Transcriptomic Analysis Reveals the Molecular Defense Mechanisms of Poa pratensis Against Powdery Mildew Fungus Blumeria graminis f. sp. Poae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Pathogen Materials
2.2. Cytological Observation of the Interaction Between Kentucky Bluegrass and Bgp
2.3. RNA Extraction
2.4. cDNA Library Construction
2.5. RNA-Seq
2.6. Alignment of RNA-Seq Reads and Differential Gene Expression Analysis
2.7. Reliability Analysis by qRT-PCR
2.8. Statistical Analysis
3. Results
3.1. Phenotypic Differences in Leaves Affected by Bgp
3.2. Estimation of P. pratensis–Bgp Interactions
3.3. Statistics of Transcriptome Sequencing and Assembly
3.4. Functional Annotation and Classification of Unigenes
3.5. Statistics and Analysis of DEGs
3.6. GO Functional Enrichment Analysis of Differentially Expressed Genes
3.7. KEGG Functional Enrichment Analysis of Differentially Expressed Genes
3.8. Verification of DEGs by qRT-PCR
4. Discussion
4.1. Germ Tubes
4.2. Genes Related to Resistance to Bgp in ‘Taihang’
4.2.1. Chitinases
4.2.2. Gamma-Glutamyl Transpeptidase
4.2.3. SAR Deficient 1
4.2.4. DnaJ Protein ERDJ3B
4.2.5. UDP-Arabinopyranose
4.2.6. Oxalate Oxidase
4.2.7. Mitogen-Activated Protein Kinase Kinase 1-like
4.2.8. Tryptophan Decarboxylase
4.2.9. Aromatic L-Amino Acid Decarboxylase
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaheen, H.; Khan, S.M.; Harper, D.M.; Ullah, Z.; Qureshi, R.A. Species diversity, community structure, and distribution patterns in Western Himalayan Alpine Pastures of Kashmir, Pakistan. Mt. Res. Dev. 2011, 31, 153–159. [Google Scholar] [CrossRef]
- Guillard, K.; Inguagiato, J.C. Normalized difference vegetative index response of nonirrigated Kentucky bluegrass and tall fescue lawn turf receiving seaweed extracts. HortScience 2017, 52, 1615–1620. [Google Scholar] [CrossRef]
- Wang, D.; Ni, Y.; Liao, L.; Xiao, Y.; Guo, Y. Poa pratensis ECERIFERUM1 (PpCER1) is involved in wax alkane biosynthesis and plant drought tolerance. Plant Physiol. Biochem. 2021, 159, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Jian, C.; Saud, S.; Shah, F.; Yajun, C. A review on kentucky bluegrass responses and tolerance to drought stress. In Abiotic Stress in Plants; Shah, F., Shah, S., Yajun, C., Chao, W., Depeng, W., Eds.; IntechOpen: Rijeka, Croatia, 2020; Chapter 1. [Google Scholar]
- Liu, W.; Xie, F.; Chen, Y.; Cui, G. Growth and morphological responses of Kentucky bluegrass to homogeneous and heterogeneous soil water availabilities. Agronomy 2022, 12, 1265. [Google Scholar] [CrossRef]
- Meng, C.; Peng, X.; Zhang, Y.; Pedro, G.-C.; Li, Y.; Zhang, Y.; Duan, Y.; Sun, X. Transcriptomic profiling of Poa pratensis L. under treatment of various phytohormones. Sci. Data 2024, 11, 297. [Google Scholar] [CrossRef]
- Zhang, J.; Ha, X.; Ma, H. Seed yield as a function of cytokinin-regulated gene expression in wild Kentucky bluegrass (Poa pratensis). BMC Plant Biol. 2024, 24, 691. [Google Scholar] [CrossRef]
- Soliman, W.S.; Sugiyama, S.-i.; Abbas, A.M. Contribution of avoidance and tolerance strategies towards salinity stress resistance in eight C3 turfgrass species. Hortic. Environ. Biotechnol. 2018, 59, 29–36. [Google Scholar] [CrossRef]
- Inuma, T.; Khodaparast, S.A.; Takamatsu, S. Multilocus phylogenetic analyses within Blumeria graminis, a powdery mildew fungus of cereals. Mol. Phylogen. Evol. 2007, 44, 741–751. [Google Scholar] [CrossRef]
- Sun, X.; Ding, W.; Jiang, Y.; Zhu, Y.; Zhu, C.; Li, X.; Cui, J.; Jinmin, F. Morphology, photosynthetic and molecular mechanisms associated with powdery mildew resistance in Kentucky bluegrass. Physiol. Plant. 2024, 176, e14186. [Google Scholar] [CrossRef]
