Vegetation Restoration Enhanced Canopy Interception and Soil Evaporation but Constrained Transpiration in Hekou–Longmen Section During 2000–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources and Our Processing
2.3. Research Methods
2.3.1. ET Calculation Based on PT-JPL Model
2.3.2. Indicators Used in the Verification of PT-JPL Model Results
2.3.3. Scenario Designs
2.3.4. Trend Analysis Method
2.3.5. Attribution Analysis
2.3.6. Structural Equation Model (SEM)
3. Results
3.1. Validation of the PT-JPL Model
3.1.1. Validation of Water Balance Method
3.1.2. Validation of PT-JPL Model Based on MODSI ET
3.2. Spatiotemporal Characteristics of Vegetation Change
3.3. ET Simulation Results Based on the PT-JPL Model
3.4. Effects of Vegetation Changes on Evapotranspiration
3.5. Trends in Climatic Factors and Their Mechanisms of Influence on ET
4. Discussion
4.1. Simulation Results and Spatiotemporal Variations in ET, Et, Ei, and Es
4.2. Effects of Vegetation and Climate Change on ET in the HLS
4.3. Inspiration and Suggestions for Water Resources and Vegetation Protection and Greening
4.4. Uncertainties and Limitations
5. Conclusions
- (1)
- During 2000–2018, the ET, Ei, and Es of the HLS increased at a rate of 1.33, 0.87, and 2.99 mm/a, respectively, and the Et decreased at a rate of 2.52 mm/a under the vegetation-change scenario. The ET, Et, Ei, and Es increased at a rate of 0.57, 0.47, 0.04, and 0.04 mm/a, respectively.
- (2)
- Vegetation restoration led to a significant increase in the evaporation water consumption of the HLS. Vegetation restoration increased the annual ET from 331.26 mm (vegetation-unchanged scenario) to 338.85 mm (vegetation-change scenario), an increase of 2.3% from 2000 to 2018. The change rates in ET, Et, Ei, and Es directly caused by vegetation change were 0.76, −1.95, 0.83, and 2.95 mm/a, respectively.
- (3)
- PRE made a positive contribution to ET primarily in the northern and central regions. TMP showed a negative contribution in the central and southern regions. The high value of VPD is mainly concentrated in the southern region, which has a significant negative contribution to ET. TMP was the main factor affecting its change, and the dominant influence area accounted for 37.2%. PRE and VPD were identified as the main factors affecting ET changes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zanin, P.R.; Pareja-Quispe, D.; Espinoza, J.-C. Evapotranspiration in the Amazon Basin: Couplings, hydrological memory and water feedback. Agric. For. Meteorol. 2024, 352, 110040. [Google Scholar] [CrossRef]
- Liu, J.; You, Y.; Li, J.; Sitch, S.; Gu, X.; Nabel, J.E.M.S.; Lombardozzi, D.; Luo, M.; Feng, X.; Arneth, A.; et al. Response of global land evapotranspiration to climate change, elevated CO2, and land use change. Agric. For. Meteorol. 2021, 311, 108663. [Google Scholar] [CrossRef]
- Forster, M.A.; Kim, T.D.H.; Kunz, S.; Abuseif, M.; Chulliparambil, V.R.; Srichandra, J.; Michael, R.N. Phenology and canopy conductance limit the accuracy of 20 evapotranspiration models in predicting transpiration. Agric. For. Meteorol. 2022, 315, 108824. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Huang, R.; Xie, H.; Qin, X.; Hu, Y. Estimating evapotranspiration and drought dynamics of winter wheat under climate change: A case study in Huang-Huai-Hai region, China. Sci. Total Environ. 2024, 949, 175114. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Gu, L.; Wu, G.; Tong, S.; Xiong, L.; Xu, C.-Y. A pathway analysis method for quantifying the contributions of precipitation and potential evapotranspiration anomalies to soil moisture drought. J. Hydrol. 2023, 621, 129570. [Google Scholar] [CrossRef]
- Perez, M.; Lombardi, D.; Bardino, G.; Vitale, M. Drought assessment through actual evapotranspiration in Mediterranean vegetation dynamics. Ecol. Indic. 2024, 166, 112359. [Google Scholar] [CrossRef]
