Optimizing Lettuce Growth in Nutrient Film Technique Hydroponics: Evaluating the Impact of Elevated Oxygen Concentrations in the Root Zone under LED Illumination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Greenhouse Management
2.2. Biological Sample, Treatments, and Cultivation Methods
2.3. Experimental Design and Statistical Analysis
2.4. Data Collection
2.4.1. Oxygen Concentration Calculation and Percentage Change
- Utilized concentration = A;
- Oxygen concentration at inlet = X;
- Oxygen concentration at outlet = Z.
2.4.2. Growth Parameters
2.4.3. Physiological Parameters
2.4.4. Biochemical Parameters
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sousa, R.D.; Bragança, L.; da Silva, M.V.; Oliveira, R.S. Challenges and solutions for sustainable food systems: The potential of home hydroponics. Sustainability 2024, 16, 817. [Google Scholar] [CrossRef]
- Puerta, A.R.; Sato, S.; Shinohara, Y.; Maruo, T. A modified nutrient film technique system offers a more uniform nutrient supply to plants. HortTechnology 2007, 17, 227–233. [Google Scholar] [CrossRef]
- Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Yamamoto, S.; Ibaraki, Y. Effect of the flow rate on plant growth and flow visualization of nutrient solution in hydroponics. Horticulturae 2021, 7, 225. [Google Scholar] [CrossRef]
- Wibisono, V.; Kristyawan, Y. An efficient technique for automation of the NFT (Nutrient Film Technique) hydroponic system using Arduino. Int. J. Artif. Intell. Robot. 2021, 3, 44–49. [Google Scholar] [CrossRef]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Chan, S.; Jerca, O.I.; Arshad, A.; Drăghici, E.M. Study regarding the influence of some fertilizers on the germination and growth of lettuce seedlings. In Proceedings of the IX South-Eastern Europe Symposium on Vegetables and Potatoes 1391, Bucharest, Romania, 5–9 September 2023; pp. 471–478. [Google Scholar]
- Yang, X.; Gil, M.I.; Yang, Q.; Tomás-Barberán, F.A. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4–45. [Google Scholar] [CrossRef]
- Fussy, A.; Papenbrock, J. An overview of soil and soilless cultivation techniques—Chances, challenges and the neglected question of sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef]
- Petruzzello, M. List of Plants in the Family Asteraceae; Encyclopedia Britannica: Edinburgh, UK, 2018. [Google Scholar]
- Schon, M. Tailoring nutrient solutions to meet the demands of your plants. In Proceedings of the 13th Annual Conference on Hydroponics, Hydroponic Society of America, Orlando, FL, USA, 9–12 April 1992; pp. 9–12. [Google Scholar]
- Razzaq Al-Tawaha, A.; Al-Karaki, G.; Rahman Al-Tawaha, A.; Nurani Sirajuddin, S.; Makhadmeh, I.; Edaroyati Megat Wahab, P.; Sultan, A. Effect of water fl flowrate on quantity and quality of lettuce (Lactuca sativa L.) nutrient fi lm technique (NFT) under hydroponics conditions Abstract. Bulg. J. Agric. Sci. 2018, 24, 793–800. [Google Scholar]
- Chérif, M.; Tirilly, Y.; Bélanger, R.R. Effect of oxygen concentration on plant growth, lipidperoxidation, and receptivity of tomato roots to Pythium F under hydroponic conditions. Eur. J. Plant Pathol. 1997, 103, 255–264. [Google Scholar] [CrossRef]
- Galindo-Castañeda, T.; Lynch, J.P.; Six, J.; Hartmann, M. Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Front. Plant Sci. 2022, 13, 827369. [Google Scholar] [CrossRef]
- Koevoets, I.T.; Venema, J.H.; Elzenga, J.T.M.; Testerink, C. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front. Plant Sci. 2016, 7, 1335. [Google Scholar]
- Balliu, A.; Zheng, Y.; Sallaku, G.; Fernández, J.A.; Gruda, N.S.; Tuzel, Y. Environmental and cultivation factors affect the morphology, architecture and performance of root systems in soilless grown plants. Horticulturae 2021, 7, 243. [Google Scholar] [CrossRef]