- Sotiropoulos, A.G.; Arango-Isaza, E.; Ban, T.; Barbieri, C.; Bourras, S.; Cowger, C.; Czembor, P.C.; Ben-David, R.; Dinoor, A.; Ellwood, S.R.; et al. Global genomic analyses of wheat powdery mildew reveal association of pathogen spread with historical human migration and trade. Nat. Commun. 2022, 13, 4315. [Google Scholar] [CrossRef]
- Johnson, R.C.; Johnston, W.J.; Golob, C.T. Residue management, seed production, crop development, and turf quality in diverse Kentucky bluegrass germplasm. Crop Sci. 2003, 43, 1091–1099. [Google Scholar] [CrossRef]
- Liu, M.; Braun, U. Powdery mildews on crops and ornamentals in Canada: A summary of the phylogeny and taxonomy from 2000–2019. Can. J. Plant Pathol. 2022, 44, 191–218. [Google Scholar] [CrossRef]
- Czembor, E.; Feuerstein, U.; Zurek, G. Powdery mildew resistance in Kentucky bluegrass ecotypes from Poland. Plant Breed. Seed Sci. 2001, 45, 21–32. [Google Scholar]
- Zhu, M.; Ji, J.; Shi, W.; Li, Y.-F. Occurrence of powdery mildew caused by Blumeria graminis f. sp. poae on Poa pratensis in China. Plant Dis. 2020, 105, 1212. [Google Scholar] [CrossRef]
- Menardo, F.; Wicker, T.; Keller, B. Reconstructing the evolutionary history of powdery mildew lineages (Blumeria graminis) at different evolutionary time scales with NGS Data. Genome Biol. Evol. 2017, 9, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Menardo, F.; Praz, C.R.; Wyder, S.; Ben-David, R.; Bourras, S.; Matsumae, H.; McNally, K.E.; Parlange, F.; Riba, A.; Roffler, S.; et al. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat. Genet. 2016, 48, 201–205. [Google Scholar] [CrossRef]
- Vielba-Fernández, A.; Polonio, Á.; Ruiz-Jiménez, L.; de Vicente, A.; Pérez-García, A.; Fernández-Ortuño, D. Fungicide resistance in powdery mildew fungi. Microorganisms 2020, 9, e1431. [Google Scholar] [CrossRef]
- Yin, K.; Qiu, J. Genome editing for plant disease resistance: Applications and perspectives. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180322. [Google Scholar] [CrossRef]
- Németh, M.Z.; Seress, D.; Nonomura, T. Fungi parasitizing powdery mildew fungi: Ampelomyces strains as biocontrol agents against powdery mildews. Agronomy 2023, 13, 1991. [Google Scholar] [CrossRef]
- Yuan, M.; Ngou, B.P.M.; Ding, P.; Xin, X.-F. PTI-ETI crosstalk: An integrative view of plant immunity. Curr. Opin. Plant Biol. 2021, 62, 102030. [Google Scholar] [CrossRef]
- Chang, M.; Chen, H.; Liu, F.; Fu, Z.Q. PTI and ETI: Convergent pathways with diverse elicitors. Trends Plant Sci. 2022, 27, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Tena, G. PTI and ETI are one. Nat. Plants 2021, 7, 1527. [Google Scholar] [CrossRef]
- Sun, X.; Xie, F.; Chen, Y.; Guo, Z.; Dong, L.; Qin, L.; Shi, Z.; Xiong, L.; Yuan, R.; Deng, W.; et al. Glutamine synthetase gene PpGS1.1 negatively regulates the powdery mildew resistance in Kentucky bluegrass. Hortic. Res. 2022, 9, uhac196. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.; Ma, H. The positive effects of exogenous 5_aminolevulinic acid on the chlorophyll biosynthesis, photosystem and calvin cycle of Kentucky bluegrass seedlings in response to osmotic stress. Environ. Exp. Bot. 2018, 155, 260–271. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, Z.; Jin, Y.; Sun, H.; Xie, F.; Zhang, L. Biosynthesis and signal transduction of ABA, JA, and BRs in response to drought stress of Kentucky bluegrass. Int. J. Mol. Sci. 2019, 20, 1289. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; Xu, L.; Han, L. Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS ONE 2021, 16, e0261472. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Xiang, L.; Yang, M.; Liu, Y.; Pan, L.; Guo, Z.; Lu, S. Transcriptome Analysis of Native Kentucky Bluegrass (Poa pratensis L.) in Response to Osmotic Stress. Plants 2023, 12, 3971. [Google Scholar] [CrossRef]
