Study on the Method of Vineyard Information Extraction Based on Spectral and Texture Features of GF-6 Satellite Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.2.1. GF-6 Satellite Data
2.2.2. Ground Survey Data
2.3. Research Methodology
2.3.1. Remote Sensing Feature Extraction Method
- 1.
- Spectral Feature Extraction
- 2.
- Texture Feature Extraction
2.3.2. Remote Sensing Feature Importance Evaluation Method
2.3.3. Vineyard Information Extraction Model Construction Approach
2.3.4. Accuracy Verification Method
3. Results
3.1. Importance Analysis of Remote Sensing Features for Vineyard Extraction
3.2. Vineyard Extraction Model Performance Evaluation
3.3. The Influence of Spectral and Texture Features on Vineyard Extraction Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canton, H. Food and agriculture organization of the United Nations—FAO. In The Europa Directory of International Organizations 2021; Routledge: London, UK, 2021; pp. 297–305. [Google Scholar]
- Gao, W.; Qiu, Q.; Yuan, C.; Shen, X.; Cao, F.; Wang, G.; Wang, G. Forestry big data: A review and bibliometric analysis. Forests 2022, 13, 1549. [Google Scholar] [CrossRef]
- López-Pérez, E.; Sanchis-Ibor, C.; Jiménez-Bello, M.Á.; Pulido-Velazquez, M. Mapping of irrigated vineyard areas through the use of machine learning techniques and remote sensing. Agric. Water Manag. 2024, 302, 108988. [Google Scholar] [CrossRef]
- Meng, X.; Rao, Y.; Tao, T.; Dong, S.; Jia, A.L.; Ma, H. A review of plant breeders’ rights application and granting for fruit trees in China from 2000 to 2019. Sci. Hortic. 2021, 276, 109749. [Google Scholar] [CrossRef]
- Xia, C.; Liu, Z.; Suo, X.; Cao, S. Quantifying the net benefit of land use of fruit trees in China. Land Use Policy 2020, 90, 104276. [Google Scholar] [CrossRef]
- Zhou, X.-X.; Li, Y.-Y.; Luo, Y.-K.; Sun, Y.-W.; Su, Y.-J.; Tan, C.-W.; Liu, Y.-J. Research on remote sensing classification of fruit trees based on Sentinel-2 multi-temporal imageries. Sci. Rep. 2022, 12, 11549. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wu, W.; Yang, P.; Zhou, Q.; Chen, Z. Recent progresses in monitoring crop spatial patterns by using remote sensing technologies. Sci. Agric. Sin. 2010, 43, 2879–2888. [Google Scholar]
- Chen, Z.; Ren, J.; Tang, H.; Shi, Y.; Liu, J. Progress and perspectives on agricultural remote sensing research and applications in China. J. Remote Sens. 2016, 20, 748–767. [Google Scholar]
- Matese, A.; Di Gennaro, S.; Miranda, C.; Berton, A.; Santesteban, L. Evaluation of spectral-based and canopy-based vegetation indices from UAV and Sentinel 2 images to assess spatial variability and ground vine parameters. Adv. Anim. Biosci. 2017, 8, 817–822. [Google Scholar] [CrossRef]
- Peña, J.M.; Gutiérrez, P.A.; Hervás-Martínez, C.; Six, J.; Plant, R.E.; López-Granados, F. Object-based image classification of summer crops with machine learning methods. Remote Sens. 2014, 6, 5019–5041. [Google Scholar] [CrossRef]
- Foerster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral–temporal profiles and phenological information. Comput. Electron. Agric. 2012, 89, 30–40. [Google Scholar] [CrossRef]
- Xia, T.; He, Z.; Cai, Z.; Wang, C.; Wang, W.; Wang, J.; Hu, Q.; Song, Q. Exploring the potential of Chinese GF-6 images for crop mapping in regions with complex agricultural landscapes. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102702. [Google Scholar] [CrossRef]
- Deng, Z.; Lu, Z.; Wang, G.; Wang, D.; Ding, Z.; Zhao, H.; Xu, H.; Shi, Y.; Cheng, Z.; Zhao, X. Extraction of fractional vegetation cover in arid desert area based on Chinese GF-6 satellite. Open Geosci. 2021, 13, 416–430. [Google Scholar] [CrossRef]
- Jiang, X.; Fang, S.; Huang, X.; Liu, Y.; Guo, L. Rice mapping and growth monitoring based on time series GF-6 images and red-edge bands. Remote Sens. 2021, 13, 579. [Google Scholar] [CrossRef]
