2019, 157, 269–282. [Google Scholar] [CrossRef]
- Zhao, H.; Ge, M.M.; Zhang, F.Z.; Du, D.D.; Zhao, Z.L.; Shen, C.; Hao, Q.P.; Xiao, M.; Shi, X.P.; Wang, J.; et al. Genomic(Integrated morphological, physiological and transcriptomic analyses reveal the responses of Toona sinensis seedlings to low-nitrogen stress. Genomics 2024, 116. [Google Scholar] [CrossRef]
- Khosravi, S.; Haghighi, M.; Mottaghipisheh, J. Effects of melatonin foliar application on hot pepper growth and stress tolerance. Plant Stress 2023, 9, 100192. [Google Scholar] [CrossRef]
- Garcia Costa, M.; Maria Ramos Alves, D.; Cavalcante da Silva, B.; Lima, P.S.R.; Mello Prado, R. Elucidating the underlying mechanisms of silicon to suppress the effects of nitrogen deficiency in pepper plants. Plant Physiol. Biochem. 2024, 216, 109113. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, R.; Li, S.H.; Ran, S.X.; Wang, J.W.; Zhou, Y.Q.; Gao, H.D.; Zhong, F.L. The mechanism of melatonin promotion on cucumber seedling growth at different nitrogen levels. Plant Physiol. Biochem. 2024, 206, 108263. [Google Scholar] [CrossRef]
- Fatima, I.; Fatima, A.; Shah, M.A.; Farooq, M.A.; Ahmad, I.A.; Ejaz, I.; Adjibolosoo, D.; Laila, U.; Rasheed, M.A.; Shahid, A.I.; et al. Individual and synergistic effects of different fertilizers and gibberellin on growth and morphology of chili seedlings. Ecol. Front. 2024, 44, 275–281. [Google Scholar] [CrossRef]
- Wu, X.X.; Gan, Z.C.; Xu, F.; Qian, J.J.; Qian, M.; Ai, H.; Feng, T.T.; Lu, X.M.; Li, R.N.; Huang, X.Z. Molecular characterization of pepper PEBP genes reveals the diverse functions of CaFTs in flowering and plant architecture. Sci. Hortic. 2024, 335, 113345. [Google Scholar] [CrossRef]
- Guo, J.J.; Cheng, Q.; Sun, L.; Zhang, C.Y.; Shen, H.L. The SEPALLATA-like CaSEP5 gene regulates flower sepal, pedicel, and fruit development in pepper (Capsicum annuum L.). Sci. Hortic. 2024, 330, 113100. [Google Scholar] [CrossRef]
- Vajari, M.A.; Moghadam, J.F.; Eshghi, S. Infuence of late season foliar application of urea, boric acid and zinc sulfate on nitrogenous compounds concentration in the bud and fower of Hayward kiwifruit. Sci. Hortic. 2018, 242, 137–145. [Google Scholar] [CrossRef]
- Luo, J.; Yang, Z.Q.; Zhang, F.Y.; Li, C.Y. Effect of nitrogen application on enhancing high-temperature stress tolerance of tomato plants during the flowering and fruiting stage. Front. Plant Sci. 2023, 14, 1172078. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Q.; Liu, X.G.; Xiao, Q.Y.; Wu, L.; Cheng, M.H.; Wang, H.D.; Wang, X.L.; Hu, D.S.; Sun, Z.Q.; Ma, X.D. Optimizing Split-reduced drip fertigation schemes of Arabica coffee based on soil microcosms, bean yield, quality and flavor in dry-hot region of southwest China. Sci. Hortic. 2024, 336, 113418. [Google Scholar] [CrossRef]