- Zhu, W.; Fan, L.; Jia, S. Integration of microwave satellite soil moisture products in the contextual surface temperature-vegetation index models for spatially continuous evapotranspiration estimation. ISPRS J. Photogramm. Remote Sens. 2023, 203, 211–229. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, J.; Chen, J.; Zhan, W.; Wang, C.; Ma, W.; Yao, X.; Zhou, S.; Zhu, K.; Sun, R. Enhanced observations from an optimized soil-canopy-photosynthesis and energy flux model revealed evapotranspiration-shading cooling dynamics of urban vegetation during extreme heat. Remote Sens. Environ. 2024, 305, 114098. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Hou, J.; Zhao, K.; Wu, R.; Sun, B.; Lu, J.; Liu, Y.; Cui, C.; Liu, J. Enhanced evapotranspiration induced by vegetation restoration may pose water resource risks under climate change in the Yellow River Basin. Ecol. Indic. 2024, 162, 112060. [Google Scholar] [CrossRef]
- Ji, Z.; Wang, Y.; Wang, L. Threshold identification of evapotranspiration under different land-use types in the Loess Plateau, China. J. Hydrol. Reg. Stud. 2024, 53, 101780. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Z.; Wang, Z.; Chen, X.; Han, P.; Wang, B.; Wang, Z.; Wen, Z.; Shi, H.; Zhang, Z.; et al. Discriminating the impacts of vegetation greening and climate change on the changes in evapotranspiration and transpiration fraction over the Yellow River Basin. Sci. Total Environ. 2023, 904, 166926. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.; Sáez, J.A.; Corchado, E. Tackling the problem of noisy IoT sensor data in smart agriculture: Regression noise filters for enhanced evapotranspiration prediction. Expert Syst. Appl. 2024, 237, 121608. [Google Scholar] [CrossRef]
- Cao, X.; Zheng, Y.; Lei, Q.; Li, W.; Song, S.; Wang, C.; Liu, Y.; Khan, K. Increasing actual evapotranspiration on the Loess Plateau of China: An insight from anthropologic activities and climate change. Ecol. Indic. 2023, 157, 111235. [Google Scholar] [CrossRef]
- Ma, Z.; Yan, N.; Wu, B.; Stein, A.; Zhu, W.; Zeng, H. Variation in actual evapotranspiration following changes in climate and vegetation cover during an ecological restoration period (2000–2015) in the Loess Plateau, China. Sci. Total Environ. 2019, 689, 534–545. [Google Scholar] [CrossRef]
- Li, T.; Xia, J.; Zhang, L.; She, D.; Wang, G.; Cheng, L. An improved complementary relationship for estimating evapotranspiration attributed to climate change and revegetation in the Loess Plateau, China. J. Hydrol. 2021, 592, 125516. [Google Scholar] [CrossRef]
- Lv, X.; Zuo, Z.; Sun, J.; Ni, Y.; Wang, Z. Climatic and human-related indicators and their implications for evapotranspiration management in a watershed of Loess Plateau, China. Ecol. Indic. 2019, 101, 143–149. [Google Scholar] [CrossRef]
- Lin, Z.; Long, T.; Jiao, W.; Ye, Z.; Zhang, D.; He, G. Estimation and spatiotemporal analysis of actual evapotranspiration over Qinghai-Tibet Plateau using an Alpine Grassland-Adapted Priestley-Taylor model. J. Hydrol. 2024, 641, 131756. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; A., Y.; Wang, G.; Zhang, X.; Ma, G.; Duan, L.; Liu, K. Optimizing actual evapotranspiration simulation to identify evapotranspiration partitioning variations: A fusion of physical processes and machine learning techniques. Agric. Water Manag. 2024, 295, 108755. [Google Scholar] [CrossRef]
- Irmak, S. Maize response to different subsurface drip irrigation management strategies: Yield, production functions, basal and crop evapotranspiration. Agric. Water Manag. 2024, 300, 108927. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.; Zhao, J.; Ding, Y.; Yang, H.; Zhang, S.; Xueping, Z.; Zhao, X. Evaluation of vegetation–water mutual suitability in Helong Region of the Loess Plateau. Agric. Water Manag. 2023, 290, 108603. [Google Scholar] [CrossRef]