- Kang, Y.; Meng, Q.; Liu, M.; Zou, Y.; Wang, X. Crop classification based on red edge features analysis of GF-6 WFV data. Sensors 2021, 21, 4328. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, G.; Yang, H.; Wu, J.; Lei, L.; Zhao, F.; Fan, L.; Zhao, C. Identification of apple orchard planting year based on spatiotemporally fused satellite images and clustering analysis of foliage phenophase. Remote Sens. 2020, 12, 1199. [Google Scholar] [CrossRef]
- Zheng, Y.; Sarigul, E.; Panicker, G.; Stott, D. Vineyard LAI and canopy coverage estimation with convolutional neural network models and drone pictures. In Proceedings of the Sensing for Agriculture and Food Quality and Safety XIV, Orlando, FL, USA, 1 June 2022; pp. 29–38. [Google Scholar]
- Arab, S.T.; Noguchi, R.; Matsushita, S.; Ahamed, T. Prediction of grape yields from time-series vegetation indices using satellite remote sensing and a machine-learning approach. Remote Sens. Appl. Soc. Environ. 2021, 22, 100485. [Google Scholar] [CrossRef]
- Ferro, M.V.; Sørensen, C.G.; Catania, P. Comparison of different computer vision methods for vineyard canopy detection using UAV multispectral images. Comput. Electron. Agric. 2024, 225, 109277. [Google Scholar] [CrossRef]
- Kulikova, M.S.; Mani, M.; Srivastava, A.; Descombes, X.; Zerubia, J. Tree species classification using radiometry, texture and shape based features. In Proceedings of the 2007 15th European Signal Processing Conference, Poznań, Poland, 3–7 September 2007; pp. 1595–1599. [Google Scholar]
- Othmani, A.; Piboule, A.; Dalmau, O.; Lomenie, N.; Mokrani, S.; Voon, L.F.C.L.Y. Tree species classification based on 3D bark texture analysis. In Proceedings of the Image and Video Technology: 6th Pacific-Rim Symposium, PSIVT 2013, Guanajuato, Mexico, 28 October–1 November 2013; Proceedings 6; Springer: Berlin/Heidelberg, Germany, 2014; pp. 279–289. [Google Scholar]
- Song, R.; Ning, J.; Chang, Q.; Ban, S.; Liu, X.; Zhang, H. Kiwifruit orchard mapping based on wavelet textures and random forest. Trans. Chin. Soc. Agric. Mach. 2018, 49, 222–231. [Google Scholar]
- Pu, R.; Landry, S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species. Remote Sens. Environ. 2012, 124, 516–533. [Google Scholar] [CrossRef]
- Dian, Y.; Li, Z.; Pang, Y. Spectral and texture features combined for forest tree species classification with airborne hyperspectral imagery. J. Indian Soc. Remote Sens. 2015, 43, 101–107. [Google Scholar] [CrossRef]
- Yao, X.; Jin, J.; Xu, F.; Feng, X.; Luo, M.; Bi, L.; Lu, Z. Research on spectral and texture feature selection for fruit tree extraction in the Taihu Lake Basin. Chin. J. Eco-Agric. 2019, 27, 1596–1606. [Google Scholar]
- Garofalo, S.P.; Intrigliolo, D.S.; Camposeo, S.; Alhajj Ali, S.; Tedone, L.; Lopriore, G.; De Mastro, G.; Vivaldi, G.A. Agronomic responses of grapevines to an irrigation scheduling approach based on continuous monitoring of soil water content. Agronomy 2023, 13, 2821. [Google Scholar] [CrossRef]
- Pérez, D.S.; Bromberg, F.; Diaz, C.A. Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines. Comput. Electron. Agric. 2017, 135, 81–95. [Google Scholar] [CrossRef]
- Wang, Y. Oasis ecosystem and its environmental characteristics. Arid Land Geogr. 2000, 23, 7–12. [Google Scholar]
- Wang, X.; Hu, W.; Chang, Y.; Gao, C. Dynamic monitoring of ecological environment of Ejin Banner Oasis using remote sensing technology (1986 to 2000). In Proceedings of the Ecosystems Dynamics, Ecosystem-Society Interactions, and Remote Sensing Applications for Semi-Arid and Arid Land, Hangzhou, China, 24–27 October 2002; pp. 599–603. [Google Scholar]
- National Cryosphere Desert Data Center. Available online: http://www.ncdc.ac.cn/portal/metadata/2ee6aa92-0747-4e00-abbe-c48c60f84737 (accessed on 25 October 2024).