- Bushman, B.S.; Amundsen, K.L.; Warnke, S.E. Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress. BMC Genom. 2016, 17, 48. [Google Scholar] [CrossRef]
- Bushman, B.S.; Robbins, M.D.; Robins, J.G.; Thorsted, K.; Harris, P.; Johnson, P.G. Response to salt stress imposed on cultivars of three turfgrass species: Poa pratensis, Lolium perenne, and Puccinellia distans. Crop Sci. 2020, 60, 1648–1659. [Google Scholar] [CrossRef]
- Dong, W.; Ma, X.; Jiang, H.; Zhao, C.; Ma, H. Physiological and transcriptome analysis of Poa pratensis var. anceps cv. Qinghai in response to cold stress. BMC Plant Biol. 2020, 20, 362. [Google Scholar] [CrossRef]
- Li, Q.; He, Y.; Tu, M.; Yan, J.; Yu, L.; Qi, W.; Yuan, X. Transcriptome sequencing of two Kentucky bluegrass (Poa pratensis L.) genotypes in response to heat stress. Not. Bot. Horti Agrobot. 2019, 47, 328–338. [Google Scholar] [CrossRef]
- Xian, J.; Wang, Y.; Niu, K.; Ma, H.; Ma, X. Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. Chemosphere 2020, 250, 126158. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, T.; Niu, K.; Ma, H. Integrated proteomics, transcriptomics, and metabolomics offer novel insights into Cd resistance and accumulation in Poa pratensis. J. Hazard. Mater. 2024, 474, 134727. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, T.; Niu, K.; Ma, H. Root cell wall polysaccharides and endodermal barriers restrict long-distance Cd translocation in the roots of Kentucky bluegrass. Ecotoxicol. Environ. Saf. 2024, 281, 116633. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.J.; Hou, Y.; Huang, Y.-B.; Li, C.-Z.; Li, L.; Hu, S.-Q. Improvements of modified wheat protein disulfide isomerases with chaperone activity only on the processing quality of flour. Food Bioprocess. Technol. 2016, 10, 568–581. [Google Scholar] [CrossRef]
- Gan, L.; Di, R.; Chao, Y.; Han, L.; Chen, X.; Wu, C.; Yin, S. De novo transcriptome analysis for Kentucky bluegrass dwarf mutants induced by space mutation. PLoS ONE 2016, 11, e0151768. [Google Scholar] [CrossRef]
- Jinqing Zhang, H.M. Identification and expression analysis of the MADS-box genes of Kentucky bluegrass during inflorescence development. Physiol. Mol. Biol. Plants 2022, 28, 1359–1374. [Google Scholar] [CrossRef]
- Ni, Y.; Guo, N.; Zhao, Q.; Guo, Y. Identification of candidate genes involved in wax deposition in Poa pratensis by RNA-seq. BMC Genom. 2016, 17, 314. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, W.; Zhao, C.; Ma, H. Comparative transcriptome analysis of resistant and susceptible Kentucky bluegrass varieties in response to powdery mildew infection. BMC Plant Biol. 2022, 22, 509. [Google Scholar] [CrossRef]
- Kwaaitaal, M.; Nielsen, M.E.; Böhlenius, H.; Thordal-Christensen, H. The plant membrane surrounding powdery mildew haustoria shares properties with the endoplasmic reticulum membrane. J. Exp. Bot. 2017, 68, 5731–5743. [Google Scholar] [CrossRef]
- Mapuranga, J.; Zhang, L.; Zhang, N.; Yang, W. The haustorium: The root of biotrophic fungal pathogens. Front. Plant Sci. 2022, 13, 963705. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Xu, Z.; Wu, F.; Zhu, H.; Jiang, L.; Zhao, Y.; Zhao, X.; Xu, Q. Identification and pathogenicity of Blumeria graminis f. sp. poae the BGP(TG) strain isolated from Poa pratensis infected with powdery mildew in Shanxi Province. Microbiol. China 2023, 50, 4389–4400. [Google Scholar]
