Effects of Irrigation Amount and Salinity Levels on Maize (Zea mays L.) Growth, Water Productivity and Carbon Emissions in Arid Region of Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Field Sampling and Laboratory Analysis
2.3.1. Soil Water Content (SWC) and Salt Content (SSC)
2.3.2. Soil CO2 Emission and Carbon Sequestration
2.3.3. Plant Height and Leaf Area Index (LAI)
2.3.4. Photosynthetic Parameters
2.3.5. Grain Yield, Total Biomass, and Irrigation Water Use Efficiency (I-WUE)
2.4. Statistical Analysis
3. Results
3.1. Variations in SWC
3.2. Variations in SSC
3.3. Dynamic of Maize Growth
3.4. Photosynthetic Characteristics
3.5. Soil CO2 Emissions
3.6. Grain Yield, Irrigation Water Productivity, and Field Carbon Balance
4. Discussion
4.1. Effects of Irrigation Amount and Water Salinity on Maize Productivity
4.2. Effect of Irrigation Amount and Water Salinity on CO2 Emissions
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Perez-Perez, J.G.; Robles, J.M.; Garcia-Sanchez, F.; Botia, P. Comparison of deficit and saline irrigation strategies to confront water restriction in lemon trees grown in semi-arid regions. Agric. Water Manag. 2016, 164, 46–57. [Google Scholar] [CrossRef]
- Jiang, J.; Zhai, D.; Zhang, C.; Ma, J. Influence of Saline Water Irrigation on Root Distribution, Wheat Yield, and Soil Salinity. J. Irrig. Drain. Eng. 2021, 147, 04021005. [Google Scholar] [CrossRef]
- Amer, K.H. Corn crop response under managing different irrigation and salinity levels. Agric. Water Manag. 2010, 97, 1553–1563. [Google Scholar] [CrossRef]
- Baath, G.S.; Shukla, M.K.; Bosland, P.W.; Steiner, R.L.; Walker, S.J. Irrigation water salinity influences at various growth stages of Capsicum annuum. Agric. Water Manag. 2017, 179, 246–253. [Google Scholar] [CrossRef]
- Malash, N.; Flowers, T.J.; Ragab, R. Effect of irrigation systems and water management practices using saline and non-saline water on tomato production. Agric. Water Manag. 2005, 78, 25–38. [Google Scholar] [CrossRef]
- Singh, A.; Panda, S.N. Effect of saline irrigation water on mustard (brassica juncea) crop yield and soil salinity in a semi-arid area of north india. Exp. Agric. 2012, 48, 99–110. [Google Scholar] [CrossRef]
- Malash, N.M.; Ali, F.A. Response of tomato to irrigation with saline water applied by different irrigation methods and water management strategies. Int. J. Plant Prod. 2012, 2, 101–116. [Google Scholar]
- Wan, S.; Kang, Y.; Wang, D.; Liu, S.-p. Effect of saline water on cucumber (Cucumis sativus L.) yield and water use under drip irrigation in North China. Agric. Water Manag. 2010, 98, 105–113. [Google Scholar] [CrossRef]
- Mosaffa, H.R.; Sepaskhah, A.R. Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods. Agric. Water Manag. 2019, 216, 444–456. [Google Scholar] [CrossRef]
- Chauhan, C.P.S.; Singh, R.B.; Gupta, S.K. Supplemental irrigation of wheat with saline water. Agric. Water Manag. 2008, 95, 253–258. [Google Scholar] [CrossRef]
- Yuan, C.; Feng, S.; Huo, Z.; Ji, Q. Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agric. Water Manag. 2019, 212, 424–432. [Google Scholar] [CrossRef]