- Dai, Z.G.; Zhao, X.Y.; Yan, H.; Qin, L.; Niu, X.L.; Zhao, L.; Cai, Y.H. Optimizing Water and Nitrogen Management for Green Pepper (Capsicum annuum L.) under Drip Irrigation in Sub-Tropical Monsoon Climate Regions. Agronomy 2023, 13, 34. [Google Scholar] [CrossRef]
- Wang, H.D.; Li, J.; Cheng, M.H.; Zhang, F.C.; Wang, X.K.; Fan, J.L.; Wu, L.F.; Fang, D.P.; Zou, H.Y.; Xiang, Y.Z. Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber. Sci. Hortic. 2019, 243, 357–366. [Google Scholar] [CrossRef]
Growth Stages | Nitrogen Concentration Code and Level (mmol L−1) | ||||
---|---|---|---|---|---|
−1.414 | −1 | 0 | 1 | 1.414 | |
Before initiation of flower bud differentiation | 4.39 | 7.5 | 15 | 22.5 | 25.61 |
After initiation of flower bud differentiation | 4.39 | 7.5 | 15 | 22.5 | 25.61 |
Nitrogen Concentration before Initiation of Flower Bud Differentiation (mmol L−1) | Nitrogen Concentration after Initiation of Flower Bud Differentiation (mmol L−1) | ||||
---|---|---|---|---|---|
4.39 | 7.5 | 15 | 22.5 | 25.61 | |
4.39 | 1 | ||||
7.5 | 1 | 1 | |||
15 | 1 | 1 | 1 | ||
22.5 | 1 | 1 | |||
25.61 | 1 |
Treatment | Nitrogen Concentration before Initiation of Flower Bud Differentiation (mmol L−1) | Nitrogen Concentration after Initiation of Flower Bud Differentiation (mmol L−1) |
---|---|---|
T1 | 4.39 | 15 |
T2 | 7.5 | 7.5 |
T3 | 7.5 | 22.5 |
T4 | 15 | 4.39 |
T5 | 15 | 15 |
T6 | 15 | 25.61 |
T7 | 22.5 | 7.5 |
T8 | 22.5 | 22.5 |
T9 | 25.61 | 15 |
Treatment | Shoot Fresh Weight (g per Plant) | Root Fresh Weight (g per Plant) | Shoot Dry Weight (g per Plant) | Root Dry Weight (g per Plant) | Seedling Quality Index |
---|---|---|---|---|---|
T1 | 2.43 ± 0.06 c | 0.79 ± 0.04 cd | 0.26 ± 0.02 d | 0.063 ± 0.002 abc | 0.14 ± 0.01 c |
T2 | 2.50 ± 0.02 c | 0.83 ± 0.07 bcd | 0.29 ± 0.02 d | 0.065 ± 0.004 abc | 0.14 ± 0.03 c |
T3 | 3.19 ± 0.23 b | 0.83 ± 0.03 bcd | 0.35 ± 0.02 bc | 0.063 ± 0.007 bc | 0.15 ± 0.02 c |
T4 | 3.25 ± 0.18 b | 0.86 ± 0.07 abcd | 0.34 ± 0.02 c | 0.069 ± 0.007 abc | 0.19 ± 0.02 b |
T5 | 4.18 ± 0.17 a | 0.94 ± 0.04 ab | 0.39 ± 0.02 a | 0.070 ± 0.006 abc | 0.22 ± 0.01 a |
T6 | 4.57 ± 0.52 a | 0.98 ± 0.07 a | 0.39 ± 0.04 ab | 0.072 ± 0.005 ab | 0.19 ± 0.01 ab |
T7 | 3.32 ± 0.63 b | 0.76 ± 0.19 d | 0.36 ± 0.03 abc | 0.062 ± 0.005 c | 0.17 ± 0.02 bc |
T8 | 4.44 ± 0.06 a | 0.93 ± 0.1 abc | 0.39 ± 0.01 a | 0.072 ± 0.006 a | 0.19 ± 0.02 ab |
T9 | 3.34 ± 0.14 b | 0.78 ± 0.06 cd | 0.30 ± 0.03 d | 0.064 ± 0.006 abc | 0.15 ± 0.02 c |