- Hu, Y.; Liang, Y.; Zhang, M.; Tan, F.; Zhong, S.; Li, X.; Gong, G.; Chang, X.; Shang, J.; Tang, S.; et al. Comparative transcriptome profiling of Blumeria graminis f. sp. tritici during compatible and incompatible interactions with sister wheat lines carrying and lacking Pm40. PLoS ONE 2018, 13, e0198891. [Google Scholar] [CrossRef]
- Liang, Y.; Xia, Y.; Chang, X.; Gong, G.; Yang, J.; Hu, Y.; Cahill, M.; Luo, L.; Li, T.; He, L.; et al. Comparative proteomic analysis of wheat carrying Pm40 response to Blumeria graminis f. sp. tritici Using two-dimensional electrophoresis. Int. J. Mol. Sci. 2019, 20, 933. [Google Scholar] [CrossRef]
- Chang, X.L.; Luo, L.Y.; Liang, Y.P.; Hu, Y.T.; Luo, P.G.; Gong, G.S.; Chen, H.B.; Khaskheli, M.I.; Liu, T.G.; Chen, W.Q.; et al. Papilla formation, defense gene expression and HR contribute to the powdery mildew resistance of the novel wheat line L699 carrying Pm40 gene. Physiol. Mol. Plant Pathol. 2019, 106, 208–216. [Google Scholar] [CrossRef]
- Vennapusa, A.R.; Somayanda, I.M.; Doherty, C.J.; Jagadish, S.V.K. A universal method for high-quality RNA extraction from plant tissues rich in starch, proteins and fiber. Sci. Rep. 2020, 10, 16887. [Google Scholar] [CrossRef]
- Duan, W.; Peng, L.; Jiang, J.; Zhang, H.; Tong, G. Combined transcriptome and metabolome analysis of strawberry fruits in response to powdery mildew infection. Agron. J. 2022, 114, 1027–1039. [Google Scholar] [CrossRef]
- Bhat, A.; Sharma, R.; Desigan, K.; Lucas, M.M.; Mishra, A.; Bowers, R.M.; Woyke, T.; Epstein, B.; Tiffin, P.; Pueyo, J.J.; et al. Horizontal gene transfer of the Mer operon is associated with large effects on the transcriptome and increased tolerance to mercury in nitrogen-fixing bacteria. BMC Microbiol. 2024, 24, 247. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Davidson, N.M.; Oshlack, A. Corset: Enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014, 15, 410. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.; Shi, Y.; Ma, H. Selection of candidate reference genes for gene expression analysis in Kentucky bluegrass (Poa pratensis L.) under abiotic stress. Front. Plant Sci. 2017, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Johnston-Monje, D.; Mejia, J.L. Botanical microbiomes on the cheap: Inexpensive molecular fingerprinting methods to study plant-associated communities of bacteria and fungi. Appl. Plant Sci. 2020, 8, e11334. [Google Scholar] [CrossRef]
- Vaghela, B.; Vashi, R.; Rajput, K.; Joshi, R. Plant chitinases and their role in plant defense: A comprehensive review. Enzym. Microb. Technol. 2022, 159, 110055. [Google Scholar] [CrossRef]
- Kumar, M.; Brar, A.; Yadav, M.; Chawade, A.; Vivekanand, V.; Pareek, N. Chitinases—Potential candidates for enhanced plant resistance towards fungal pathogens. Agriculture 2018, 8, 88. [Google Scholar] [CrossRef]
- Kasai, T.; Ohmiya, A.; Sakamura, S. γ-Glutamyltranspeptidases in the metabolism of γ-glutamyl peptides in plants. Phytochemistry 1982, 21, 1233–1239. [Google Scholar] [CrossRef]
- Pietilainen, P.; Lahdesmaki, P. Free amino acid and protein levels, and gamma-glutamyltransferase activity in Pinus sylvestris apical buds and shoots during the growing season. Scand. J. For. Res. 1986, 1, 387–395. [Google Scholar] [CrossRef]
- Taulavuori, E.; Taulavuori, K.; Sarjala, T.; Laine, K. Polyamines and glutathione metabolism in N fertilized scots pine seedlings during cold hardening. J. Plant Physiol. 1999, 154, 179–184. [Google Scholar] [CrossRef]
