Effects of Recommended Fertilizer Application Strategies Based on Yield Goal and Nutrient Requirements on Drip-Irrigated Spring Wheat Yield and Nutrient Uptake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sample Collection and Measurement Indicators
2.3.1. Soil Sample Collection
2.3.2. Plant Sample Collection and Yield Measurement
2.3.3. Sample Measurement
2.4. Data Analysis
2.4.1. Nitrogen, Phosphorus, and Potassium Translocation and Accumulation
2.4.2. Increasing Effect of N, P, and K Fertilizer on Wheat Yield
2.4.3. Nutrient Use Efficiency
2.4.4. Benefits Calculation
2.4.5. Data Processing and Mapping
3. Results
3.1. Changes in Dry Matter and Nutrient Uptake
3.2. Grain Nutrient Uptake, Yield, and Yield Components
3.3. Changes in Soil Nutrients in Different Soil Layers During the Growth Period
3.4. Nutrient Transport and Accumulation Before and After Flowering
3.5. Nutrient Utilization and Economic Benefits
3.6. Increasing Effects of N, P, and K Fertilizers on Wheat Yield in the Recommended Fertilizer Application Strategy
4. Discussion
4.1. Effects of Recommended Fertilizer Application on NPK Nutrient Uptake, Transport, and Distribution in Wheat
4.2. The Impact of Recommended Fertilizer Application on Dry Matter, Yield, and Economic Benefits
4.3. The Impact of Recommended Fertilizer Application Strategies on Soil Properties and Their Relationship with Nutrient Transport and Grain Yield
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. FAO Database: Agriculture Production and Agri-Environmental Indicators; Food and Agriculture Organization of the United Nations: Rome, Italy, 2023; Available online: http://www.fao.org/faostat/en/#data (accessed on 22 October 2024).
- FAOSTAT. Online Statistical Database: Agriculture Production. 2020. Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 10 November 2020).
- He, G.; Wang, Z.; Cao, H.; Dai, J.; Li, Q.; Xue, C. Year-round plastic film mulch to increase wheat yield and economic returns while reducing environmental risk in dryland of the Loess Plateau. Field Crops Res. 2018, 225, 1–8. [Google Scholar] [CrossRef]
- Dai, J.; Wang, Z.; Li, F.; He, G.; Wang, S.; Li, Q.; Cao, H.; Luo, L.; Zan, Y.; Meng, X.; et al. Optimizing nitrogen input by balancing winter wheat yield and residual nitrate-N in soil in a long-term dryland field experiment in the Loess Plateau of China. Field Crops Res. 2015, 181, 32–41. [Google Scholar] [CrossRef]
- Gao, Z.; Cao, H.; Huang, M.; Bao, M.; Qiu, W.; Liu, J. Winter wheat yield and soil critical phosphorus value response to yearly rainfall and P fertilization on the Loess Plateau of China. Field Crops Res. 2023, 296, 108921. [Google Scholar] [CrossRef]
- Wang, X.; Mi, X.; Sun, L.; He, G.; Wang, Z. Straw return cannot prevent soil potassium depletion in wheat fields of drylands. Eur. J. Agron. 2023, 143, 126728. [Google Scholar] [CrossRef]