- Yadav, D.; Singh, D.; Babu, S.; Madegowda, M.; Singh, D.; Mandal, D.; Rathore, A.C.; Sharma, V.K.; Singhal, V.; Kumawat, A.; et al. Intensified cropping reduces soil erosion and improves rainfall partitioning and soil properties in the marginal land of the Indian Himalayas. Int. Soil Water Conserv. Res. 2024, 12, 521–533. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Z.; Zhang, Y.; Qiao, Q. How can governments and fishermen collaborate to participate in a fishing ban for ecological restoration? J. Environ. Manag. 2024, 360, 120958. [Google Scholar] [CrossRef]
- Gao, P.; Deng, J.; Chai, X.; Mu, X.; Zhao, G.; Shao, H.; Sun, W. Dynamic sediment discharge in the Hekou–Longmen region of Yellow River and soil and water conservation implications. Sci. Total Environ. 2017, 578, 56–66. [Google Scholar] [CrossRef]
- Niu, Z.; He, H.; Zhu, G.; Ren, X.; Zhang, L.; Zhang, K.; Yu, G.; Ge, R.; Li, P.; Zeng, N.; et al. An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming. Agric. For. Meteorol. 2019, 279, 107701. [Google Scholar] [CrossRef]
- Shao, R.; Zhang, B.; Su, T.; Long, B.; Cheng, L.; Xue, Y.; Yang, W. Estimating the Increase in Regional Evaporative Water Consumption as a Result of Vegetation Restoration Over the Loess Plateau, China. J. Geophys. Res. Atmos. 2019, 124, 11783–11802. [Google Scholar] [CrossRef]
- Allen, R.G. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrig. Drain. 1998, 56, 147–151. [Google Scholar]
- Esri. ArcGIS Desktop: Release 10.8; Environmental Systems Research Institute: Redlands, CA, USA, 2020. [Google Scholar]
- Shao, R.; Wang, Y.; Shao, W.; Ni, G. Assessing the synergistic modulation of evapotranspiration by global impervious surface and vegetation changes. Agric. For. Meteorol. 2022, 327, 109194. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Yao, N.; Ye, J.; Wang, S.; Yang, S.; Lu, Y.; Zhang, H.; Yang, X. Bias correction of the hourly satellite precipitation product using machine learning methods enhanced with high-resolution WRF meteorological simulations. Atmos. Res. 2024, 310, 107637. [Google Scholar] [CrossRef]
- Zhang, L.; Marshall, M.; Nelson, A.; Vrieling, A. A global assessment of PT-JPL soil evaporation in agroecosystems with optical, thermal, and microwave satellite data. Agric. For. Meteorol. 2021, 306, 108455. [Google Scholar] [CrossRef]
- Ćalasan, M.; Abdel Aleem, S.H.E.; Zobaa, A.F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Convers. Manag. 2020, 210, 112716. [Google Scholar] [CrossRef]
- Han, P.; Yang, G.; Wang, Z.; Liu, Y.; Chen, X.; Zhang, W.; Zhang, Z.; Wen, Z.; Shi, H.; Lin, Z.; et al. Driving Factors and Trade-Offs/Synergies Analysis of the Spatiotemporal Changes of Multiple Ecosystem Services in the Han River Basin, China. Remote Sens. 2024, 16, 2115. [Google Scholar] [CrossRef]
- Gong, H.; Li, Y.; Zhang, J.; Zhang, B.; Wang, X. A new filter feature selection algorithm for classification task by ensembling pearson correlation coefficient and mutual information. Eng. Appl. Artif. Intell. 2024, 131, 107865. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, Y.; Wang, X.; Chen, X.; Duan, G.; Han, P.; Lin, Z.; Shi, H.; Wen, Z. Evaluating the effect of Multi-Scale droughts on autumn phenology of global land biomes with satellite observation. J. Hydrol. 2024, 639, 131547. [Google Scholar] [CrossRef]
- Aguilos, M.; Sun, G.; Liu, N.; Zhang, Y.; Starr, G.; Oishi, A.C.; O’Halloran, T.L.; Forsythe, J.; Wang, J.; Zhu, M.; et al. Energy availability and leaf area dominate control of ecosystem evapotranspiration in the southeastern U.S. Agric. For. Meteorol. 2024, 349, 109960. [Google Scholar] [CrossRef]