- Isla, R.; Aragüés, R. Yield and plant ion concentrations in maize (Zea mays L.) subject to diurnal and nocturnal saline sprinkler irrigations. Field Crops Res. 2010, 116, 175–183. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Jin, J.; Wang, S.; Du, B. Effects of Irrigation Water Salinity on Maize (Zea may L.) Emergence, Growth, Yield, Quality, and Soil Salt. Water 2019, 11, 2095. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Boari, F.; Mastro, M.A.; Cantore, V. Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy. Agric. Water Manag. 2019, 222, 118–124. [Google Scholar] [CrossRef]
- Wang, Q.; Huo, Z.; Zhang, L.; Wang, J.; Zhao, Y. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agric. Water Manag. 2016, 163, 125–138. [Google Scholar] [CrossRef]
- Hu, J.; Ren, B.; Dong, S.; Liu, P.; Zhao, B.; Zhang, J. Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging. Crop J. 2022, 10, 478–489. [Google Scholar] [CrossRef]
- Chaves, M.M.; Flexas, J.; Pinheiro, C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009, 103, 551–560. [Google Scholar] [CrossRef]
- Zhang, Y.; Kaiser, E.; Li, T.; Marcelis, L.F.M. NaCl affects photosynthetic and stomatal dynamics by osmotic effects and reduces photosynthetic capacity by ionic effects in tomato. J. Exp. Bot. 2022, 73, 3637–3650. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Climate change responses benefit from a global food system approach. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Keenan, T.F.; Smith, M. Predictability of the terrestrial carbon cycle. Glob. Change Biol. 2015, 21, 1737–1751. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhu, Y.; Liu, J.; Li, Y.; Zhang, J.; Wen, Y.; Song, L.; Liang, Y.; Wang, Z. Multi-objective optimization of saline water irrigation in arid oasis regions: Integrating water-saving, salinity control, yield enhancement, and CO2 emission reduction for sustainable cotton production. Sci. Total Environ. 2024, 912, 169672. [Google Scholar] [CrossRef]
- Singh, G.; Mavi, M.S.; Choudhary, O.P.; Gupta, N.; Singh, Y. Rice straw biochar application to soil irrigated with saline water in a cotton-wheat system improves crop performance and soil functionality in north-west India. J. Environ. Manag. 2021, 295, 113277. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, P.; Ren, S.; He, X.; Wei, C.; Wang, S.; Xu, Y.; Xu, Z.; Zhang, Y.; Ismail, H. CO2 and N2O Emissions from Spring Maize Soil under Alternate Irrigation between Saline Water and Groundwater in Hetao Irrigation District of Inner Mongolia, China. Int. J. Environ. Res. Public Health 2019, 16, 2669. [Google Scholar] [CrossRef] [PubMed]
- Marton, J.M.; Herbert, E.R.; Craft, C.B. Effects of Salinity on Denitrification and Greenhouse Gas Production from Laboratory-incubated Tidal Forest Soils. Wetlands 2012, 32, 347–357. [Google Scholar] [CrossRef]
- Cheng, P.; Tang, H.; Lin, F.; Kong, X. Bibliometrics of the nexus between food security and carbon emissions: Hotspots and trends. Environ. Sci. Pollut. Res. 2023, 30, 25981–25998. [Google Scholar] [CrossRef]