- Liu, L.J.; You, Y.L.; Amini, M.; Obersteiner, M.; Herrero, M.; Zehnder, A.; Yang, Y.H. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA 2010, 107, 8035–8040. [Google Scholar] [CrossRef]
- MacDonald, G.K.; Bennett, E.M.; Potter, P.A.; Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl. Acad. Sci. USA 2011, 108, 3086–3091. [Google Scholar] [CrossRef]
- Chen, S.; Lin, B.; Li, Y.; Zhou, S. Spatial and temporal changes of soil properties and soil fertility evaluation in a large grain-production area of subtropical plain, China. Geoderma 2020, 357, 113937. [Google Scholar] [CrossRef]
- Jia, S.; Zhou, D.; Xu, D. The temporal and spatial variability of soil properties in an agricultural system as affected by farming practices in the past 25 years. J. Food Agric. Environ. 2011, 9, 669–676. [Google Scholar]
- van der Bom, F.; Nunes, I.; Raymond, N.S.; Hansen, V.; Bonnichsen, L.; Magid, J.; Nybroe, O.; Jensen, L.S. Long-term fertilisation form, level and duration affect the diversity, structure and functioning of soil microbial communities in the field. Soil Biol. Biochem. 2018, 122, 91–103. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, J.; Yu, X. Mountain valleys, alluvial fans and oases: Geomorphologic perspectives of the mixed agropastoral economy in Xinjiang (3000–200 BC). Front. Earth Sci. 2023, 11, 1109905. [Google Scholar] [CrossRef]
- Zhang, F.; Hanjra, M.A.; Fan, H.; Shu, Y.; Li, Y. Analysis of climate variability in the Manas River Valley, North-Western China (1956–2006). Mitig. Adapt. Strateg. Glob. Change 2014, 19, 1091–1107. [Google Scholar] [CrossRef]
- Yang, X.; Chen, C.; Luo, Q.; Li, L.; Yu, Q. Climate change effects on wheat yield and water use in oasis cropland. Int. J. Plant Prod. 2011, 5, 83–84. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, F.; Chen, Y.; Xu, T.; Cheng, Z.; Liang, J. Assessment of Reclamation Treatments of Abandoned Farmland in an Arid Region of China. Sustainability 2016, 8, 1183. [Google Scholar] [CrossRef]
- Chuan, L.; He, P.; Pampolino, M.F.; Johnston, A.M.; Jin, J.; Xu, X.; Zhao, S.; Qiu, S.; Zhou, W. Establishing a scientific basis for fertilizer recommendations for wheat in China: Yield response and agronomic efficiency. Field Crops Res. 2013, 140, 1–8. [Google Scholar] [CrossRef]
- He, P.; Jin, J.-y.; Pampolino, M.F.; Johnston, A.M. Approach and decision support system based on crop yield response and agronomic efficiency. J. Plant Nutr. Fertil. 2012, 18, 499–505. [Google Scholar] [CrossRef]
- Ju, X.; Christie, P. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: A case study on the North China Plain. Field Crops Res. 2011, 124, 450–458. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Z.; He, G.; Dai, J.; Huang, M.; Wang, S.; Luo, L.; Sadras, V.O.; Hoogmoed, M.; Malhi, S.S. Tailoring NPK fertilizer application to precipitation for dryland winter wheat in the Loess Plateau. Field Crops Res. 2017, 209, 88–95. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Z.; Luo, L.; Wang, S.; Hui, X.; He, G.; Cao, H.; Ma, X.; Huang, T.; Zhao, Y.; et al. Soil testing at harvest to enhance productivity and reduce nitrate residues in dryland wheat production. Field Crops Res. 2017, 212, 153–164. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Li, Z.; Wang, X.; Guo, Z.; Tian, Y.; Liu, J.; Siddique, K.H.M.; Wang, Z.; Zhang, D. Integrating crop and soil nutrient management for higher wheat grain yield and protein concentration in dryland areas. Eur. J. Agron. 2023, 147, 126827. [Google Scholar] [CrossRef]
- Yang, W.; Yu, J.; Li, Y.; Jia, B.; Jiang, L.; Yuan, A.; Ma, Y.; Huang, M.; Cao, H.; Liu, J.; et al. Optimized NPK fertilizer recommendations based on topsoil available nutrient criteria for wheat in drylands of China. J. Integr. Agric. 2024, 23, 2421–2433. [Google Scholar] [CrossRef]
- Lv, L.; Wang, H.; Jia, X.; Wang, Z.J.F.o.A.i.C. Analysis on water requirement and water-saving amount of wheat and corn in typical regions of the North China Plain. Front. Agric. China 2011, 5, 556–562. [Google Scholar] [CrossRef]
- Zhao, J.; Han, T.; Wang, C.; Jia, H.; Worqlul, A.W.; Norelli, N.; Zeng, Z.; Chu, Q. Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain. Agric. Water Manag. 2020, 240, 106298. [Google Scholar] [CrossRef]
- Kumar, M.; Rajput, T.B.S.; Kumar, R.; Patel, N. Water and nitrate dynamics in baby corn (Zea mays L.) under different fertigation frequencies and operating pressures in semi-arid region of India. Agric. Water Manag. 2016, 163, 263–274. [Google Scholar] [CrossRef]
- Tal, A. Rethinking the sustainability of Israel’s irrigation practices in the Drylands. Water Res. 2016, 90, 387–394. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Zheng, J.; Guo, J.; Xiang, Y. Combined application of soluble organic and chemical fertilizers in drip fertigation improves nitrogen use efficiency and enhances tomato yield and quality. J. Sci. Food Agric. 2020, 100, 5422–5433. [Google Scholar] [CrossRef]
- Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Qiang, S.; Zheng, J.; Xiang, Y.; Guo, J.; Zou, H. Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat. Agric. Water Manag. 2019, 213, 983–995. [Google Scholar] [CrossRef]
- Lenka, S.; Singh, A.K.; Lenka, N.K. Soil water and nitrogen interaction effect on residual soil nitrate and crop nitrogen recovery under maize-wheat cropping system in the semi-arid region of northern India. Agric. Ecosyst. Environ. 2013, 179, 108–115. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, F.; Fan, X.; Fan, J.; Wang, Y.; Zou, H.; Wang, H.; Li, G. Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China. Agric. Water Manag. 2021, 243, 106440. [Google Scholar] [CrossRef]