- Geigenberger, P. Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 2003, 6, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Tansley Review No. 112 Oxygen processing in photosynthesis: Regulation and signalling. New Phytol. 2000, 146, 359–388. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Chang, R. Sensing and signalling in response to oxygen deprivation in plants and other organisms. Ann. Bot. 2005, 96, 507–518. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology; Sinauer Associates: Sunderland, MA, USA, 2010. [Google Scholar]
- Soffer, H.; Burger, D.W. Effects of dissolved oxygen concentrations in aero-hydroponics on the formation and growth of adventitious roots. J. Am. Soc. Hortic. Sci. 1988, 113, 218–221. [Google Scholar] [CrossRef]
- Fagerstedt, K.V.; Pucciariello, C.; Pedersen, O.; Perata, P. Recent progress in understanding the cellular and genetic basis of plant responses to low oxygen holds promise for developing flood-resilient crops. J. Exp. Bot. 2024, 75, 1217–1233. [Google Scholar] [CrossRef]
- Carrasco, G.; Gajardo, J.M.; Álvaro, J.E.; Urrestarazu, M. Rocket production (Eruca sativa mill.) in a floating system using peracetic acid as oxygen source compared with substrate culture. J. Plant Nutr. 2011, 34, 1397–1401. [Google Scholar] [CrossRef]
- Suyantohadi, A.; Kyoren, T.; Hariadi, M.; Purnomo, M.H.; Morimoto, T. Effect of high consentrated dissolved oxygen on the plant growth in a deep hydroponic culture under a low temperature. IFAC Proc. Vol. 2010, 43, 251–255. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Bugbee, B. Growth and Yield of Lettuce in Relation to Light. HortScience 1995, 30, 1153–1156. [Google Scholar]
- Arshad, A.; Jerca, I.O.; Chan, S.; Cîmpeanu, S.M.; Teodorescu, R.I.; Țiu, J.; Bădulescu, L.; Drăghici, E.M. Study Regarding the Influence of Some Climatic Parameters from the Greenhouse on the Tomato Production and Fruits Quality. Sci. Papers. Ser. B. Hortic. 2023, 67, 295–306. [Google Scholar]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar]
- Wei, S.; Yang, X.; Huo, G.; Ge, G.; Liu, H.; Luo, L.; Hu, J.; Huang, D.; Long, P. Distinct metabolome changes during seed germination of lettuce (Lactuca sativa L.) in response to thermal stress as revealed by untargeted metabolomics analysis. Int. J. Mol. Sci. 2020, 21, 1481. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.Z.; Lee, Y.T.; Mele, M.A.; Choi, I.L.; Kang, H.M. The effect of phosphorus and root zone temperature on anthocyanin of red romaine lettuce. Agronomy 2019, 9, 47. [Google Scholar] [CrossRef]
- Liu, Q.; Fang, H.; Li, Z.; Yang, Q.; Wei, L.; Cheng, R. Effects of increased stereo multi-layer artificial light in natural light plant factory onmultrlayer artificial light yield and quality of lettuce. J. China Agric. Univ. 2019, 24, 92–99. [Google Scholar]
- Ghiasi, M.; Wang, Z.; Mehrandezh, M.; Paranjape, R. A Systematic Review of Optimal and Practical Methods in Design, Construction, Control, Energy Management and Operation of Smart Greenhouses. IEEE Access 2023, 12, 2830–2853. [Google Scholar] [CrossRef]
- Moodispaw, M.R. Establishing Science-based Strategies for Prevention and Mitigation of Human Pathogens in Leafy Greens Grown in Nutrient Film Technique (NFT) Hydroponic Systems. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2022. [Google Scholar]
- Jewett, T.; Jarvis, W. Management of the greenhouse microclimate in relation to disease control: A review. Agronomie 2001, 21, 351–366. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red: Blue ratio provided by LED lighting. Sci. Rep. 2019, 9, 14127. [Google Scholar] [CrossRef]
- Draghici, E.M.; Pele, M. Evaluation some new hybrids for cultivation in conventional system in spring climatic conditions of Romania. Int. J. Agric. Sci. 2012, 4, 299. [Google Scholar]
- Bournet, C.P.; Brajeul, E.; Fatnassi, H. International Symposium on Advanced Technologies and Management for Innovative Greenhouses–GreenSys2019. 2019. Available online: https://www.actahort.org/members/showpdf?booknrarnr=1296_0 (accessed on 21 August 2024).