Treatment | Chlorophyll a Content | Chlorophyll b Content | Carotenoid Content | Total Chlorophyll Content |
---|---|---|---|---|
(mg g−1) | (mg g−1) | (mg g−1) | (mg g−1) | |
T1 | 0.81 ± 0.05 e | 0.24 ± 0.03 e | 0.21 ± 0.02 d | 1.05 ± 0.08 e |
T2 | 1.33 ± 0.01 cd | 0.37 ± 0.01 d | 0.31 ± 0.00 bc | 1.70 ± 0.02 d |
T3 | 1.54 ± 0.04 abc | 0.45 ± 0.01 c | 0.35 ± 0.01 ab | 1.99 ± 0.04 c |
T4 | 1.21 ± 0.24 d | 0.35 ± 0.07 d | 0.28 ± 0.06 c | 1.56 ± 0.29 d |
T5 | 1.50 ± 0.05 bc | 0.54 ± 0.02 b | 0.35 ± 0.01 ab | 2.04 ± 0.07 bc |
T6 | 1.78 ± 0.10 a | 0.56 ± 0.04 b | 0.38 ± 0.02 a | 2.34 ± 0.13 a |
T7 | 1.70 ± 0.07 ab | 0.51 ± 0.01 b | 0.37 ± 0.02 a | 2.21 ± 0.09 abc |
T8 | 1.75 ± 0.34 ab | 0.64 ± 0.03 a | 0.39 ± 0.07 a | 2.39 ± 0.34 a |
T9 | 1.74 ± 0.12 ab | 0.56 ± 0.02 b | 0.38 ± 0.03 a | 2.31 ± 0.12 ab |
Treatment | Flower Bud Diameter /mm | Flower Transverse Diameter /mm | Flower Longitudinal Diameter /mm | Anther Length /mm | Anther Width /mm | Filament Length /mm | Stigma Width /mm | Style Length /mm |
---|---|---|---|---|---|---|---|---|
T1 | 1.45 ± 0.20 c | 6.3 ± 0.2 d | 6.0 ± 0.4 c | 2.63 ± 0.09 a | 1.81 ± 0.16 a | 1.75 ± 0.07 c | 0.64 ± 0.06 bc | 4.51 ± 0.45 c |
T2 | 1.45 ± 0.35 c | 10.0 ± 1.4 d | 9.8 ± 1.2 b | 2.40 ± 0.55 ab | 1.33 ± 0.45 bc | 3.00 ± 0.22 a | 0.54 ± 0.02 c | 5.8 ± 0.28 b |
T3 | 1.84 ± 0.15 abc | 19.6 ± 3.3 a | 12.3 ± 2.4 b | 2.06 ± 0.06 ab | 1.50 ± 0.07 ab | 2.48 ± 0.34 ab | 0.73 ± 0.02 ab | 6.51 ± 0.43 ab |
T4 | 1.79 ± 0.12 bc | 15.2 ± 3.7 bc | 10.5 ± 2.8 b | 1.91 ± 0.38 b | 1.23 ± 0.11 bc | 2.76 ± 0.30 ab | 0.72 ± 0.04 ab | 6.33 ± 0.20 ab |
T5 | 2.09 ± 0.02 ab | 19.1 ± 2.0 a | 17.8 ± 2.2 a | 1.94 ± 0.26 b | 1.14 ± 0.23 bc | 2.59 ± 0.83 ab | 0.71 ± 0.12 ab | 7.17 ± 0.52 a |
T6 | 2.25 ± 0.60 a | 20.7 ± 1.1 a | 18.2 ± 4.0 a | 2.06 ± 0.07 ab | 1.16 ± 0.31 bc | 2.71 ± 0.36 ab | 0.81 ± 0.05 a | 7.09 ± 0.50 a |
T7 | 1.83 ± 0.19 abc | 14.9 ± 3.8 c | 12.3 ± 1.2 b | 1.82 ± 0.39 b | 1.12 ± 0.09 c | 2.42 ± 0.02 abc | 0.81 ± 0.04 a | 7.07 ± 0.48 a |
T8 | 2.19 ± 0.04 ab | 19.7 ± 1.4 a | 17.7 ± 2.1 a | 2.05 ± 0.16 ab | 1.24 ± 0.11 bc | 2.89 ± 0.53 ab | 0.72 ± 0.17 ab | 7.12 ± 0.14 a |
T9 | 1.62 ± 0.12 c | 6.2 ± 0.1 d | 5.9 ± 0.5 c | 2.42 ± 0.65 ab | 1.70 ± 0.04 a | 2.17 ± 0.50 bc | 0.65 ± 0.03 bc | 5.55 ± 1.31 b |
Indicator | Information Entropy Value | Information Utility Value | Weight Coefficient |
---|---|---|---|
Shoot fresh weight | 0.860 | 0.140 | 6.44% |
Root fresh weight | 0.835 | 0.165 | 7.60% |
Shoot dry weight | 0.903 | 0.097 | 4.47% |
Root dry weight | 0.824 | 0.176 | 8.12% |
Seedling quality index | 0.802 | 0.198 | 9.11% |
Root surface area | 0.863 | 0.137 | 6.32% |
Root volume | 0.841 | 0.159 | 7.31% |