- Zou, H.; Fan, J.; Zhang, F.; Xiang, Y.; Wu, L.; Yan, S. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 2020, 230, 105986. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Tian, Z.; Li, Y.; Liang, Z.; Guo, H.; Cai, J.; Jiang, D.; Cao, W.; Dai, T. Genetic improvement of nitrogen uptake and utilization of winter wheat in the Yangtze River Basin of China. Field Crops Res. 2016, 196, 251–260. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Y.; Guo, Z.; Zhang, Y.; Yu, Z. Water use and soil nitrate nitrogen changes under supplemental irrigation with nitrogen application rate in wheat field. Field Crops Res. 2015, 183, 117–125. [Google Scholar] [CrossRef]
- He, H.; Peng, M.; Lu, W.; Hou, Z.; Li, J. Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Sci. Total Environ. 2022, 851, 158132. [Google Scholar] [CrossRef]
- Yang, Y.; Lei, T.; Du, W.; Liang, C.; Li, H.; Lv, J. Substituting chemical fertilizer nitrogen with organic manure and comparing their nitrogen use efficiency and winter wheat yield. J. Agric. Sci. 2020, 158, 262–268. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, Z.; Wang, D. Nitrogen translocation in wheat plants under soil water deficit. Plant Soil 2006, 280, 291–303. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Grain filling of cereals under soil drying. New Phytol. 2006, 169, 223–236. [Google Scholar] [CrossRef]
- Campiglia, E.; Mancinelli, R.; De Stefanis, E.; Pucciarmati, S.; Radicetti, E. The long-term effects of conventional and organic cropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of Central Italy. Field Crops Res. 2015, 176, 34–44. [Google Scholar] [CrossRef]
- Hoegy, P.; Poll, C.; Marhan, S.; Kandeler, E.; Fangmeier, A. Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chem. 2013, 136, 1470–1477. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Liang, X.; Liu, Y.; Xu, S.; Zhao, Q.; Du, Y.; Zhang, L.; Chen, X.; Zou, C. Physiological and developmental traits associated with the grain yield of winter wheat as affected by phosphorus fertilizer management. Sci. Rep. 2019, 9, 16580. [Google Scholar] [CrossRef]
- Yoneyama, K.; Xie, X.; Kim, H.I.; Kisugi, T.; Nomura, T.; Sekimoto, H.; Yokota, T.; Yoneyama, K.J.P. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation. Planta 2012, 235, 1197–1207. [Google Scholar] [CrossRef]
- Masoni, A.; Ercoli, L.; Mariotti, M.; Arduini, I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eur. J. Agron. 2007, 26, 179–186. [Google Scholar] [CrossRef]
- Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Guo, J.; Zheng, J.; Wu, L. Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes. Agric. Water Manag. 2022, 261, 107380. [Google Scholar] [CrossRef]
- Lakudzala, D.D. Potassium response in some Malawi soils. Int. Lett. Chem. Phys. Astron. 2013, 8, 175–181. [Google Scholar] [CrossRef]
- Kausar, A.; Gull, M.J.J.o.A.S. Effect of potassium sulphate on the growth and uptake of nutrients in wheat (Triticum aestivum L.) under salt stressed conditions. J. Agric. Sci. 2014, 6, 101. [Google Scholar] [CrossRef]