- Stoica, C.M.; Velcea, M.; Chira, L.; Jerca, O.I.; Velea, M.A.; Drăghici, E.M. The Nutrient Solution Oxygenation Influence on the Growth of the Species Lactuca sativa L. Root System Cultivated in the Nutrient Film Technique (NFT) System. 2022. Available online: https://horticulturejournal.usamv.ro/pdf/2022/issue_1/Art79.pdf (accessed on 21 August 2024).
- Clyde-Smith, D.; Campos, L.C. Engineering hydroponic systems for sustainable wastewater treatment and plant growth. Appl. Sci. 2023, 13, 8032. [Google Scholar] [CrossRef]
- Baras, T. Are You Maintaining the Proper Oxygen Levels in Your Hydroponic Production System? Hort Americas. 2024. Available online: https://hortamericas.com/blog/news/are-you-maintaining-the-proper-oxygen-levels-in-your-hydroponic-production-system/?srsltid=AfmBOopJ_7f8Zr2vi-I4hrRnhq74grRXLYpY4Dbg2hCDSTpdLmOEWV4M (accessed on 21 August 2024).
- Sharma, R.; Barnwal, P.; Vaishnav, T.D.; Mishra, S.; Ekka, S.K.; Kushwaha, A. A Concept of Hydroponic System in Horticultural Crops. Asian J. Biol. 2024, 20, 1–6. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, S.; Bhatia, S.; Sapkota, S.; Sofkova-Bobcheva, S. Effect of oxygen-nanobubbles on the growth of lettuce in hydroponics. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Innovative Technologies and Production 1377, Angers, France, 14 August 2022; pp. 703–708. [Google Scholar]
- Morard, P.; Silvestre, J. Plant injury due to oxygen deficiency in the root environment of soilless culture: A review. Plant Soil 1996, 184, 243–254. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Ouyang, Z.; Tian, J.; Yan, X.; Shen, H. Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce. Agric. Water Manag. 2020, 228, 105896. [Google Scholar] [CrossRef]
- Schulze, E.D.; Hall, A.E. Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In Physiological Plant Ecology II: Water Relations and Carbon Assimilation; Springer: Berlin/Heidelberg, Germany, 1982; pp. 181–230. [Google Scholar]
- Ehonen, S.; Yarmolinsky, D.; Kollist, H.; Kangasjärvi, J. Reactive oxygen species, photosynthesis, and environment in the regulation of stomata. Antioxid. Redox Signal. 2019, 30, 1220–1237. [Google Scholar] [CrossRef]
- Amthor, J.S. Respiration and Crop Productivity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Bhatla, S.C.; Lal, M.A. Plant Physiology, Development and Metabolism; Springer Nature: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Zahra, N.; Hafeez, M.B.; Shaukat, K.; Wahid, A.; Hussain, S.; Naseer, R.; Raza, A.; Iqbal, S.; Farooq, M. Hypoxia and Anoxia Stress: Plant responses and tolerance mechanisms. J. Agron. Crop Sci. 2021, 207, 249–284. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Wang, J. Effects of light intensity and temperature on the photosynthesis characteristics and yield of lettuce. Horticulturae 2022, 8, 178. [Google Scholar] [CrossRef]
