Effects of Organic Fertilizer Replacing Some Nitrogen Fertilizers on the Structure and Diversity of Inter-Root Soil Fungal Communities in Potato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. Sample Collection
2.4. Measurement of Soil Physical and Chemical Indicators
2.5. High-Throughput Sequencing of Soil Fungi
2.6. Data Processing
3. Results and Analysis
3.1. Analysis of Chemical Properties of Potatoes’ Inter-Root Soil Under Organic Fertilizer Replacing Nitrogen Fertilizer
3.2. OTU Analysis of Inter-Root Soil Fungi of Potatoes Under Organic Fertilizer Replacing Nitrogen Fertilizer
3.3. Analysis of Alpha Diversity Index of Potatoes’ Inter-Root Soil Fungi Under Organic Fertilizer Replacing Nitrogen Fertilizer
3.4. An Analysis of the Composition of the Inter-Root Soil Fungal Community of Potato Plants Under the Application of Organic Fertilizers in Place of Nitrogen Fertilizers
3.5. Beta Diversity Analysis of Potatoes’ Inter-Root Soil Fungal Communities Under Organic Fertilizer Replacing Nitrogen Fertilizer
3.6. Differential Analysis of Inter-Root Soil Fungal Communities of Potatoes Under Different Amounts of Organic Fertilizer Replacing Nitrogen Fertilizer
3.7. Predictive Analysis of Inter-Root Soil Fungal Community Function in Potatoes Under Organic Fertilizer Replacing Nitrogen Fertilizer
3.8. Correlation Analysis Between Inter-Root Soil Fungal Communities and Soil Environmental Factors of Potatoes Under Organic Fertilizer Replacing Nitrogen Fertilizer
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.J.; Zhu, Z.J.; Qian, X.Q.; Wang, G.L. Effects of reduced chemical fertilizers and different organic fertilizers on soil bacterial community structure in rice season. T’u Jang 2021, 53, 983–990. [Google Scholar]
- Ahmad, S.; Hussain, I.; Ghaffar, A.; Rahman, M.H.U.; Saleem, M.Z.; Yonas, M.W.; Hussnain, H.; Ikram, R.M.; Arslan, M. Organic amendments and conservation tillage improve cotton productivity and soil health indices under arid climate. Sci. Rep. 2022, 12, 14072. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Kaur, M.; Singh, P.; Gaber, A.; Hossain, A. Effect of addition of organic manures on basmati yield, nutrient content and soil fertility status in north-western india. Heliyon 2023, 9, e14514. [Google Scholar] [CrossRef] [PubMed]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Dahunsi, S.O.; Ayeni, J.F.; Aremu, C.; Aboyeji, C.M.; Okunlola, F.; Oyelami, A.E. Organic and in-organic fertilizers effects on the performance of tomato (Solanum lycopersicum) and cucumber (Cucumis sativus) grown on soilless medium. Sci. Rep. 2022, 12, 12212. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Ditta, A.; Imtiaz, M.; Li, X.; Jan, A.U.; Mehmood, S.; Rizwan, M.S.; Rizwan, M. Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. J. Agron. Crop Sci. 2021, 207, 783–802. [Google Scholar] [CrossRef]
- De Corato, U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci. Total Environ. 2020, 738, 139840. [Google Scholar] [CrossRef]
- Li, T.B.; Wang, R.l.; Zhu, J.J.; Cao, L.B.; Xia, H.L.; Wang, M.C.; Gou, Y.A.; Li, E.Z. Effects of organic fertilizer on soil properties and soil microorganisms. J. Bio Res. 2023, 15, 138–150. [Google Scholar]
- Bebber Daniel, P.; Richards Victoria, R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 2022, 175, 104450. [Google Scholar] [CrossRef]
- Xie, Y.; Yan, Y.Y.; Tian, X.W.; Qu, J.S.; Zhang, L.J.; Zhu, Q.N.; Zhao, J.; Zhang, J.B.; Cai, Z.C.; Huang, X.Q. Effects of facility cultivation on the structure and function of soil fungal communities in Ningxia China. Sheng T’ai Hsueh Pao 2024, 44, 8383–8396. [Google Scholar]