Flower bud diameter | 0.840 | 0.160 | 7.37% |
Chlorophyll a content | 0.930 | 0.070 | 3.23% |
Chlorophyll b content | 0.912 | 0.088 | 4.06% |
Carotenoid content | 0.929 | 0.071 | 3.27% |
Total chlorophyll content | 0.927 | 0.073 | 3.37% |
Sucrose synthase activity | 0.900 | 0.100 | 4.62% |
Sucrose phosphate synthase activity | 0.831 | 0.169 | 7.76% |
Nitrate reductase activity | 0.740 | 0.260 | 11.97% |
Glutamine synthetase activity | 0.892 | 0.108 | 4.99% |
Treatment | Di+ | Di− | Ci | Comprehensive Evaluation Sorting |
---|---|---|---|---|
T1 | 0.244 | 0.050 | 0.170 | 9 |
T2 | 0.219 | 0.108 | 0.331 | 7 |
T3 | 0.194 | 0.099 | 0.338 | 6 |
T4 | 0.165 | 0.115 | 0.411 | 5 |
T5 | 0.108 | 0.213 | 0.663 | 2 |
T6 | 0.046 | 0.241 | 0.839 | 1 |
T7 | 0.186 | 0.133 | 0.417 | 4 |
T8 | 0.121 | 0.188 | 0.608 | 3 |
T9 | 0.225 | 0.082 | 0.267 | 8 |
Parameters | Equation | R2 | F-Value | p-Value |
---|---|---|---|---|
Shoot fresh weight | z = −0.3405 + 0.37686x + 0.10856y − 0.01166x2 − 0.00254y2 + 0.00193xy | 0.96 | 37.43 | 0.007 |
Root fresh weight | z = 0.62201 + 0.03349x + 0.0031y − 0.00147x2 − 2.86578E − 4y2 + 7.51111E − 4xy | 0.96 | 42.43 | 0.006 |
Flower bud diameter | z = 0.31752 + 0.15946x + 0.03737y − 0.00471x2 − 4.012E − 4y2 − 1.33333E − 4xy | 0.86 | 11.14 | 0.037 |
Glutamine synthetase activity | z = −2.89352 + 1.49733x + 0.23693y − 0.03472x2 + 0.00792y2 − 0.012xy | 0.92 | 20.41 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Cao, X.; Bing, L.; Song, J.; Qi, Y.; Han, Q.; Yang, Y.; Lin, D. Responses of Growth, Enzyme Activity, and Flower Bud Differentiation of Pepper Seedlings to Nitrogen Concentration at Different Growth Stages. Agronomy 2024, 14, 2270. https://doi.org/10.3390/agronomy14102270
Yan Z, Cao X, Bing L, Song J, Qi Y, Han Q, Yang Y, Lin D. Responses of Growth, Enzyme Activity, and Flower Bud Differentiation of Pepper Seedlings to Nitrogen Concentration at Different Growth Stages. Agronomy. 2024; 14(10):2270. https://doi.org/10.3390/agronomy14102270
Chicago/Turabian StyleYan, Zhengnan, Xiuxiu Cao, Lixue Bing, Jinxiu Song, Ye Qi, Qingyan Han, Yanjie Yang, and Duo Lin. 2024. "Responses of Growth, Enzyme Activity, and Flower Bud Differentiation of Pepper Seedlings to Nitrogen Concentration at Different Growth Stages" Agronomy 14, no. 10: 2270. https://doi.org/10.3390/agronomy14102270
APA StyleYan, Z., Cao, X., Bing, L., Song, J., Qi, Y., Han, Q., Yang, Y., & Lin, D. (2024). Responses of Growth, Enzyme Activity, and Flower Bud Differentiation of Pepper Seedlings to Nitrogen Concentration at Different Growth Stages. Agronomy, 14(10), 2270. https://doi.org/10.3390/agronomy14102270