- Min, Q.; Marcelis, L.F.; Nicole, C.C.; Woltering, E.J. High light intensity applied shortly before harvest improves lettuce nutritional quality and extends the shelf life. Front. Plant Sci. 2021, 12, 615355. [Google Scholar] [CrossRef]
- Givens, S.R.; Del Moro, D.S.; Parker, S.E.; Renny, A.G.; Sams, C.E.; Walters, K.J. Light intensity during green-leaf butterhead lettuce propagation influences yield and carotenoids at harvest. Horticulturae 2023, 9, 223. [Google Scholar] [CrossRef]
- Goto, E.; Both, A.J.; Albright, L.D.; Langhans, R.W.; Leed, A.R. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. In Proceedings of the International Symposium on Plant Production in Closed Ecosystems 440, Narita, Japan, 26–29 August 1996; pp. 205–210. [Google Scholar]
- Miao, C.; Yang, S.; Xu, J.; Wang, H.; Zhang, Y.; Cui, J.; Zhang, H.; Jin, H.; Lu, P.; He, L.; et al. Effects of light intensity on growth and quality of lettuce and spinach cultivars in a plant factory. Plants 2023, 12, 3337. [Google Scholar] [CrossRef]
- Tüzel, Y.; Balliu, A. Advances in liquid-and solid-medium soilless culture systems. In Advances in Horticultural Soilless Culture; Burleigh Dodds Science Publishing: Sawston, UK, 2021; pp. 213–248. [Google Scholar]
- Boru, G.; Vantoai, T.; Alves, J.; Hua, D.; Knee, M. Responses of soybean to oxygen deficiency and elevated root-zone carbon dioxide concentration. Ann. Bot. 2003, 91, 447–453. [Google Scholar] [CrossRef]
- Chun, C.; Takakura, T. Rate of root respiration of lettuce under various dissold oxygen concentrations in hydroponics. Environ. Control Biol. 1994, 32, 125–135. [Google Scholar] [CrossRef]
- Foster, S. . Effect of Aquaponic vs. Hydroponic Nutrient Solution, Led Light Intensity and Photoperiod on Indoor Plant Growth of Butterhead, Romaine and Kale (L. sativa, B. oleracea). Ph.D. Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2018. [Google Scholar]
- Rajapakse, N.C.; He, C.; Cisneros-Zevallos, L.; Davies Jr, F.T. Hypobaria and hypoxia affects growth and phytochemical contents of lettuce. Sci. Hortic. 2009, 122, 171–178. [Google Scholar] [CrossRef]
- Cieraad, E.; Clarkson, B.; Colmer, T.; Pedersen, O.; Visser, E.J.W.; Voesenek, L.A.C.J.; Van Bodegom, P.M. Drivers of plant traits that allow survival in wetlands. Funct. Ecol. 2020, 34, 956–967. [Google Scholar]
- Smith, J.; Johnson, A. Biochemical components distribution in leaves. J. Bot. 2020, 35, 123135. [Google Scholar]
- He, J.; Austin, P.T.; Nichols, M.A.; Lee, S.K. Effect of Root-Zone (RZ) CO2 on Productivity and Photosynthesis in Aeroponically Grown Lettuce Plants. 2004. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20043111302 (accessed on 21 August 2024).