- Lorenz, D.; Eichhorn, K.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- Lamb, D.W.; Weedon, M.; Bramley, R. Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet Sauvignon vineyard: Timing observations against vine phenology and optimising image resolution. Aust. J. Grape Wine Res. 2004, 10, 46–54. [Google Scholar] [CrossRef]
- Meggio, F.; Zarco-Tejada, P.J.; Núñez, L.C.; Sepulcre-Cantó, G.; González, M.; Martín, P. Grape quality assessment in vineyards affected by iron deficiency chlorosis using narrow-band physiological remote sensing indices. Remote Sens. Environ. 2010, 114, 1968–1986. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA Special Publications: Washington, DC, USA, 1974; Volume 351, p. 309. [Google Scholar]
- Sun, L.; Gao, F.; Anderson, M.C.; Kustas, W.P.; Alsina, M.M.; Sanchez, L.; Sams, B.; McKee, L.; Dulaney, W.; White, W.A. Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. Remote Sens. 2017, 9, 317. [Google Scholar] [CrossRef]
- Zhao, X.; Jing, X.; Wang, L.; Liu, Y.; Xu, X. Grape remote sensing recognition based on GF-1/WFV time series. J. Henan Agric. Sci. 2019, 48, 153–160. [Google Scholar]
- Feng, J.; Yang, Y.J. Study of texture images extraction based on gray level cooccurence matrix. Beijing Surv. Mapp. 2007, 3, 19–22. [Google Scholar]
- Li, L.H.; Jia, X.M.; Zhang, J.T. Research on extraction and assistant classification of remote sensing for texture feature. Adv. Mater. Res. 2015, 1073, 1881–1885. [Google Scholar] [CrossRef]
- Bradley, A.; Jackway, P.; Lovell, B. Classification in scale-space: Applications to texture analysis. In Proceedings of the International Conference on Information Processing in Medical Imaging, Ile de Berder, France, 26–30 June 1995; pp. 375–376. [Google Scholar]
- Walker, R.; Jackway, P.; Longstaff, I. Recent developments in the use of the co-occurrence matrix for texture recognition. In Proceedings of the 13th International Conference on Digital Signal Processing, Santorini, Greece, 2–4 July 1997; pp. 63–65. [Google Scholar]
- Guo, D.; Song, Z. A study on texture image classifying based on gray-level co-occurrence matrix. For. Mach. Woodwork. Equip. 2005, 33, 21–23. [Google Scholar]
- Ren, G.; Jiang, T. Study on GLCM-based texture extraction methods. Comput. Appl. Softw. 2014, 31, 190–325. [Google Scholar]
- Kursa, M.B.; Jankowski, A.; Rudnicki, W.R. Boruta–a system for feature selection. Fundam. Inform. 2010, 101, 271–285. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Anand, N.; Sehgal, R.; Anand, S.; Kaushik, A. Feature selection on educational data using Boruta algorithm. Int. J. Comput. Intell. Stud. 2021, 10, 27–35. [Google Scholar] [CrossRef]
- Maurya, N.S.; Kushwah, S.; Kushwaha, S.; Chawade, A.; Mani, A. Prognostic model development for classification of colorectal adenocarcinoma by using machine learning model based on feature selection technique boruta. Sci. Rep. 2023, 13, 6413. [Google Scholar]
- Chen, S.; Webb, G.I.; Liu, L.; Ma, X. A novel selective naïve Bayes algorithm. Knowl.-Based Syst. 2020, 192, 105361. [Google Scholar] [CrossRef]
- Hall, M. A decision tree-based attribute weighting filter for naive Bayes. In Proceedings of the International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, UK, 18 December 2006; pp. 59–70. [Google Scholar]