- Sun, S.; Liu, Y.; Chen, H.; Ju, W.; Xu, C.-Y.; Liu, Y.; Zhou, B.; Zhou, Y.; Zhou, Y.; Yu, M. Causes for the increases in both evapotranspiration and water yield over vegetated mainland China during the last two decades. Agric. For. Meteorol. 2022, 324, 109118. [Google Scholar] [CrossRef]
- Sun, S.; Chen, H.; Sun, G.; Ju, W.; Wang, G.; Li, X.; Yan, G.; Gao, C.; Huang, J.; Zhang, F.; et al. Attributing the Changes in Reference Evapotranspiration in Southwestern China Using a New Separation Method. J. Hydrometeorol. 2017, 18, 777–798. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Chen, Y.; Fan, M.; Chen, Y.; Gang, C.; You, Y.; Wang, Z. Dynamics of global dryland vegetation were more sensitive to soil moisture: Evidence from multiple vegetation indices. Agric. For. Meteorol. 2023, 331, 109327. [Google Scholar] [CrossRef]
- Bai, M.; Mo, X.; Liu, S.; Hu, S. Contributions of climate change and vegetation greening to evapotranspiration trend in a typical hilly-gully basin on the Loess Plateau, China. Sci. Total Environ. 2019, 657, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lüscher, J.; Kozikova, D.; Goicoechea, N.; Pascual, I. Elevated CO2 alleviates the exacerbation of evapotranspiration rates of grapevine (Vitis vinifera) under elevated temperature. Agric. Water Manag. 2024, 302, 108971. [Google Scholar] [CrossRef]
- Ahmadi, A.; Kazemi, M.H.; Daccache, A.; Snyder, R.L. SolarET: A generalizable machine learning approach to estimate reference evapotranspiration from solar radiation. Agric. Water Manag. 2024, 295, 108779. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Feng, Q.; Si, L.; Gui, J.; Cui, Q.; Zhao, Y.; Xu, C. Global evapotranspiration from high-elevation mountains has decreased significantly at a rate of 3.923 %/a over the last 22 years. Sci. Total Environ. 2024, 931, 172804. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wang, S.; Chen, J.; Xiang, N.; Sun, L.; Chen, B.; Fu, Z.; Zhu, K.; He, X. Divergent impacts of VPD and SWC on ecosystem carbon-water coupling under different dryness conditions. Sci. Total Environ. 2023, 905, 167007. [Google Scholar] [CrossRef]
- Suliman, M.; Scaini, A.; Manzoni, S.; Vico, G. Soil properties modulate actual evapotranspiration and precipitation impacts on crop yields in the USA. Sci. Total Environ. 2024, 949, 175172. [Google Scholar] [CrossRef]
- Chang, H.; Cai, J.; Xu, D.; Jiang, L.; Zhang, C.; Zhang, B. Precision modelling of leaf area index for enhanced surface temperature partitioning and improved evapotranspiration estimation. Agric. For. Meteorol. 2024, 356, 110157. [Google Scholar] [CrossRef]
- Awada, H.; Sirca, C.; Marras, S.; Castellini, M.; Spano, D.; Pirastru, M. Modelling soil moisture and daily actual evapotranspiration: Integrating remote sensing surface energy balance and 1D Richards equation. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103744. [Google Scholar] [CrossRef]
- Yavari Bajehbaj, R.; Cibin, R.; Duncan, J.M.; McPhillips, L.E. Quantifying soil moisture and evapotranspiration heterogeneity within a solar farm: Implications for stormwater management. J. Hydrol. 2024, 638, 131474. [Google Scholar] [CrossRef]
- Shang, S.; Zhu, G.; Zhang, K.; Chen, H.; Wang, Y.; Chen, Y.; Zhang, Z.; Ma, N. Spatial-temporal variations in evapotranspiration across the continental United States: An atmospheric water balance perspective. J. Hydrol. 2024, 640, 131699. [Google Scholar] [CrossRef]
- Gu, C.; Ma, J.; Zhu, G.; Yang, H.; Zhang, K.; Wang, Y.; Gu, C. Partitioning evapotranspiration using an optimized satellite-based ET model across biomes. Agric. For. Meteorol. 2018, 259, 355–363. [Google Scholar] [CrossRef]
- Li, B.; Yang, W.; Wu, X.; Li, Z. Partitioning and controlling factors of evapotranspiration: 2. Dynamics and controls of ratio of transpiration to evapotranspiration at multiple timescales in agroforestry system. Agric. Ecosyst. Environ. 2024, 374, 109192. [Google Scholar] [CrossRef]
Data | Spatial Resolution | Source |