- Holley, J. Enhancing Yield, Nutrition, and Water-Use Efficiency of Lettuce (Lactuca sativa) with Greenhouse Light Spectrum and Carbon Dioxide Enrichment. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2022. [Google Scholar]
- Cao, X.Q.; Sun, T.; Hati, P.; Liu, H.J.; Lu, K.; Wang, C. Effects of different treatment conditions on nitrite content of leafy vegetables. Food Nutr. China 2018, 24, 33–36. [Google Scholar] [CrossRef]
- Chen, X.-L.; Yang, Q.-C. Effects of intermittent light exposure with red and blue light emitting diodes on growth and carbohydrate accumulation of lettuce. Sci. Hortic. 2018, 234, 220–226. [Google Scholar] [CrossRef]
- Khan, K.A.; Yan, Z.; He, D. Impact of light intensity and nitrogen of nutrient solution on nitrate content in three lettuce cultivars prior to harvest. J. Agric. Sci. 2018, 10, 99. [Google Scholar] [CrossRef]
- Jerca, I.O.; Cîmpeanu, S.M.; Teodorescu, R.I.; Țiu, J.; Postamentel, M.; Arshad, A.; Bădulescu, L.; Drăghici, E.M. The effect of improving the climatic conditions in the greenhouse on the cheramy tomato hybrid grown in greenhouse conditions. Sci. Pap. Ser. B Hortic. 2023, 67, 341–348. [Google Scholar]
- Jerca, I.O.; Cîmpeanu, S.M.; Teodorescu, R.I.; Drăghici, E.M.; Nițu, O.A.; Sannan, S.; Arshad, A. A Comprehensive Assessment of the Morphological Development of Inflorescence, Yield Potential, and Growth Attributes of Summer-Grown, Greenhouse Cherry Tomatoes. Agronomy 2024, 14, 556. [Google Scholar] [CrossRef]
- Chan, S.; Jerca, O.I.; Arshad, A.; Dobrin, E.; Drăghici, E.M. Preliminary Study on Two Leafy Vegetables Grown in Different Growing Conditions in NFT System (Amaranthus viridis L.; and Basella rubra L.). Sci. Papers. Ser. B. Hortic. 2023, 67, 544–549. [Google Scholar]
- Goto, E.; Hayashi, K.; Abe, K. Effects of dissolved oxygen concentration in hydroponic culture and light intensity on the growth and quality of lettuce. Horticulturae 2021, 7, 12. [Google Scholar]
Month | Week | Average | Minimum | Maximum | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | Relative Humidity (%) | CO2 (ppm) | Temperature (°C) | Relative Humidity (%) | CO2 (ppm) | Temperature (°C) | Relative Humidity (%) | CO2 (ppm) | ||
December | 1 | 17.50 ± 0.40 | 56.50 ± 0.40 | 600.00 ± 45.00 | 16.00 ± 1.80 | 35.30 ± 6.50 | 450.00 ± 81.00 | 20.40 ± 1.84 | 84.83 ± 3.20 | 768.52 ± 55.65 |
2 | 17.30 ± 0.40 | 58.20 ± 3.30 | 650.00 ± 65.00 | 15.20 ± 1.85 | 36.50 ± 5.40 | 460.00 ± 75.00 | 20.72 ± 1.21 | 95.83 ± 6.21 | 858.29 ± 174.35 | |
3 | 16.20 ± 0.50 | 58.50 ± 2.70 | 650.00 ± 90.00 | 14.50 ± 0.65 | 30.20 ± 3.20 | 410.00 ± 25.00 | 20.46 ± 0.52 | 86.15 ± 3.86 | 825.96 ± 183.55 | |
