The Properties of Microorganisms and Plants in Soils after Amelioration
Conflicts of Interest
List of Contributions
- He, L.; Zhao, J.; Wang, M.; Liu, Y.; Wang, Y.; Yang, S.; Wang, S.; Zhao, X.; Lyn, H. Long-term successive seasonal application of rice straw-derived biochar improves the acidity and fertility of red soil in Southern China. Agronomy 2023, 13, 505.
- Liu, H.; Yang, L.; Guo, J.; Yang, J.; Li, N.; Dai, J.; Feng, H.; Liu, N.; Han, X. Contrasting Effects of Nitrogen and Organic Fertilizers on Iron Dynamics in Soil after 38–Year Fertilization Practice. Agronomy 2023, 13, 371.
- Song, S.; Cong, P.; Wang, C.; Li, P.; Liu, S.; He, Z.; Zhou, C.; Liu, Y.; Yang, Z. Properties of biochar obtained from tropical crop wastes under different pyrolysis temperatures and its application on acidic soil. Agronomy 2023, 13, 921.
- Song, S.; Zhang, J.; Liu, Y.; Wang, H. Accumulation of Labile P Forms and Promotion of Microbial Community Diversity in Mollisol with Long-Term Manure Fertilization. Agronomy 2023, 13, 884.
- Sun, C.; Tan, S.; Qiu, Z.; Sun, S.; Jiang, P.; Chen, L. Effects of Different Exogenous Organic Substrates on Soil Carbon and Nitrogen Mineralization and Their Priming Effects. Agronomy 2023, 13, 3017.
- Yuan, R.; Si, T.; Lu, Q.; Liu, C.; Bian, R.; Liu, X.; Zhang, X.; Zheng, J.; Cheng, K.; Joseph, S.; et al. Rape Straw Biochar Application Enhances Cadmium Immobilization by Promoting Formation of Sulfide and Poorly Crystallized Fe Oxide in Paddy Soils. Agronomy 2023, 13, 2693.
References
- Smith, P.; Cotrufo, M.F.; Rumpel, C.; Paustian, K.; Kuikman, P.J.; Elliott, J.A.; McDowell, R.; Griffiths, R.I.; Asakawa, S.; Bustamante, M.; et al. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 2015, 1, 665–685. [Google Scholar] [CrossRef]
- Lal, R.; Mohtar, R.H.; Assi, A.T.; Ray, R.; Baybil, H.; Jahn, M. Soil as a basic nexus tool: Soils at the center of the food–energy–water nexus. Curr. Sustain./Renew. Energy Rep. 2017, 4, 117–129. [Google Scholar] [CrossRef]
- Wang, L.; Lu, P.; Feng, S.; Hamel, C.; Sun, D.; Siddique, K.H.M.; Gan, G.Y. Strategies to improve soil health by optimizing the plant–soil–microbe–anthropogenic activity nexus. Agric. Ecosyst. Environ. 2024, 359, 108750. [Google Scholar] [CrossRef]
- Mohanty, L.K.; Singh, N.K.; Raj, P.; Prakash, A.; Tiwari, A.K.; Singh, V.; Sachan, P. Nurturing crops, enhancing soil health, and sustaining agricultural prosperity worldwide through agronomy. J. Exp. Agric. Int. 2024, 46, 46–67. [Google Scholar] [CrossRef]
- Fontaine, S.; Abbadie, L.; Aubert, M.; Barot, S.; Bloor, J.M.G.; Derrien, D.; Duchene, O.; Gross, N.; Henneron, L.; Le Roux, X.; et al. Plant–soil synchrony in nutrient cycles: Learning from ecosystems to design sustainable agrosystems. Glob. Chang. Biol. 2024, 30, e17034. [Google Scholar] [CrossRef] [PubMed]
- Kopittke, P.M.; Minasny, B.; Pendall, E.; Rumpel, C.; McKenna, B.A. Healthy soil for healthy humans and a healthy planet. Crit. Rev. Environ. Sci. Technol. 2024, 54, 210–221. [Google Scholar] [CrossRef]
- Dijoo, Z.K.; Khurshid, R. Environmental degradation as a multifaceted consequence of human development. In Environmental Biotechnology; Apple Academic Press: Palm Bay, FL, USA, 2022. [Google Scholar]
- Telo da Gama, J. The role of soils in sustainability, climate change, and ecosystem services: Challenges and opportunities. Ecologies 2023, 4, 552–567. [Google Scholar] [CrossRef]
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281.4. [Google Scholar] [CrossRef]
- Vlek, P.L.G.; Khamzina, A.; Tamene, L.D. Land Degradation and the Sustainable Development Goals: Threats and Potential Remedies. Available online: http://ciat-library.ciat.cgiar.org/Articulos_Ciat/biblioteca/LAND_DEGRADATION_AND_THE_SDGs-THREATS_AND_POTENTIAL_REMEDIES.pdf (accessed on 1 October 2017).