- Noman, M.; Ahmed, T.; Wang, J.Y.; White, J.C. Micronutrient-microbiome interplay: A critical regulator of soil-plant health. Trends Microbiol. 2024, 32, 319–320. [Google Scholar] [CrossRef] [PubMed]
- Sileshi, G.W.; Jama, B.; Vanlauwe, B.; Negassa, W.; Harawa, R.; Kiwia, A.; Kimani, D. Nutrient Use Efficiency and Crop Yield Response to the Combined Application of Cattle Manure and Inorganic Fertilizer in Sub-Saharan Africa. Nutr. Cycl. Agroecosystems 2019, 113, 181–199. [Google Scholar] [CrossRef]
- Li, T. Combined Application of Chemical and Organic Fertilizers Promoted Soil Carbon Sequestration and Bacterial Community Diversity in Dryland Wheat Fields. Land 2024, 13, 1296. [Google Scholar] [CrossRef]
- Ma, Y.; Shen, S.Z.; Wan, C. Organic fertilizer substitution over six years improves the productivity of garlic, bacterial diversity, and microbial communities network complexity. Appl. Soil Ecol. 2023, 182, 104718. [Google Scholar] [CrossRef]
- Khan, M.A.; Basir, A.; Fahad, S.; Adnan, M.; Saleem, M.H.; Iqbal, A.; Amanullah Al-Huqail, A.A.; Alosaimi, A.A.; Saud, S.; Liu, K.; et al. Biochar Optimizes Wheat Quality, Yield, and Nitrogen Acquisition in Low Fertile Calcareous Soil Treated with Organic and Mineral Nitrogen Fertilizers. Front. Plant Sci. 2022, 13, 879788. [Google Scholar] [CrossRef]
- Jin, X.; Cai, J.; Yang, S.; Li, S.; Shao, X.; Fu, C.; Li, C.; Deng, Y.; Huang, J.; Ruan, Y.; et al. Partial substitution of chemical fertilizer with organic fertilizer and slow-release fertilizer benefits soil microbial diversity and pineapple fruit yield in the tropics. Appl. Soil Ecol. 2023, 189, 104974. [Google Scholar] [CrossRef]
- Song, W.F. Effects of Organic Fertilizers Replacing Chemical Fertilizers on Physicochemical Properties, Microbial Community Structure, and Rice Yield of Paddy Soils. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2021. [Google Scholar]
- Kumar, U.; Nayak, A.K.; Shahid, M.; Gupta, V.V.; Panneerselvam, P.; Mohanty, S.; Kaviraj, M.; Kumar, A.; Chatterjee, D.; Lal, B.; et al. Continuous application of inorganic and organic fertilizers over 47 years in paddy soil alters the bacterial community structure and its influence on rice production. Agric. Ecosyst. Environ. 2018, 262, 65–75. [Google Scholar] [CrossRef]
- Parente, C.E.T.; Brito, E.M.S.; Caretta, C.A.; Cervantes-Rodríguez, E.A.; Fábila-Canto, A.P.; Vollú, R.E.; Seldin, L.; Malm, O. Bacterial Diversity Changes in Agricultural Soils Influenced by Poultry Litter Fertilization. Braz. J. Microbiol. 2021, 52, 675–686. [Google Scholar] [CrossRef]
- Tang, Q.; Xia, Y.; Ti, C.; Shan, J.; Zhou, W.; Li, C.; Yan, X.; Yan, X. Partial organic fertilizer substitution promotes soil multifunctionality by increasing microbial community diversity and complexity. Pedosphere 2023, 33, 407–420. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Publishing House: Beijing, China, 2000; pp. 40–98. [Google Scholar]
- Liu, C.; Zhao, D.; Ma, W.; Guo, Y.; Wang, A.; Wang, Q.; Lee, D.-J. Denitrifying sulfide removal process on high-salinity wastewaters in the presence of Halomonas sp. Appl. Microbio. Biotech. 2016, 100, 1421–1426. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 1884–1890. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Kumari, M.; Sheoran, S.; Prakash, D.; Yadav, D.B.; Yadav, P.K.; Jat, M.K. Long-term application of organic manures and chemical fertilizers improve the organic carbon and microbiological properties of soil under pearl millet-wheat cropping system in North-Western India. Heliyon 2024, 10, e25333. [Google Scholar] [CrossRef]
- Assefa, S.; Tadesse, S. The principal role of organic fertilizer on soil properties and agricultural productivity—A review. Agric. Res. Technol. 2019, 22, 556192. [Google Scholar] [CrossRef]