- Cormier, F.; Faure, S.; Dubreuil, P.; Heumez, E.; Beauchêne, K.; Lafarge, S.; Praud, S.; Le Gouis, J. A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor. Appl. Genet. 2013, 126, 3035–3048. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Li, S.; Guo, X.; Li, Q.; Hui, X.; Wang, Z.; Wang, H. An Evaluation of Potato Fertilization and the Potential of Farmers to Reduce the Amount of Fertilizer Used Based on Yield and Nutrient Requirements. Agronomy 2024, 14, 612. [Google Scholar] [CrossRef]
- Li, H.; Huang, G.; Meng, Q.; Ma, L.; Yuan, L.; Wang, F.; Zhang, W.; Cui, Z.; Shen, J.; Chen, X.; et al. Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant Soil 2011, 349, 157–167. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Yang, F.; Ma, J.; Pampolino, M.F.; Johnston, A.M.; Zhou, W. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice in China. Field Crops Res. 2017, 206, 33–42. [Google Scholar] [CrossRef]
- Six, J. Plant nutrition for sustainable development and global health. Plant Soil 2011, 339, 1–2. [Google Scholar] [CrossRef]
- Tausz, M.; Norton, R.; Tausz-Posch, S.; Löw, M.; Seneweera, S.; O’Leary, G.; Armstrong, R.; Fitzgerald, G.J.J.o.A.; Science, C. Can additional N fertiliser ameliorate the elevated CO2-induced depression in grain and tissue N concentrations of wheat on a high soil N background? J. Agron. Crop Sci. 2017, 203, 574–583. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, N.; Wu, L.; Xu, M.; Bingham, I.J.; Li, Z. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China. Sci. Total Environ. 2016, 562, 247–259. [Google Scholar] [CrossRef]
- He, P.; Yang, L.; Xu, X.; Zhao, S.; Chen, F.; Li, S.; Tu, S.; Jin, J.; Johnston, A.M. Temporal and spatial variation of soil available potassium in China (1990–2012). Field Crops Res. 2015, 173, 49–56. [Google Scholar] [CrossRef]
- Jia, S.; Wang, X.; Yang, Y.; Dai, K.; Meng, C.; Zhao, Q.; Zhang, X.; Zhang, D.; Feng, Z.; Sun, Y.; et al. Fate of labeled urea-15N as basal and topdressing applications in an irrigated wheat-maize rotation system in North China Plain: I winter wheat. Nutr. Cycl. Agroecosyst. 2011, 90, 331–346. [Google Scholar] [CrossRef]
- Shi, Z.; Jing, Q.; Cai, J.; Jiang, D.; Cao, W.; Dai, T. The fates of 15N fertilizer in relation to root distributions of winter wheat under different N splits. Eur. J. Agron. 2012, 40, 86–93. [Google Scholar] [CrossRef]
- Lam, S.K.; Chen, D.; Norton, R.; Armstrong, R. Nitrogen demand and the recovery of 15N-labelled fertilizer in wheat grown under elevated carbon dioxide in southern Australia. Nutr. Cycl. Agroecosyst. 2012, 92, 133–144. [Google Scholar] [CrossRef]
- Wang, D.; Xu, Z.; Zhao, J.; Wang, Y.; Yu, Z. Excessive nitrogen application decreases grain yield and increases nitrogen loss in a wheat-soil system. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2011, 61, 681–692. [Google Scholar] [CrossRef]