---|---|---|
TMP (temperature) | 500 m | Loess plateau science data center, National Earth System Science Data Sharing Infrastructure, National Science and Technology Infrastructure of China” http://loess.geodata.cn (accessed on 17 June 2024)”. |
NDVI (Normalized Difference Vegetation Index) | 0.0833° | AVHRR GIMMS-3G+ “https://daac.ornl.gov/VEGETATION/guides/Global_Veg_Greenness_GIMMS_3G.html (accessed on 11 June 2024)”. |
LAI (leaf area index) | 0.05° | GLASS “https://glass-product.bnu.edu.cn/ (accessed on 2 March 2024)”. |
FVC (fractional vegetation cover) | 0.05° | GLASS “https://glass-product.bnu.edu.cn/ (accessed on 2 March 2024)”. |
ET (evapotranspiration) for validation | 500 m | MOD16A2—MODIS/Terra Net Evapotranspiration “https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD16A2 (accessed on 10 June 2024)”. |
Land use/cover | 1 km | National Earth System Science Data Center “https://www.geodata.cn/main/ (accessed on 2 June 2024)”. |
Meteorological data (PRE (precipitation) rate, TEM (surface temperature, °C), water vapor pressure (hPa), and near-surface pressure (Pa)) | 0.1° | China meteorological forcing dataset “https://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-965612652c49/; (accessed on 2 March 2024)”. |
Albedo | 0.05° | GLASS “https://glass-product.bnu.edu.cn/” (accessed on 2 March 2024)”. |
VPD (vapor pressure deficit) | 0.5° | CLIMATIC RESEARCH UNIT “https://crudata.uea.ac.uk/ (accessed on 2 March 2024)” |
Watershed boundary | National Earth System Science Data Center “https://www.geodata.cn/main/ (accessed on 17 June 2024)”. | |
DEM (digital elevation model) | 90 m | Geospatial Data Cloud “https://www.gscloud.cn/ (accessed on 2 March 2024)”. |
k1 | k2 | beta (β) | |
---|---|---|---|
forest | 0.57 | 0.81 | 1.28 |
shrub | 0.56 | 0.91 | 1.17 |
cropland | 0.59 | 0.84 | 1.43 |
grassland | 0.59 | 0.8 | 0.8 |
ρslope | Z Value | Trend |
---|---|---|
>0.0005 | >1.96, <−1.96 | Significantly increased |
<0.0005 | −1.96 < Z< 1.96 | Significantly decreased |
−0.0005 < ρ <0.0005 | ∞ | Stably invariant |
>0.0005 | −1.96 < Z < 1.96 | Minor increase |
<0.0005 | >1.96, <−1.96 | Minor decrease |
Pathway | PRE | RAD | TMP | VPD | ET | Et | Ei | Es |
---|---|---|---|---|---|---|---|---|
LAI→ | 0.432 * | 0.173 | 0.198 | −0.008 | 0.006 | −0.003 | −0.065 | 0.108 |
PRE→ | −0.22 | −0.654 * | 0.523 * | 0.553 * | 0.487 * | −0.162 | ||
RAD→ | 0.016 | 0.265 | 0.242 | 0.314 | 0.052 | |||
TMP→ | −0.213 | −0.228 | −0.319 | 0.19 | ||||
VPD→ | −0.366 | −0.363 | −0.327 | −0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, P.; Yang, G.; Liu, Y.; Chen, X.; Wen, Z.; Shi, H.; Hu, E.; Xue, T.; Zhao, Y. Vegetation Restoration Enhanced Canopy Interception and Soil Evaporation but Constrained Transpiration in Hekou–Longmen Section During 2000–2018. Agronomy 2024, 14, 2606. https://doi.org/10.3390/agronomy14112606
Han P, Yang G, Liu Y, Chen X, Wen Z, Shi H, Hu E, Xue T, Zhao Y. Vegetation Restoration Enhanced Canopy Interception and Soil Evaporation but Constrained Transpiration in Hekou–Longmen Section During 2000–2018. Agronomy. 2024; 14(11):2606. https://doi.org/10.3390/agronomy14112606
Chicago/Turabian StyleHan, Peidong, Guang Yang, Yangyang Liu, Xu Chen, Zhongming Wen, Haijing Shi, Ercha Hu, Tingyi Xue, and Yinghan Zhao. 2024. "Vegetation Restoration Enhanced Canopy Interception and Soil Evaporation but Constrained Transpiration in Hekou–Longmen Section During 2000–2018" Agronomy 14, no. 11: 2606. https://doi.org/10.3390/agronomy14112606
APA StyleHan, P., Yang, G., Liu, Y., Chen, X., Wen, Z., Shi, H., Hu, E., Xue, T., & Zhao, Y. (2024). Vegetation Restoration Enhanced Canopy Interception and Soil Evaporation but Constrained Transpiration in Hekou–Longmen Section During 2000–2018. Agronomy, 14(11), 2606. https://doi.org/10.3390/agronomy14112606