- Han, G.; Xu, J.; Zhang, X.; Pan, X. Efficiency and Driving Factors of Agricultural Carbon Emissions: A Study in Chinese State Farms. Agriculture 2024, 14, 1454. [Google Scholar] [CrossRef]
- Gong, H.; Sardans, J.; Huang, H.; Yan, Z.; Wang, Z.; Peñuelas, J. Global patterns and controlling factors of tree bark C:N:P stoichiometry in forest ecosystems consistent with biogeochemical niche hypothesis. New Phytol. 2024, 244, 1303–1314. [Google Scholar] [CrossRef]
- Li, J.; Liu, D.; Gong, H.; Liu, Z.; Zhang, Y. Crop yield increments will enhance soil carbon sequestration in coastal arable lands by 2100. J. Clean. Prod. 2023, 432, 139800. [Google Scholar] [CrossRef]
- Gao, J.; Liu, N.; Wang, X.; Niu, Z.; Liao, Q.; Ding, R.; Du, T.; Kang, S.; Tong, L. Maintaining grain number by reducing grain abortion is the key to improve water use efficiency of maize under deficit irrigation and salt stress. Agric. Water Manag. 2024, 294, 108727. [Google Scholar] [CrossRef]
- Fu, G. Utilization of Gentle Salty Water Resource in China. Geogr. Geo-Inf. Sci. 2004, 20, 57–60. [Google Scholar]
- Liang, Y.; Wen, Y.; Meng, Y.; Li, H.; Song, L.; Zhang, J.; Ma, Z.; Han, Y.; Wang, Z. Effects of biodegradable film types and drip irrigation amounts on maize growth and field carbon sequestration in arid northwest China. Agric. Water Manag. 2024, 299, 108894. [Google Scholar] [CrossRef]
- Wei, C.; Ren, S.; Yang, P.; Wang, Y.; He, X.; Xu, Z.; Wei, R.; Wang, S.; Chi, Y.; Zhang, M. Effects of irrigation methods and salinity on CO2 emissions from farmland soil during growth and fallow periods. Sci. Total Environ. 2021, 752, 141639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Chen, J.k.; Chen, F. Tillage effects on soil respiration and contributions of its components in winter wheat field. Sci. Agric. Sin. 2009, 42, 3354–3360. [Google Scholar]
- Yan, F.; Zhang, F.; Fan, X.; Fan, J.; Wang, Y.; Zou, H.; Wang, H.-d.; Li, G. Determining irrigation amount and fertilization rate to simultaneously optimize grain yield, grain nitrogen accumulation and economic benefit of drip-fertigated spring maize in northwest China. Agric. Water Manag. 2021, 243, 106440. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, Z.; Zong, R.; Zhang, J.; Ma, Z.; Guo, L. Effects of biodegradable film resilience and irrigation amounts on film degradation and maize growth in arid northwest China. Eur. J. Agron. 2022, 140, 126588. [Google Scholar] [CrossRef]
- Tan, M.; Li, W.; Zong, R.; Li, X.; Han, Y.; Luo, P.; Dhital, Y.P.; Lin, H.; Li, H.; Wang, Z. Long-term mulched drip irrigation enhances the stability of soil aggregates by increasing organic carbon stock and reducing salinity. Soil Tillage Res. 2024, 240, 106069. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, C.; Ning, S.; Cao, C.; Li, K.; Dang, H.; Wu, Y.; Zhang, J. Impacts of long-term saline irrigation water on soil properties and crop yields under maize-wheat crop rotation. Agric. Water Manag. 2023, 286, 108383. [Google Scholar] [CrossRef]