- de Oliveira Silva, A.; Ciampitti, I.A.; Slafer, G.A.; Lollato, R.P.J.E.J.o.A. Nitrogen utilization efficiency in wheat: A global perspective. Eur. J. Agron. 2020, 114, 126008. [Google Scholar] [CrossRef]
- OrtizMonasterio, J.I.; Sayre, K.D.; Rajaram, S.; McMahon, M. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci. 1997, 37, 898–904. [Google Scholar] [CrossRef]
Year | Treatment | Base Fertilizer | Top Dressing | Total Doses | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | ||
2022 | CK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
FP | 60 | 26.6 | 0 | 240 | 106.4 | 0 | 300 | 133 | 0 | |
RF | 41.8 | 20 | 6 | 167.2 | 80 | 24 | 209 | 100 | 30 | |
RF-N | 0 | 20 | 6 | 0 | 80 | 24 | 0 | 100 | 30 | |
RF-P | 41.8 | 0 | 6 | 167.2 | 0 | 24 | 209 | 0 | 30 | |
RF-K | 41.8 | 20 | 0 | 167.2 | 80 | 0 | 209 | 100 | 0 | |
2023 | CK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
FP | 60 | 26.6 | 0 | 240 | 106.4 | 0 | 300 | 133 | 0 | |
RF | 46.2 | 26.2 | 6 | 184.8 | 104.8 | 24 | 231 | 131 | 30 | |
RF-N | 0 | 26.2 | 6 | 0 | 104.8 | 24 | 0 | 131 | 30 | |
RF-P | 46.2 | 0 | 6 | 184.8 | 0 | 24 | 231 | 0 | 30 | |
RF-K | 46.2 | 26.2 | 0 | 184.8 | 104.8 | 0 | 231 | 131 | 0 |
Stages | Seedling | Jointing | Booting | Flowering | Filling |
---|---|---|---|---|---|
2022 | 26 April | 7 May | 22 May | 7 June | 19 June |
2023 | 24 April | 6 May | 22 May | 6 June | 18 June |
Topdressing proportion (%) | 10 | 30 | 20 | 10 | 10 |
Irrigation amount (%) | 20 | 20 | 20 | 15 | 15 |
Year | Fertilizer Treatment | Spike Number | 1000-Grain Weight | Grain Number | Grain N Uptake | Grain P Uptake | Grain K Uptake | Grain Yield |
---|---|---|---|---|---|---|---|---|
Plant m−2 | g | spike−1 | kg ha−1 | kg ha−1 | kg ha−1 | kg ha−1 | ||
2022 | CK | 439.67 ± 6.43 c | 31.85 ± 0.56 d | 31.37 ± 0.38 c | 70.00 ± 1.52 d | 20.51 ± 2.07 b | 21.56 ± 1.13 c | 4392.37 ± 112.36 d |
FP | 483.00 ± 4.58 a | 35.67 ± 0.35 a | 35.23 ± 0.71 ab | 133.32 ± 4.15 a | 33.22 ± 1.76 a | 35.69 ± 1.34 a | 6069.93 ± 165.07 a | |
RF | 458.00 ± 8.19 b | 34.07 ± 0.12 b | 35.67 ± 0.55 a | 124.34 ± 2.82 b | 31.46 ± 4.16 a | 36.12 ± 2.73 a | 5563.86 ± 11.57 b | |
RF-N | 440.33 ± 4.16 c | 32.37 ± 0.55 cd | 34.70 ± 0.61 b | 111.66 ± 3.06 c | 30.40 ± 2.52 a | 33.34 ± 1.34 ab | 4945.61 ± 135.92 c | |
RF-P | 445.67 ± 3.06 bc | 33.13 ± 0.32 c | 34.83 ± 0.76 ab | 116.18 ± 4.39 bc | 29.63 ± 1.95 a | 32.49 ± 1.44 ab | 5144.29 ± 162.41 c | |
RF-K | 452.67 ± 9.07 bc | 33.97 ± 0.65 b | 35.73 ± 0.64 a | 124.22 ± 7.35 b | 29.72 ± 4.35 a | 31.30 ± 2.25 b | 5492.48 ± 67.59 b | |
2023 | CK | 416.67 ± 2.89 e | 30.23 ± 0.68 c | 30.23 ± 0.68 c | 89.80 ± 3.21 e | 22.22 ± 0.65 c | 26.34 ± 1.01 e | 4042.43 ± 78.36 e |
FP | 458.00 ± 11.27 a | 33.20 ± 0.20 a | 33.20 ± 0.20 a | 150.48 ± 2.20 a | 36.78 ± 0.97 a | 44.51 ± 0.72 a | 5625.96 ± 18.52 a | |
RF | 451.33 ± 12.34 ab | 32.50 ± 0.44 a | 32.50 ± 0.44 a | 144.14 ± 2.70 b | 36.12 ± 0.94 a | 43.07 ± 0.33 b | 5382.85 ±147.13 ab | |