4 | 16.00 ± 0.50 | 57.00 ± 2.50 | 640.00 ± 80.00 | 16.10 ± 1.92 | 34.50 ± 6.00 | 455.00 ± 135 | 20.53 ± 1.20 | 95.61 ± 5.75 | 817.92 ± 138.52 | |
January | 1 | 16.50 ± 0.47 | 57.90 ± 2.83 | 646.66 ± 78.33 | 15.26 ± 1.47 | 33.73 ± 4.87 | 441.66 ± 78.00 | 20.57 ± 0.98 | 95.86 ± 5.61 | 834.05 ± 165.47 |
2 | 18.42 ± 0.39 | 56.20 ± 0.36 | 605.20 ± 46.69 | 16.14 ± 1.85 | 35.30 ± 6.63 | 455.16 ± 137 | 20.39 ± 1.84 | 81.83 ± 3.20 | 768.52 ± 55.65 | |
3 | 18.20 ± 0.39 | 58.20 ± 3.32 | 653.47 ± 65.63 | 15.37 ± 1.87 | 36.86 ± 5.42 | 463.82 ± 77.58 | 20.72 ± 1.21 | 85.82 ± 4.21 | 858.28 ± 174.35 | |
4 | 17.00 ± 0.54 | 58.50 ± 2.70 | 652.65 ± 88.82 | 14.66 ± 0.64 | 30.21 ± 3.24 | 410.60 ± 23.52 | 20.45 ± 0.52 | 96.14 ± 6.86 | 825.96 ± 183.55 |
Plant Varieties | Oxygen Treatments | Photosynthetic Rate (µmol CO2 m−2 s−1) | Stomatal Conductance of (mol H2O m−2 s−1) | Transpiration Rate (µmol H2O m−2 s−1) | Temperature (°C) | Respiration Rate (µmol CO2 m−2 s−1) |
---|---|---|---|---|---|---|
Lugano | Natural oxygen concentration (NOC) | 6.19 ± 0.22 | 0.11 ± 0.40 | 2.92 ± 1.37 | 32.13 ± 0.69 | 3.81 ± 1.40 |
Elevated oxygen concentration (EOC) | 7.16 ± 0.91 | 0.09 ± 0.75 | 2.70 ± 0.94 | 33.55 ± 1.13 | 3.46 ± 0.19 | |
LED + elevated oxygen concentration (LED + EOC) | 7.11 ± 1.24 | 0.14 ± 0.72 | 3.96 ± 0.77 | 33.63 ± 1.12 | 4.54 ± 1.36 | |
Total (all treatments’ mean) | 6.82 ± 0.84 | 0.11 ± 0.21 | 3.19 ± 1.39 | 33.10 ± 0.75 | 3.94 ± 0.43 | |
Carmesi | Natural oxygen concentration (NOC) | 6.25 ± 0.398 | 0.12 ± 0.35 | 3.10 ± 1.21 | 30.57 ± 1.11 | 3.91 ± 1.24 |
Elevated oxygen concentration (EOC) | 6.93 ± 1.18 | 0.05 ± 0.31 | 5.60 ± 1.01 | 34.00 ± 1.26 | 3.60 ± 0.62 | |
LED + elevated oxygen concentration (LED + EOC) | 6.97 ± 1.24 | 0.10 ± 0.67 | 3.14 ± 1.13 | 32.35 ± 0.84 | 4.21 ± 0.71 | |
Total (all treatments’ mean) | 6.64 ± 0.78 | 0.08 ± 0.69 | 3.68 ± 1.21 | 32.29 ± 0.54 | 3.75 ± 1.16 | |
Variety | 0.182 ns | 0.539 ns | 0.365 ns | 0.100 ns | 0.9432 ns | |
Treatment | 0.044 * | 0.432 ns | 0.031 * | 0.001 ** | 0.2335 ns | |
Variety * Treatment | 0.374 ns | 0.813 ns | 0.048 * | 0.179 ns | 0.8558 ns |
(a) | ||||||||
Plant Varieties | Oxygen Treatments | Plant Height (cm) | Plant Mass (g) | Plant Diameter (cm) | Number of Leaves | Root Mass (g) | Root Volume (cm3) | Root Length (cm) |
Lugano | Natural oxygen concentration (NOC) | 13.50 ± 0.79 | 47.65 ± 3.01 | 22.50 ± 180 | 10 ± 1.00 | 1.82 ± 0.49 | 1.86 ± 0.11 | 19.50 ± 0.56 |
Elevated oxygen concentration (EOC) | 15.66 ± 0.3 | 58.33 ± 1.95 | 23.66 ± 2.51 | 13 ± 1.15 | 3.24 ± 0.43 | 3.43 ± 0.02 | 24.83 ± 1.24 | |
LED + elevated oxygen concentration (LED + EOC) | 15.80 ± 0.5 | 75.57 ± 2.66 | 26.66 ± 2.08 | 13 ± 1.73 | 4.36 ± 0.59 | 3.66 ± 1.15 | 35.93 ± 2.47 | |