- Pisner, D.A.; Schnyer, D.M. Support vector machine. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 101–121. [Google Scholar]
- Orru, G.; Pettersson-Yeo, W.; Marquand, A.F.; Sartori, G.; Mechelli, A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci. Biobehav. Rev. 2012, 36, 1140–1152. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Genuer, R.; Poggi, J.-M. Random Forests; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction. In Random Forests; Springer: Berlin/Heidelberg, Germany, 2009; pp. 587–604. [Google Scholar]
- Hou, X.; Di, X.; Hou, W.; Wu, L.; Liu, J.; Wang, J.; Su, H.; Lu, X.; Ying, L.; Yu, X. Accuracy evaluation of land use mapping using remote sensing techniques in coastal zone of China. J. Geo-Inf. Sci. 2018, 20, 1478–1488. [Google Scholar]
- Huang, D.; Xu, S.; Sun, J.; Liang, S.; Song, W.; Wang, Z. Accuracy assessment model for classification result of remote sensing image based on spatial sampling. J. Appl. Remote Sens. 2017, 11, 046023. [Google Scholar] [CrossRef]
- Blanquero, R.; Carrizosa, E.; Ramírez-Cobo, P.; Sillero-Denamiel, M.R. Variable selection for Naïve Bayes classification. Comput. Oper. Res. 2021, 135, 105456. [Google Scholar] [CrossRef]
- Scholkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Hsu, C.-W.; Lin, C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar] [PubMed]
- Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random forests and decision trees. Int. J. Comput. Sci. Issues 2012, 9, 272. [Google Scholar]
- Liaw, A. Classification and regression by random Forest. R News 2002, 18–22. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Sangeetha, C.; Moond, V.; Rajesh, G.; Damor, J.S.; Pandey, S.K.; Kumar, P.; Singh, B. Remote Sensing and Geographic Information Systems for Precision Agriculture: A Review. Int. J. Environ. Clim. Chang. 2024, 14, 287–309. [Google Scholar] [CrossRef]
- Burnett, M.W.; White, T.D.; McCauley, D.J.; De Leo, G.A.; Micheli, F. Quantifying coconut palm extent on Pacific islands using spectral and textural analysis of very high resolution imagery. Int. J. Remote Sens. 2019, 40, 7329–7355. [Google Scholar] [CrossRef]
- Martins, V.S. Deep Learning for Land Cover Classification and Environmental Analysis Using High-Resolution Remote Sensing Data. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2020. [Google Scholar]
Imaging Time | Number |
---|---|
12 October 2023 | 2 scenes |
16 October 2023 | 2 scenes |
24 October 2023 | 1 scene |
Land Type Names | Number of Sample Points/Points | Image Features and Interpretation Symbols | Example Images Under GF-6 Imagery |
---|---|---|---|
Vineyard | 205 | Strap-like distribution with relatively clear texture structure; most areas appear bright green, while a small portion is brown | |
Apricot orchard | 107 | The texture structure is clear, with a strong grainy feel, exhibiting a regular plate-like distribution and appearing dark green | |
Crops | 216 | The texture structure is clear and appears brown | |
Grassland | 79 | Widely distributed and appears yellow | |
Forest land | 61 | Irregular shape, densely distributed, and appears dark green | |
Construction land | 234 | Distinct geometric shapes, distributed in patches, and appearing blue-white | |
Water area | 64 | Sparse distribution with clear boundaries | |
Bare land | 102 | Widely distributed and appears gray-brown |
Type | Classification Features | Bands/Formula | Spectral Range |