- Jayakumar, A.; Nair, I.C.; Krishnankutty, R.E. Environmental adaptations of an extremely plant beneficial Bacillus subtilis Dcl1 identified through the genomic and metabolomic analysis. Microb. Ecol. 2020, 81, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Kachroo, A.; Kachroo, P. Mobile signals in systemic acquired resistance. Curr. Opin. Plant Biol. 2020, 58, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-Z.; Zuo, C.-R.; Leng, Y.-J.; Yue, J.-L.; Liu, H.-C.; Fan, Z.-B.; Xue, X.-Y.; Dong, J.; Chen, L.-Q.; Le, J. The functional specificity of ERECTA-family receptors in Arabidopsis stomatal development is ensured by molecular chaperones in the endoplasmic reticulum. Development 2022, 149, dev200892. [Google Scholar] [CrossRef]
- Leng, Y.J.; Yao, Y.S.; Yang, K.Z.; Wu, P.X.; Xia, Y.X.; Zuo, C.R.; Luo, J.H.; Wang, P.; Liu, Y.Y.; Zhang, X.Q.; et al. Arabidopsis ERdj3B coordinates with ERECTA-family receptor kinases to regulate ovule development and the heat stress response. Plant Cell 2022, 34, 3665–3684. [Google Scholar] [CrossRef] [PubMed]
- Panigrahi, G.K.; Satapathy, K.B. Pseudomonas syringae pv. syringae infection orchestrates the fate of the Arabidopsis J domain containing cochaperone and decapping protein factor 5. Physiol. Mol. Plant Pathol. 2021, 113, 101598. [Google Scholar] [CrossRef]
- Yamamoto, M.; Uji, S.; Sugiyama, T.; Sakamoto, T.; Kimura, S.; Endo, T.; Nishikawa, S.I. ERdj3B-mediated quality control maintains anther development at high temperatures. Plant Physiol. 2020, 182, 1979–1990. [Google Scholar] [CrossRef]
- De Benedictis, M.; Gallo, A.; Migoni, D.; Papadia, P.; Roversi, P.; Santino, A. Cadmium treatment induces endoplasmic reticulum stress and unfolded protein response in Arabidopsis thaliana. Plant Physiol. Biochem. 2023, 196, 281–290. [Google Scholar] [CrossRef]
- Xu, P.; Fan, X.; Mao, Y.; Cheng, H.; Xu, A.; Lai, W.; Lv, T.; Hu, Y.; Nie, Y.; Zheng, X.; et al. Temporal metabolite responsiveness of microbiota in the tea plant phyllosphere promotes continuous suppression of fungal pathogens. J. Adv. Res. 2022, 39, 49–60. [Google Scholar] [CrossRef]
- Konishi, T.; Aohara, T.; Igasaki, T.; Hayashi, N.; Miyazaki, Y.; Takahashi, A.; Hirochika, H.; Iwai, H.; Satoh, S.; Ishii, T. Down-regulation of UDP-arabinopyranose mutase reduces the proportion of arabinofuranose present in rice cell walls. Phytochemistry 2011, 72, 1962–1968. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Z.; Wang, P.; Han, Y.; Jin, D.; Su, P.; Tan, X.; Zhang, D.; Muhammad-Rizwan, H.; Lu, X.; et al. Variations in phyllosphere microbial community along with the development of angular leaf-spot of cucumber. AMB Express 2019, 9, 76. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Z.; Andersen, C.H.; Schmelzer, E.; Gregersen, P.L.; Collinge, D.B.; Smedegaard-Petersen, V.; Thordal-Christensen, H. An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol. Biol. 1998, 36, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Zhao, M.; Yuan, J.; Kowalchuk, G.A.; Shen, Q. Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes. Soil. Ecol. Lett. 2021, 3, 42–51. [Google Scholar] [CrossRef]
- Lindow, S.E.; Brandl, M.T. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 2003, 69, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, J.; Wang, Y.; He, H.; Niu, L.; Guo, D.; Xing, G.; Zhao, Q.; Zhong, X.; Sui, L.; et al. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase. Transgenic Res. 2019, 28, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Bidney, D.L.; Yalpani, N.; Duvick, J.P.; Crasta, O.; Folkerts, O.; Lu, G. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol. 2003, 133, 170–181. [Google Scholar] [CrossRef]