- Ben-Asher, J.; van Dam, J.; Feddes, R.A.; Jhorar, R.K. Irrigation of grapevines with saline water: II. Mathematical simulation of vine growth and yield. Agric. Water Manag. 2006, 83, 22–29. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, S.; Ma, J.; Huo, Z.; Zhang, C. Irrigation management for spring maize grown on saline soil based on SWAP model. Field Crops Res. 2016, 196, 85–97. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, G.; Sun, Z.; Fan, G.; Xie, S.; Li, F.; Du, L. Physiological and growth responses of Lycium barbarum seedlings to water and salt stresses. Sci. Hortic. 2024, 337, 113506. [Google Scholar] [CrossRef]
- Liao, Q.; Ding, R.; Du, T.; Kang, S.; Tong, L.; Gu, S.; Gao, S.; Gao, J. Stomatal conductance modulates maize yield through water use and yield components under salinity stress. Agric. Water Manag. 2024, 294, 108717. [Google Scholar] [CrossRef]
- Liao, Q.; Gu, S.; Kang, S.; Du, T.; Tong, L.; Wood, J.D.; Ding, R. Mild water and salt stress improve water use efficiency by decreasing stomatal conductance via osmotic adjustment in field maize. Sci. Total Environ. 2022, 805, 150364. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Wang, L.; Sun, X.; Wang, X.; Pu, T.; Yang, H.; Rengel, Z.; Liu, W.; Yang, W. Improved post-silking light interception increases yield and P-use efficiency of maize in maize/soybean relay strip intercropping. Field Crops Res. 2021, 262, 108054. [Google Scholar] [CrossRef]
- Cai, F.; Zhang, Y.; Mi, N.; Ming, H.; Zhang, S.; Zhang, H.; Zhao, X. Maize (Zea mays L.) physiological responses to drought and rewatering, and the associations with water stress degree. Agric. Water Manag. 2020, 241, 106379. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, J.; Zhao, S.; Sha, Y.; Huang, Y.; Hao, Z.; Ke, L.; Chen, F.; Yuan, L.; Mi, G. Nitrogen responsiveness of leaf growth, radiation use efficiency and grain yield of maize (Zea mays L.) in Northeast China. Field Crops Res. 2023, 291, 108806. [Google Scholar] [CrossRef]
- Rodrigues, J.; Inzé, D.; Nelissen, H.; Saibo, N.J.M. Source–Sink Regulation in Crops under Water Deficit. Trends Plant Sci. 2019, 24, 652–663. [Google Scholar] [CrossRef]
- Irshad, M.; Eneji, A.E.; Khattak, R.A.; Khan, A. Influence of Nitrogen and Saline Water on the Growth and Partitioning of Mineral Content in Maize. J. Plant Nutr. 2009, 32, 458–469. [Google Scholar] [CrossRef]
- Qi, M.; Liu, X.; Li, Y.; Song, H.; Yin, Z.; Zhang, F.; He, Q.; Xu, Z.; Zhou, G. Photosynthetic resistance and resilience under drought, flooding and rewatering in maize plants. Photosynth. Res. 2021, 148, 1–15. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Wang, X.; Sun, X.; Yang, L.; Zhang, S.; Xiang, Y.; Zhang, F. Crop yield and water productivity under salty water irrigation: A global meta-analysis. Agric. Water Manag. 2021, 256, 107105. [Google Scholar] [CrossRef]
- Karlberg, L.; Rockström, J.; Annandale, J.G.; Steyn, J.M. Low-cost drip irrigation—A suitable technology for southern Africa?: An example with tomatoes using saline irrigation water. Agric. Water Manag. 2007, 89, 59–70. [Google Scholar] [CrossRef]
- Yang, G.; Li, F.; Tian, L.; He, X.; Gao, Y.; Wang, Z.; Ren, F. Soil physicochemical properties and cotton (Gossypium hirsutum L.) yield under brackish water mulched drip irrigation. Soil Tillage Res. 2020, 199, 104592. [Google Scholar] [CrossRef]