- Hossain, A.; Krupnik, T.J.; Timsina, J.; Mahboob, M.G.; Chaki, A.K.; Farooq, M.; Bhatt, R.; Fahad, S.; Hasanuzzaman, M. Agricultural land degradation: Processes and problems undermining future food security. In Environment, Climate, Plant and Vegetation Growth; Springer International Publishing: Cham, Switzerland, 2020; pp. 17–61. [Google Scholar]
- Lal, R. Soils and sustainable agriculture. A review. Agron. Sustain. Dev. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Liu, X.B.; Zhang, X.Y.; Wang, Y.X.; Sui, Y.Y.; Zhang, S.L.; Herbert, S.L.; Ding, G. Soil degradation: A problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ. 2010, 56, 87–97. [Google Scholar] [CrossRef]
- Lehman, R.M.; Cambardella, C.A.; Stott, D.E.; Acosta-Martinez, V.; Manter, D.K.; Buyer, J.S.; Maul, J.E.; Smith, J.L.; Collins, H.P.; Halvorson, J.J.; et al. Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability 2015, 7, 988–1027. [Google Scholar] [CrossRef]
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Shahane, A.A.; Shivay, Y.S. Soil health and its improvement through novel agronomic and innovative approaches. Front. Agron. 2021, 3, 680456. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Bera, T.; Bhaduri, D.; Sarkar, B.; Mandal, S.; Wade, P.; Kumari, S.; Biswas, S.; Menon, M.; Pathak, H.; et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere 2019, 227, 345–365. [Google Scholar] [CrossRef]
- Ram, L.C.; Masto, R.E. Fly ash for soil amelioration: A review on the influence of ash blending with inorganic and organic amendments. Earth-Sci. Rev. 2014, 128, 52–74. [Google Scholar] [CrossRef]
- Akanmu, A.O.; Babalola, O.O.; Venturi, V.; Ayilara, M.S.; Adeleke, B.S.; Amoo, A.E.; Sobowale, A.A.; Fadiji, A.E.; Glick, B.R. Plant disease management: Leveraging on the plant-microbe-soil interface in the biorational use of organic amendments. Front. Plant Sci. 2021, 12, 700507. [Google Scholar] [CrossRef] [PubMed]
- Oikarinen, M. Biological soil amelioration as the basis of sustainable agriculture and forestry. Biol. Fertil. Soils 1996, 22, 342–344. [Google Scholar] [CrossRef]
- Deng, X.; Teng, F.; Chen, M.; Du, Z.; Wang, B.; Li, R.; Wang, P. Exploring negative emission potential of biochar to achieve carbon neutrality goal in China. Nat. Commun. 2024, 15, 1085. [Google Scholar] [CrossRef]
- Smith, P.; Calvin, K.; Nkem, J.; Campbell, D.; Cherubini, F.; Grassi, G.; Korotkov, V.; Le Hoang, A.; Lwasa, S.; McElwee, P.; et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Chang. Biol. 2020, 26, 1532–1575. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X. The Properties of Microorganisms and Plants in Soils after Amelioration. Agronomy 2024, 14, 2351. https://doi.org/10.3390/agronomy14102351
Zheng X. The Properties of Microorganisms and Plants in Soils after Amelioration. Agronomy. 2024; 14(10):2351. https://doi.org/10.3390/agronomy14102351
Chicago/Turabian StyleZheng, Xuebo. 2024. "The Properties of Microorganisms and Plants in Soils after Amelioration" Agronomy 14, no. 10: 2351. https://doi.org/10.3390/agronomy14102351
APA StyleZheng, X. (2024). The Properties of Microorganisms and Plants in Soils after Amelioration. Agronomy, 14(10), 2351. https://doi.org/10.3390/agronomy14102351