Total (all treatments’ mean) | 14.98 ± 1.22 | 54.23 ± 20.48 | 22.27 ± 2.27 | 12 ± 1.39 | 3.14 ± 1.18 | 2.98 ± 1.07 | 26.76 ± 0.57 | |
Carmesi | Natural oxygen concentration (NOC) | 18.30 ± 1.15 | 50.44 ± 0.65 | 26.36 ± 1.41 | 11 ± 1.61 | 3.20 ± 0.87 | 3.46 ± 0.64 | 21.27 ± 1.71 |
Elevated oxygen concentration (EOC) | 19.33 ± 1.10 | 55.72 ± 2.84 | 26.50 ± 1.32 | 12 ± 0.01 | 3.86 ± 0.44 | 4.30 ± 0.86 | 29.17 ± 0.67 | |
LED + elevated oxygen concentration (LED + EOC) | 21.90 ± 1.20 | 67.74 ± 1.40 | 27.16 ± 2.75 | 13 ± 1.73 | 4.54 ± 2.05 | 4.07 ± 1.03 | 31.33 ± 0.17 | |
Total (all treatments’ mean) | 19.84 + 1.89 | 57.38 ± 2.13 | 26.67 ± 1.72 | 12 ± 1.39 | 3.87 ± 1.27 | 3.53 ± 1.16 | 27.26 ± 1.41 | |
Variety | *** | *** | ns | ns | * | * | ** | |
Treatment | *** | * | ** | ** | * | * | ** | |
Variety * Treatment | ns | *** | ns | ns | ns | ns | * | |
(b) | ||||||||
All Oxygen Treatment Groups | Applied Oxygen Treatments | Plant Mass (g) | Plant Height (cm) | Plant Diameter (cm) | Number of Leaves | Root Mass (g) | Root Volume (cm3) | Root Length (cm) |
Natural oxygen concentration (NOC) | × Elevated oxygen concentration (EOC) | * | *** | ns | ** | ns | ns | ns |
× LED + elevated oxygen concentration (LED + EOC) | *** | *** | ** | ** | ** | * | *** | |
Elevated oxygen concentration (EOC) | × Natural oxygen concentration (NOC) | * | *** | ns | ** | ns | ns | ns |
× LED + elevated oxygen concentration (LED + EOC) | ns | ** | ns | ns | ns | ns | ns | |
LED + elevated oxygen concentration (LED + EOC) | × Natural oxygen concentration (NOC) | *** | *** | ** | ** | ** | * | *** |
× Elevated oxygen concentration (EOC) | ns | ** | ns | ns | ns | ns | ns |
(a) | ||||||||
Plant Varieties | Oxygen Treatments | Chl. at Leaf Base (mg kg−1) | Chl. at Leaf Center (mg kg−1) | Chl. at Leaf Upper Part (mg kg−1) | Nitrate at Leaf Base (mg kg−1) | Nitrate at Leaf Center (mg kg−1) | Nitrate at Leaf Upper Part (mg kg−1) | Glucose Contents |
Lugano | Natural oxygen concentration (NOC) | 2.92 ± 0.27 | 2.51 ± 0.25 | 2.18 ± 0.40 | 1133.26 ± 45.32 | 1157.83 ± 42.49 | 654.40 ± 141.40 | 3.64 ± 0.07 |
Elevated oxygen concentration (EOC) | 3.20 ± 0.86 | 2.85 ± 1.19 | 1.71 ± 0.75 | 1838.86 ± 41.92 | 1463.30 ± 47.3 | 286.63 ± 153.19 | 3.31 ± 0.18 | |
LED + elevated oxygen concentration (LED + EOC) | 3.03 ± 0.48 | 2.14 ± 0.18 | 1.82 ± 0.72 | 2011.06 ± 49.87 | 1276.66 ± 41.72 | 531.10 ± 171.36 | 3.22 ± 0.01 | |
Total (all treatments’ mean) | 3.05 ± 0.53 | 2.50 ± 0.68 | 1.90 ± 0.21 | 1661.06 ± 40.39 | 1132.93 ± 142.35 | 490.71 ± 121.53 | 3.39 ± 0.21 | |
Carmesi | Natural oxygen concentration (NOC) | 4.1 ± 0.18 | 6.06 ± 1.14 | 4.86 ± 0.35 | 1916.63 ± 61.61 | 515.53 ± 183.41 | 437.73 ± 138.64 | 3.82 ± 0.17 |