- Lacolla, G.; Rinaldi, M.; Savino, M.; Russo, M.; Caranfa, D.; Cucci, G. Effects of organic fertilization from wet olive pomace on emmer wheat (Triticum dicoccum Shrank) grain yield and composition. J. Cereal Sci. 2021, 102, 103369. [Google Scholar] [CrossRef]
- Yu, W.L. Effects of Organic Fertilizers on Alkaloid Content and Inter-Root Soil Microorganisms in Rhizoma Coptidis. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2022. [Google Scholar]
- Peng, M.; Tabashsum, Z.; Millner, P.; Parveen, S.; Biswas, D. Influence of manure application on the soil bacterial microbiome in integrated crop-livestock farms in maryland. Microorganisms 2021, 9, 2586. [Google Scholar] [CrossRef]
- Lee, J.; Jo, N.Y.; Shim, S.Y.; Linh, L.T.Y.; Kim, S.R.; Lee, M.G.; Hwang, S.G. Effects of hanwoo (Korean cattle) manure as organic fertilizer on plant growth, feed quality, and soil bacterial community. Front. Plant Sci. 2023, 14, 1135947. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ashworth, A.J.; DeBruyn, J.M.; Willett, C.; Durso, L.M.; Cook, K.; Moore, P.A.; Owens, P.R. Soil Bacterial Biodiversity Is Driven by Long-Term Pasture Management, Poultry Litter, and Cattle Manure Inputs. PeerJ 2019, 7, e7839. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Awasthi, M.K.; Bao, H.; Bie, J.; Lei, S.; Lv, J. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. Bioresour. Technol. 2020, 313, 6. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.Q.; Gu, X.F.; Gou, J.L.; Zhang, M.; Rao, Y.; Xiao, H.G. Effects of nitrogen fertilizer and organic matter rationing on soil microbial communities in a yellow loamy winter oilseed rape-corn rotation field. Henan Agric. Sci. 2023, 52, 41–50. [Google Scholar]
- Qiu, Z.J.; Suo, M.; Wang, Z.B.; Yang, H.Y. Progress of research on the application of Aspergillus oryzae in sustainable agricultural production. Jiangsu Agric. Sci. 2024, 40, 762–768. [Google Scholar]
- Li, M.Y.; Wang, J.l.; Zhou, Q.; Zhang, T.; Mutailipo, M.H.R.A.Y. Characterization of inter-root soil fungal community structure of four species of saline plants in southern Xinjiang. Acta Ecol. Sin. 2021, 41, 8484–8495. [Google Scholar]
- Ma, X.; Luo, Z.Z.; Zhang, Y.Q.; Niu, Y.N.; Li, L.L.; Cai, L.Q.; Cai, X.M.; Liu, J.H. Distribution characteristics of soil fungal communities of alfalfa with different planting years in rain-fed areas of the Loess Plateau. Agric. Res. Arid. Areas 2021, 39, 162–170. [Google Scholar]
- Zhong, L.Q.; Huang, B.X.; Li, Y.H.; Li, H.J.; Ren, S.F. Effect of bio-organic fertilizer application on soil microbial structure and almond quality in almond orchards for kernel use. Ho-Pei Nung Yeh Ta Hsueh Hsueh Pao 2024, 47, 93–104. [Google Scholar]
- Feng, C.H.; Li, L.J.; Zhang, J.J.; Wang, J.M.; Song, Y.L.; Li, H.H.; Xu, F. Progress of research on the mechanism and application of Trichoderma globulus in promoting and preventing diseases. Chin. J. Bio Control 2023, 39, 961–969. [Google Scholar]
- Catalani, A.; Chilosi, G.; Jasarevic, M.; Morales-Rodríguez, C.; Radicetti, E.; Mancinelli, R. Effects of tillage and organic fertilization on potato tuber dry rot under Mediterranean conditions. Europ. J. Plant Pathol. 2024, 170, 189–203. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Wang, Y.; Hong, L.; Kang, J.; Jia, Y.; Li, M.; Chen, Y.; Wu, Z.; Wang, H. Improvement of soil acidification and ammonium nitrogen content in tea plantations by long-term use of organic fertilizer. Plant Biol. 2023, 25, 994–1008. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.C. Influence of Nitrogen Forms on Cucumber Wilt Disease and Soil Fungal Community Characterization. Master’s Thesis, Jiangsu Agricultural University, Nanjing, China, 2020. [Google Scholar]