- Dong, X.; Ji, R.; Guo, X.; Foster, S.J.; Chen, H.; Dong, C.; Liu, Y.; Hu, Q.; Liu, S. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 2008, 228, 331–340. [Google Scholar] [CrossRef]
- Verma, R.; Kaur, J. Expression of barley oxalate oxidase confers resistance against Sclerotinia sclerotiorum in transgenic Brassica juncea cv Varuna. Transgenic Res. 2021, 30, 143–154. [Google Scholar] [CrossRef]
- Asano, T.; Nguyen, T.H.; Yasuda, M.; Sidiq, Y.; Nishimura, K.; Nakashita, H.; Nishiuchi, T. Arabidopsis MAPKKK δ-1 is required for full immunity against bacterial and fungal infection. J. Exp. Bot. 2020, 71, 2085–2097. [Google Scholar] [CrossRef]
- Solis-Ortiz, C.S.; Gonzalez-Bernal, J.; Kido-Díaz, H.A.; Peña-Uribe, C.A.; López-Bucio, J.S.; Guevara-García, A.; García-Pineda, E.; Villegas, J.; Campos-García, J.; de La Cruz, H.R.; et al. Bacterial cyclodipeptides elicit Arabidopsis thaliana immune responses reducing the pathogenic effects of Pseudomonas aeruginosa PAO1 strains on plant development. J. Plant Physiol. 2022, 275, 153738. [Google Scholar] [CrossRef]
- Lebeis, S.L.; Paredes, S.H.; Lundberg, D.S.; Breakfield, N.; Gehring, J.; McDonald, M.; Malfatti, S.; Rio, T.G.d.; Jones, C.D.; Tringe, S.G.; et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 2015, 349, 860–864. [Google Scholar] [CrossRef]
- Parada, R.Y.; Mon-nai, W.; Ueno, M.; Kihara, J.; Arase, S. Red-light-induced resistance to brown spot disease caused by Bipolaris oryzae in Rice. J. Phytopathol. 2015, 163, 116–123. [Google Scholar] [CrossRef]
- Facchini, P.J.; Huber-Allanach, K.L.; Tari, L.W. Plant aromatic L-amino acid decarboxylases: Evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 2000, 54, 121–138. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Primers’ Sequence (5′ → 3′) |
---|---|
Actin | TGTTGGATTCTGGTGATGGTGTC/AGGATGGCGTGCGGAAGG |
Cluster-62878.283639 | TACTGCGACACCCGATACC/GCCGCTCCGTAGTTGTAGTT |
Cluster-62878.257472 | CGAACACCTTGGCTACGATG/CAACCTTGCCACCTATGTCG |
Cluster-62878.105450 | CAGATGATGAAGACGCCGC/TTCTACGACCATGGCAGCAA |
Cluster-62878.209345 | GATTTTCGATAGGCTTGCGG/GCCCAGGACTTCTACGACA |
Cluster-62878.304093 | CTGGACGAGGGCTACCTGA/CCGAGACGAGGAAGTGGAA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Guo, Z.; Wu, F.; Zhang, Y.; Zhao, Y.; Han, L.; Gao, P.; Zhu, H.; Xu, Q.; Zhao, X.; et al. Transcriptomic Analysis Reveals the Molecular Defense Mechanisms of Poa pratensis Against Powdery Mildew Fungus Blumeria graminis f. sp. Poae. Agronomy 2024, 14, 2543. https://doi.org/10.3390/agronomy14112543
Xu Z, Guo Z, Wu F, Zhang Y, Zhao Y, Han L, Gao P, Zhu H, Xu Q, Zhao X, et al. Transcriptomic Analysis Reveals the Molecular Defense Mechanisms of Poa pratensis Against Powdery Mildew Fungus Blumeria graminis f. sp. Poae. Agronomy. 2024; 14(11):2543. https://doi.org/10.3390/agronomy14112543
Chicago/Turabian StyleXu, Zhiyu, Zhanchao Guo, Fan Wu, Yining Zhang, Yumin Zhao, Lingjuan Han, Peng Gao, Huisen Zhu, Qingfang Xu, Xiang Zhao, and et al. 2024. "Transcriptomic Analysis Reveals the Molecular Defense Mechanisms of Poa pratensis Against Powdery Mildew Fungus Blumeria graminis f. sp. Poae" Agronomy 14, no. 11: 2543. https://doi.org/10.3390/agronomy14112543
APA StyleXu, Z., Guo, Z., Wu, F., Zhang, Y., Zhao, Y., Han, L., Gao, P., Zhu, H., Xu, Q., Zhao, X., & Liang, Y. (2024). Transcriptomic Analysis Reveals the Molecular Defense Mechanisms of Poa pratensis Against Powdery Mildew Fungus Blumeria graminis f. sp. Poae. Agronomy, 14(11), 2543. https://doi.org/10.3390/agronomy14112543