- Houshmand, S.; Arzani, A.; Mirmohammadi-Maibody, S.A.M. Effects of Salinity and Drought Stress on Grain Quality of Durum Wheat. Commun. Soil Sci. Plant Anal. 2014, 45, 297–308. [Google Scholar] [CrossRef]
- Santos, L.C.; Coelho, R.D.; Barbosa, F.S.; Leal, D.P.V.; Fraga Júnior, E.F.; Barros, T.H.S.; Lizcano, J.V.; Ribeiro, N.L. Influence of deficit irrigation on accumulation and partitioning of sugarcane biomass under drip irrigation in commercial varieties. Agric. Water Manag. 2019, 221, 322–333. [Google Scholar] [CrossRef]
- Zhang, L.H.; Song, L.P.; Zhang, L.W.; Shao, H.B. Diurnal dynamics of CH4, CO2 and N2O fluxes in the saline-alkaline soils of the Yellow River Delta, China. Plant Biosyst. 2015, 149, 797–805. [Google Scholar] [CrossRef]
- Franco-Luesma, S.; Cavero, J.; Plaza-Bonilla, D.; Cantero-Martínez, C.; Arrúe, J.L.; Álvaro-Fuentes, J. Tillage and irrigation system effects on soil carbon dioxide (CO2) and methane (CH4) emissions in a maize monoculture under Mediterranean conditions. Soil Tillage Res. 2020, 196, 104488. [Google Scholar] [CrossRef]
- Hou, H.; Yang, Y.; Han, Z.; Cai, H.; Li, Z. Deficit irrigation effectively reduces soil carbon dioxide emissions from wheat fields in Northwest China. J. Sci. Food Agric. 2019, 99, 5401–5408. [Google Scholar] [CrossRef]
- Qu, W.; Li, J.; Han, G.; Wu, H.; Song, W.; Zhang, X. Effect of salinity on the decomposition of soil organic carbon in a tidal wetland. J. Soils Sed. 2019, 19, 609–617. [Google Scholar] [CrossRef]
- Yuan, B.-C.; Xu, X.-G.; Li, Z.-Z.; Gao, T.-P.; Gao, M.; Fan, X.-W.; Deng, J.-M. Microbial biomass and activity in alkalized magnesic soils under arid conditions. Soil Biol. Biochem. 2007, 39, 3004–3013. [Google Scholar] [CrossRef]
- Rath Kristin, M.; Maheshwari, A.; Bengtson, P.; Rousk, J. Comparative Toxicities of Salts on Microbial Processes in Soil. Appl Environ. Microbiol. 2016, 82, 2012–2020. [Google Scholar] [CrossRef] [PubMed]
- Setia, R.; Marschner, P.; Baldock, J.; Chittleborough, D.; Smith, P.; Smith, J. Salinity effects on carbon mineralization in soils of varying texture. Soil Biol. Biochem. 2011, 43, 1908–1916. [Google Scholar] [CrossRef]
Treatment | Irrigation Amount/m3 hm−2 | Salinity of Irrigation Water/g L−1 |
---|---|---|
W1S1 | 4500 | 0.85 |
W1S2 | 4500 | 3 |
W1S3 | 4500 | 5 |
W2S1 | 5625 | 0.85 |
W2S2 | 5625 | 3 |
W2S3 | 5625 | 5 |
W3S1 | 6750 | 0.85 |
W3S2 | 6750 | 3 |
W3S3 | 6750 | 5 |
Year | Stages | Date | Duration /d | Irrigation and Fertilization Intervals/d | Frequency of Irrigation and Fertilization | Ratio of Irrigation and Fertilization/% |
---|---|---|---|---|---|---|
2023 | SS | 2 May–3 Jun. | 32 | 1 | 10 | |
JS | 4 Jun.–4 Jul. | 30 | 10 | 3 | 30 | |
TS | 5 Jul.–1 Aug. | 27 | 10 | 3 | 30 | |
GS | 2 Aug.–24 Aug. | 22 | 10 | 2 | 20 | |
MS | 25 Aug.–6 Sep. | 12 | 12 | 1 | 10 | |
WS | 2 May–6 Sep. | 123 | 10 | 100 | ||
2024 | SS | 24 Apr.–26 May | 30 | 1 | 10 | |
JS | 27 May–27 Jun. | 31 | 10 | 3 | 30 | |
TS | 27 Jun.–25 Jul. | 27 | 10 | 3 | 30 | |
GS | 26 Jul.–16 Aug. | 21 | 10 | 2 | 20 | |
MS | 17 Aug.–30 Aug. | 13 | 12 | 1 | 10 | |