Spectral Bands | B1 | Blue | 0.45~0.52 μm |
B2 | Green | 0.52~0.60 μm | |
B3 | Red | 0.63~0.69 μm | |
B4 | NIR | 0.76~0.90 μm | |
Spectral Index | NDVI | ||
EVI | |||
NDWI |
Texture Statistics | Constructed Texture Features | |
---|---|---|
Mean (ME) | B1_ME *, B2_ME, B3_ME, B4_ME, NDVI_ME, EVI_ME, NDWI_ME | The window sizes are set to 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, and 15 × 15. |
Variance (VA) | B1_VA, B2_VA, B3_VA, B4_VA, NDVI_VA, EVI_VA, NDWI_VA | |
Homogeneity (HO) | B1_HO, B2_HO, B3_HO, B4_HO, NDVI_HO, EVI_HO, NDWI_HO | |
Contrast (CO) | B1_CO, B2_CO, B3_CO, B4_CO, NDVI_CO, EVI_CO, NDWI_CO | |
Dissimilarity (DI) | B1_DI, B2_DI, B3_DI, B4_DI, NDVI_ DI, EVI_ DI, NDWI_ DI | |
Entropy (EN) | B1_EN, B2_EN, B3_EN, B4_EN, NDVI_ EN, EVI_ EN, NDWI_ EN | |
Angular Second Moment (ASM) | B1_ASM, B2_ASM, B3_ASM, B4_ASM, NDVI_ ASM, EVI_ ASM, NDWI_ ASM | |
Correlation (COR) | B1_COR, B2_COR, B3_COR, B4_COR, NDVI_ COR, EVI_ COR, NDWI_ COR |
Model | Name | Algorithm | Feature | Kappa Coefficient | Vineyard Classification Accuracy (%) | Vineyard Classification Error (%) | Vineyard Omission Error (%) |
---|---|---|---|---|---|---|---|
M1 | The NB Model Integrating Spectral and Texture Features | Naive Bayes | Spectral Features: NDVI, EVI, and NDWI. Texture Features: B4_CO, NDVI_VA, NDVI_CO, NDVI_DI, and NDVI_COR under a 7 × 7 window | 0.78 | 81.64 | 15.04 | 21.68 |
M2 | The SVM Model Integrating Spectral and Texture Features | Support Vector Machine | 0.83 | 85.87 | 10.57 | 17.69 | |
M3 | The RF Model Integrating Spectral and Texture Features | Random Forest | 0.89 | 93.89 | 8.11 | 4.11 |
Model | Name | Feature | Kappa Coefficient | Vineyard Classification Accuracy (%) | Vineyard Classification Error (%) | Vineyard Omission Error (%) |
---|---|---|---|---|---|---|
M3 | The RF Model Integrating Spectral and Texture Features | Spectral Features: NDVI, EVI, and NDWI. Texture Features: B4_CO, NDVI_VA, NDVI_CO, NDVI_DI, and NDVI_COR under a 7 × 7 window. | 0.89 | 93.89 | 8.11 | 4.11 |
M4 | The RF Model with Single Spectral Feature | Spectral Features: NDVI, EVI, and NDWI. | 0.77 | 80.36 | 14.97 | 24.31 |
M5 | The RF Model with Single Texture Feature | Texture Features: B4_CO, NDVI_VA, NDVI_CO, NDVI_DI, and NDVI_COR under a 7 × 7 window. | 0.68 | 76.77 | 25.11 | 21.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Ye, H.; Zhang, Y.; Nie, C.; Wen, F. Study on the Method of Vineyard Information Extraction Based on Spectral and Texture Features of GF-6 Satellite Imagery. Agronomy 2024, 14, 2542. https://doi.org/10.3390/agronomy14112542
Han X, Ye H, Zhang Y, Nie C, Wen F. Study on the Method of Vineyard Information Extraction Based on Spectral and Texture Features of GF-6 Satellite Imagery. Agronomy. 2024; 14(11):2542. https://doi.org/10.3390/agronomy14112542
Chicago/Turabian StyleHan, Xuemei, Huichun Ye, Yue Zhang, Chaojia Nie, and Fu Wen. 2024. "Study on the Method of Vineyard Information Extraction Based on Spectral and Texture Features of GF-6 Satellite Imagery" Agronomy 14, no. 11: 2542. https://doi.org/10.3390/agronomy14112542
APA StyleHan, X., Ye, H., Zhang, Y., Nie, C., & Wen, F. (2024). Study on the Method of Vineyard Information Extraction Based on Spectral and Texture Features of GF-6 Satellite Imagery. Agronomy, 14(11), 2542. https://doi.org/10.3390/agronomy14112542