RF-N | 424.33 ± 5.86 de | 30.83 ± 0.15 bc | 30.83 ± 0.15 bc | 120.32 ± 6.69 d | 30.48 ± 1.86 b | 38.10 ± 0.78 d | 4434.63 ± 46.13 d | |
RF-P | 433.67 ± 4.04 cd | 31.57 ± 0.60 b | 31.57 ± 0.60 b | 122.49 ± 0.79 d | 31.77 ± 2.62 b | 40.32 ± 0.78 c | 4854.12 ± 29.83 c | |
RF-K | 440.33 ± 2.08 bc | 33.03 ± 0.42 a | 33.03 ± 0.42 a | 134.75 ± 3.34 c | 32.78 ± 2.46 b | 41.92 ± 1.05 b | 5315.50 ± 225.19 b | |
Two-way ANOVA | ||||||||
Year (Y) | ** | ** | ** | ** | ** | ** | ** | |
Fertilizer Treatment (F) | ** | ** | ** | ** | ** | ** | ** | |
Y × F | ns | ns | ** | ** | ns | ** | ns |
Year | Fertilizer Treatment | N | P | K | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PrNt | PrNtE | PrNtC | PoNa | PoNaC | PrPt | PrPtE | PrPtC | PoPa | PoPaC | PrKt | PrKtE | ||
kg ha−1 | % | % | kg ha−1 | % | kg ha−1 | % | % | kg ha−1 | % | kg ha−1 | % | ||
2022 | CK | 22.94 ± 2.53 e | 55.74 ± 4.10 a | 32.81 ± 4.14 a | 14.99 ± 2.97 c | 21.40 ± 4.03 c | 14.31 ± 2.20 c | 42.11 ± 4.77 c | 69.97 ± 10.42 a | 6.20 ± 2.30 a | 30.03 ± 10.42 a | 44.95 ± 6.38 c | 32.61 ± 3.37 b |
FP | 37.68 ± 1.35 a | 49.36 ± 1.34 bc | 28.58 ± 2.02 ab | 39.86 ± 6.09 b | 27.20 ± 0.38 c | 25.52 ± 0.75 a | 47.96 ± 3.80 b | 72.82 ± 12.02 a | 8.96 ± 4.07 a | 27.18 ± 12.02 a | 120.45 ± 1.16 a | 45.32 ± 0.80 a | |
RF | 34.23 ± 1.49 ab | 49.34 ± 1.53 bc | 27.55 ± 1.73 b | 43.88 ± 9.67 ab | 35.19 ± 6.93 b | 25.34 ± 1.20 a | 54.99 ± 1.34 a | 80.59 ± 3.69 a | 6.12 ± 1.28 a | 19.41 ± 3.69 a | 107.23 ± 18.76 ab | 41.90 ± 4.56 a | |
RF-N | 29.60 ± 2.55 cd | 49.72 ± 3.24 bc | 26.56 ± 3.02 b | 39.79 ± 4.90 b | 35.57 ± 3.49 b | 22.28 ± 0.50 b | 56.32 ± 1.14 a | 73.75 ± 8.11 a | 8.12 ± 3.02 a | 26.25 ± 8.11 a | 93.18 ± 10.95 b | 42.18 ± 3.79 a | |
RF-P | 31.79 ± 4.29 bc | 52.21 ± 4.70 ab | 27.41 ± 4.05 b | 39.23 ± 4.84 b | 33.70 ± 2.97 b | 22.41 ± 0.45 b | 55.84 ± 2.90 a | 75.79 ± 3.65 a | 7.22 ± 1.59 a | 24.21 ± 3.65 a | 84.79 ± 21.14 b | 37.55 ± 5.85 ab | |
RF-K | 26.75 ± 1.56 de | 45.08 ± 2.51 c | 21.55 ± 1.02 c | 52.59 ± 4.41 a | 42.30 ± 1.29 a | 20.91 ± 1.85 b | 51.10 ± 4.44 ab | 70.85 ± 5.97 a | 8.81 ± 3.02 a | 29.15 ± 5.97 a | 94.19 ± 3.66 ab | 39.19 ± 0.58 ab | |
2023 | CK | 17.72 ± 2.14 d | 45.31 ± 3.95 b | 19.76 ± 2.61 b | 34.42 ± 3.23 d | 38.28 ± 2.51 ab | 20.18 ± 1.53 bc | 61.38 ± 3.99 a | 90.77 ± 4.30 a | 2.03 ± 0.90 c | 9.23 ± 4.30 c | 58.61 ± 5.35 e | 44.03 ± 2.96 c |
FP | 35.18 ± 0.18 a | 48.47 ± 2.67 ab | 23.54 ± 0.01 ab | 60.58 ± 3.35 a | 40.31 ± 2.60 a | 24.48 ± 0.46 a | 51.41 ± 0.52 bc | 66.05 ± 2.63 bc | 12.81 ± 1.26 ab | 33.95 ± 2.63 ab | 98.64 ± 0.52 bc | 44.17± 0.68 c | |
RF | 30.36 ± 3.44 bc | 46.11 ± 4.70 ab | 21.04 ± 2.00 b | 59.14 ± 3.20 ab | 41.03 ± 2.16 a | 25.15 ± 0.62 a | 55.16 ± 0.76 b | 69.68 ± 3.56 b | 10.97 ± 1.56 ab | 30.32 ± 3.56 b | 114.24 ± 5.31 a | 49.69 ± 1.07 ab | |
RF-N | 32.22 ± 1.48 ab | 52.98 ± 4.19 a | 26.84 ± 2.09 a | 39.00 ± 1.90 cd | 32.44 ± 1.35 b | 21.72 ± 1.07 b | 54.13 ± 2.18 b | 71.45 ± 5.69 b | 8.76 ± 2.15 b | 28.55 ± 5.69 b | 106.64 ± 4.07 ab | 50.86 ± 1.58 a | |