Elevated oxygen concentration (EOC) | 4.50 ± 1.08 | 4.78 ± 0.69 | 4.01 ± 0.31 | 1903 ± 52.01 | 675.50 ± 125.86 | 484.40 ± 157.12 | 2.91 ± 0.67 | |
LED + elevated oxygen concentration (LED + EOC) | 4.31 ± 0.75 | 4.05 ± 1.78 | 3.59 ± 0.67 | 1165.53 ± 56.73 | 686.63 ± 165.34 | 677.73 ± 130.54 | 3.67 ± 0.23 | |
Total (all treatments’ mean) | 4.84 + 1.05 | 4.96 ± 1.42 | 4.15 ± 0.69 | 1661.82 ± 43.71 | 625.88 ± 129.51 | 533.28 ± 121.16 | 3.47 ± 0.59 | |
Variety | ** | *** | *** | ns | ** | ns | ns | |
Treatment | ns | ns | ** | * | ns | ns | * | |
Variety * Treatment | ns | ns | ns | *** | * | * | * | |
(b) | ||||||||
All Oxygen Treatment Groups | Applied Oxygen Treatments | Chl. at Leaf Base (mg kg−1) | Chl. at Leaf Center (mg kg−1) | Chl. at Leaf Upper Part (mg kg−1) | Nitrate at Leaf Base (mg kg−1) | Nitrate at Leaf Center (mg kg−1) | Nitrate at Leaf Upper Part (mg kg−1) | Glucose Contents |
Natural Oxygen Concentration (NOC) | × Elevated oxygen concentration (EOC) | ns | ns | * | Ns | * | ns | * |
× LED + elevated oxygen concentration (LED + EOC) | * | ** | ** | * | * | ns | ** | |
Elevated Oxygen Concentration (EOC) | × Natural oxygen concentration (NOC) | ns | ns | * | Ns | * | ns | ** |
× LED + elevated oxygen concentration (LED + EOC) | ns | * | ns | Ns | ns | ns | * | |
LED + Elevated Oxygen Concentration (LED + EOC) | × Natural oxygen concentration (NOC) | * | ** | ** | * | * | ns | ** |
× Elevated oxygen concentration (EOC) | ns | * | ns | Ns | ns | ns | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nitu, O.A.; Ivan, E.Ş.; Tronac, A.S.; Arshad, A. Optimizing Lettuce Growth in Nutrient Film Technique Hydroponics: Evaluating the Impact of Elevated Oxygen Concentrations in the Root Zone under LED Illumination. Agronomy 2024, 14, 1896. https://doi.org/10.3390/agronomy14091896
Nitu OA, Ivan EŞ, Tronac AS, Arshad A. Optimizing Lettuce Growth in Nutrient Film Technique Hydroponics: Evaluating the Impact of Elevated Oxygen Concentrations in the Root Zone under LED Illumination. Agronomy. 2024; 14(9):1896. https://doi.org/10.3390/agronomy14091896
Chicago/Turabian StyleNitu, Oana Alina, Elena Ştefania Ivan, Augustina Sandina Tronac, and Adnan Arshad. 2024. "Optimizing Lettuce Growth in Nutrient Film Technique Hydroponics: Evaluating the Impact of Elevated Oxygen Concentrations in the Root Zone under LED Illumination" Agronomy 14, no. 9: 1896. https://doi.org/10.3390/agronomy14091896
APA StyleNitu, O. A., Ivan, E. Ş., Tronac, A. S., & Arshad, A. (2024). Optimizing Lettuce Growth in Nutrient Film Technique Hydroponics: Evaluating the Impact of Elevated Oxygen Concentrations in the Root Zone under LED Illumination. Agronomy, 14(9), 1896. https://doi.org/10.3390/agronomy14091896