- Ma, J.H.; Yang, B.; Liu, C.; Wang, Y.; Ma, K. Prediction of soil fungal structure and function based on different organic fertilizer application rates. Acta Agric. Boreali-Sin 2023, 38, 118–126. [Google Scholar]
Months | January | February | March | April | May | June | July | August | September | October | November | December | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precipitation (mm) | 2.2 | 27 | 9.3 | 43.3 | 53.7 | 27 | 67.7 | 24.8 | 52.1 | 61.6 | 0.6 | 0.3 | 369.6 |
Nutrients | Total Nitrogen (g·kg−1) | Total Phosphorus (g·kg−1) | Total Potassium (g·kg−1) | Quick-Acting Nitrogen (mg·kg−1) | Quick-Acting Phosphorus (mg·kg−1) | Quick-Acting Potassium (mg·kg−1) | Organic Matter (g·kg−1) | pH |
---|---|---|---|---|---|---|---|---|
quantity contained | 0.73 | 0.67 | 19.90 | 50.83 | 15.12 | 174.81 | 12.93 | 8.21 |
Treatment | Organic Fertilizer (kg/hm2) | Nitrogen Fertilizer Type (kg/hm2) | Organic Fertilizer on Nitrogen Substitution Rate (%) | ||
---|---|---|---|---|---|
N | P2O5 | K2O | |||
CK | 0 | 0 | 90 | 60 | 0 |
CF | 0 | 180 | 90 | 60 | 0 |
T1 | 4000 | 135 | 90 | 60 | 25 |
T2 | 8000 | 90 | 90 | 60 | 50 |
T3 | 12,000 | 45 | 90 | 60 | 75 |
T4 | 16,000 | 0 | 90 | 60 | 100 |
Treatment | Total Nitrogen (g·kg−1) | Total Potassium (g·kg−1) | Total Phosphorus (g·kg−1) | Alkaline Nitrogen Decomposition (mg·kg−1) |
---|---|---|---|---|
CK | 0.770 ± 0.038 b | 19.81 ± 0.18 b | 0.665 ± 0.003 b | 55.17 ± 4.06 c |
CF | 1.193 ± 0.020 a | 20.13 ± 0.21 ab | 0.892 ± 0.015 a | 58.03 ± 2.65 c |
T1 | 1.213 ± 0.041 a | 20.32 ± 0.02 a | 0.895 ± 0.027 a | 69.65 ± 5.28 b |
T2 | 1.247 ± 0.029 a | 20.41 ± 0.08 a | 0.882 ± 0.012 a | 77.65 ± 2.84 ab |
T3 | 1.260 ± 0.025 a | 20.47 ± 0.14 a | 0.893 ± 0.003 a | 84.70 ± 4.78 a |
T4 | 1.301 ± 0.056 a | 20.54 ± 0.22 a | 0.897 ± 0.015 a | 82.03 ± 1.55 a |
Treatment | Quick-acting potassium (mg·kg−1) | Quick-acting phosphorus (mg·kg−1) | Organic matter (g·kg−1) | pH |
CK | 130.95 ± 5.06 c | 16.94 ± 0.68 b | 14.59 ± 0.92 c | 8.10 ± 0.08 a |
CF | 140.29 ± 4.39 c | 17.02 ± 2.25 b | 15.79 ± 1.40 bc | 7.89 ± 0.04 b |
T1 | 143.65 ± 8.29 c | 23.11 ± 0.38 a | 17.53 ± 0.22 ab | 7.70 ± 0.04 c |
T2 | 165.72 ± 20.00 bc | 25.59 ± 1.55 a | 17.31 ± 0.20 ab | 7.65 ± 0.06 c |
T3 | 199.16 ± 16.97 ab | 27.93 ± 2.51 a | 17.71 ± 0.19 ab | 7.60 ± 0.03 c |
T4 | 216.29 ± 11.14 a | 26.86 ± 1.70 a | 18.15 ± 0.27 a | 7.56 ± 0.02 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhao, Z.; Hu, X.; Dong, B.; Zhang, P.; Liu, X.; Xie, K.; Du, D.; Sun, X.; Ma, J.; et al. Effects of Organic Fertilizer Replacing Some Nitrogen Fertilizers on the Structure and Diversity of Inter-Root Soil Fungal Communities in Potato. Agronomy 2024, 14, 2607. https://doi.org/10.3390/agronomy14112607
Chen S, Zhao Z, Hu X, Dong B, Zhang P, Liu X, Xie K, Du D, Sun X, Ma J, et al. Effects of Organic Fertilizer Replacing Some Nitrogen Fertilizers on the Structure and Diversity of Inter-Root Soil Fungal Communities in Potato. Agronomy. 2024; 14(11):2607. https://doi.org/10.3390/agronomy14112607
Chicago/Turabian StyleChen, Songhu, Zhenhua Zhao, Xinyuan Hu, Bo Dong, Pingliang Zhang, Xiaowei Liu, Kuizhong Xie, Dandan Du, Xiaohua Sun, Jiaying Ma, and et al. 2024. "Effects of Organic Fertilizer Replacing Some Nitrogen Fertilizers on the Structure and Diversity of Inter-Root Soil Fungal Communities in Potato" Agronomy 14, no. 11: 2607. https://doi.org/10.3390/agronomy14112607
APA StyleChen, S., Zhao, Z., Hu, X., Dong, B., Zhang, P., Liu, X., Xie, K., Du, D., Sun, X., Ma, J., Li, J., & Ren, X. (2024). Effects of Organic Fertilizer Replacing Some Nitrogen Fertilizers on the Structure and Diversity of Inter-Root Soil Fungal Communities in Potato. Agronomy, 14(11), 2607. https://doi.org/10.3390/agronomy14112607