RF-P | 26.21 ± 4.55 c | 44.18 ± 6.12 b | 21.41 ± 3.84 b | 43.58 ± 5.20 c | 35.56 ± 4.06 ab | 20.86 ± 0.42 b | 52.03 ± 0.74 b | 65.96 ± 5.48 bc | 10.91 ± 2.54 ab | 34.04 ± 5.48 ab | 91.57 ± 4.04 c | 46.56 ± 0.97 bc | |
RF-K | 27.15 ± 1.61 c | 42.91 ± 2.95 b | 20.18 ± 1.68 b | 53.23 ± 4.39 b | 39.56 ± 4.01 a | 18.51 ± 0.82 c | 47.33 ± 2.59 c | 56.79 ± 6.43 c | 14.27 ± 3.20 a | 43.21 ± 6.43 a | 81.99 ± 7.37 d | 42.56 ± 3.54 c | |
Two-way ANOVA | |||||||||||||
Year (Y) | ** | ** | ** | ** | ** | ns | * | ns | ** | ns | ns | ** | |
Fertilizer Treatment (F) | ** | * | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
Y × F | ns | * | ** | ** | ** | ** | ** | ** | * | ** | * | * |
Year | Fertilizer Treatment | NUE | PUE | KUE | Benefits |
---|---|---|---|---|---|
% | USD ha−1 | ||||
2022 | CK | - | - | - | 1493.40 ± 38.20 d |
FP | 21.11 ± 1.82 a | 9.56 ± 2.02 a | - | 1852.62 ± 56.12 a | |
RF | 26.00 ± 2.00 a | 10.95 ± 6.18 a | 48.53 ± 12.71 a | 1716.54 ± 3.93 b | |
RF-N | - | 9.89 ± 4.50 a | 39.25 ± 6.99 a | 1565.02 ± 46.21 c | |
RF-P | 22.10 ± 2.08 a | - | 36.43 ± 1.29 a | 1669.31 ± 55.22 b | |
RF-K | 25.95 ± 3.07 a | 9.21 ± 3.64 a | - | 1713.33 ± 22.98 b | |
2023 | CK | - | - | - | 1374.42 ± 26.64 c |
FP | 20.23 ± 1.25 b | 10.95 ± 0.49 a | - | 1701.67 ± 49.52 a | |
RF | 23.53 ± 1.64 a | 10.61 ± 0.22 a | 55.74 ± 4.48 a | 1613.09 ± 79.08 ab | |
RF-N | - | 6.31 ± 1.82 b | 39.18 ± 0.91 c | 1361.71 ± 15.68 c | |
RF-P | 14.15 ± 1.19 c | - | 46.60 ± 3.28 b | 1564.48 ± 10.14 b | |
RF-K | 19.46 ± 1.08 b | 8.06 ± 1.76 ab | - | 1617.40 ± 76.56 ab | |
Two-way ANOVA | |||||
Year (Y) | ** | ns | ns | ** | |
Fertilizer Treatment (F) | ** | ns | ** | ** | |
Y × F | * | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Chang, X.; Li, J. Effects of Recommended Fertilizer Application Strategies Based on Yield Goal and Nutrient Requirements on Drip-Irrigated Spring Wheat Yield and Nutrient Uptake. Agronomy 2024, 14, 2491. https://doi.org/10.3390/agronomy14112491
Cheng L, Chang X, Li J. Effects of Recommended Fertilizer Application Strategies Based on Yield Goal and Nutrient Requirements on Drip-Irrigated Spring Wheat Yield and Nutrient Uptake. Agronomy. 2024; 14(11):2491. https://doi.org/10.3390/agronomy14112491
Chicago/Turabian StyleCheng, Liyang, Xiangjie Chang, and Junhua Li. 2024. "Effects of Recommended Fertilizer Application Strategies Based on Yield Goal and Nutrient Requirements on Drip-Irrigated Spring Wheat Yield and Nutrient Uptake" Agronomy 14, no. 11: 2491. https://doi.org/10.3390/agronomy14112491
APA StyleCheng, L., Chang, X., & Li, J. (2024). Effects of Recommended Fertilizer Application Strategies Based on Yield Goal and Nutrient Requirements on Drip-Irrigated Spring Wheat Yield and Nutrient Uptake. Agronomy, 14(11), 2491. https://doi.org/10.3390/agronomy14112491