WS | 24 Apr.–30 Aug. | 126 | 10 | 100 |
Treatment | 2023 | 2024 | ||||
---|---|---|---|---|---|---|
0–40 cm | 40–100 cm | 0–100 cm | 0–40 cm | 40–100 cm | 0–100 cm | |
W1S1 | 0.13c | 0.07b | 0.09c | 0.12b | 0.09b | 0.10b |
W1S2 | 0.21b | 0.12b | 0.16b | 0.22b | 0.11b | 0.15b |
W1S3 | 0.46a | 0.34a | 0.38a | 0.47a | 0.33a | 0.39a |
W2S1 | 0.16c | 0.10c | 0.13c | 0.17b | 0.12c | 0.14c |
W2S2 | 0.27b | 0.18b | 0.22b | 0.22b | 0.19b | 0.20b |
W2S3 | 0.53a | 0.49a | 0.50a | 0.52a | 0.51a | 0.52a |
W3S1 | 0.06c | 0.05c | 0.06c | 0.06b | 0.03c | 0.04c |
W3S2 | 0.22b | 0.14b | 0.17b | 0.19b | 0.15b | 0.17b |
W3S3 | 0.47a | 0.56a | 0.53a | 0.46a | 0.54a | 0.51a |
TWO-ANOVA | ||||||
W | *** | *** | *** | ns | *** | *** |
S | *** | *** | *** | *** | *** | *** |
W×S | ns | *** | *** | ns | *** | *** |
Year | Treatment | GY (kg ha−1) | TB (kg ha−1) | HI | I-WUE (kg m−3) | MIP (kg C ha−1) | S-CO2 (kg C ha−1) | NCS (kg C ha−1) |
---|---|---|---|---|---|---|---|---|
2023 | W1S1 | 14,252.76a | 39,080.88a | 0.36a | 3.17a | 17,586.39a | 7773.20a | 9813.19a |
W1S2 | 12,985.13ab | 35,070.25b | 0.37a | 2.89ab | 15,781.61b | 7100.52b | 8681.09c | |
W1S3 | 11,294.95b | 32,451.62c | 0.35a | 2.51b | 14,603.23c | 5281.67c | 9321.56b | |
W2S1 | 14,772.47a | 42,405.96a | 0.35a | 2.63a | 19,082.68a | 8577.34a | 10505.34a | |
W2S2 | 13,966.78ab | 39,575.67b | 0.35a | 2.48ab | 17,809.05b | 8037.2b | 9771.85a | |
W2S3 | 13,049.31b | 38,323.33b | 0.34a | 2.32b | 17,245.5b | 6864.03c | 10,381.47a | |
W3S1 | 16,999.3a | 45,340.05a | 0.37c | 2.52a | 20,403.02a | 8832.19a | 11,570.84a | |
W3S2 | 16,235.47a | 41,177.92b | 0.39b | 2.41a | 18,530.06b | 7482.38b | 11,047.68a | |
W3S3 | 14,642.02b | 34,640.83c | 0.42a | 2.17b | 15,588.37c | 6132.04c | 9456.33b | |
TWO-ANOVA | ||||||||
W | *** | *** | *** | *** | *** | *** | *** | |
S | *** | *** | ns | *** | *** | *** | ** | |
W×S | ns | *** | * | ns | *** | *** | ** | |
2024 | W1S1 | 14,829.2a | 40,639.01a | 0.37a | 3.3a | 18,287.55a | 7852.15a | 10,435.4a |
W1S2 | 12,485.74b | 33,774.33b | 0.37a | 2.77b | 15,198.45b | 7058.82b | 8139.63c | |
W1S3 | 11,485.93b | 32,784.34b | 0.35a | 2.55b | 14,752.95b | 5189.90c | 9563.06b | |
W2S1 | 14,016.93a | 40,348.39a | 0.35a | 2.49a | 18,156.77a | 8474.22a | 9682.55a | |
W2S2 | 13,654.88a | 39,559.65a | 0.35a | 2.43a | 17,801.84a | 8026.83b | 9775.01a | |
W2S3 | 11,831.65b | 34,956.48b | 0.34a | 2.1b | 15,730.42b | 6857.76c | 8872.66a | |
W3S1 | 17,428.38a | 46,207.25a | 0.38a | 2.58a | 20,793.26a | 8616.53a | 12,176.73a | |
W3S2 | 16,542.77a | 42,670.97b | 0.39a | 2.45a | 19,201.94b | 7366.48b | 11,835.46a | |
W3S3 | 14,937.05b | 36,622.99c | 0.41a | 2.21b | 16,480.35c | 6129.81c | 10,350.53b | |
TWO-ANOVA | ||||||||
W | *** | *** | *** | *** | *** | *** | *** | |
S | *** | *** | ns | *** | *** | *** | *** | |
W×S | ns | *** | ns | ns | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Lyu, D.; Li, W.; Wen, Y.; Wang, Z. Effects of Irrigation Amount and Salinity Levels on Maize (Zea mays L.) Growth, Water Productivity and Carbon Emissions in Arid Region of Northwest China. Agronomy 2024, 14, 2656. https://doi.org/10.3390/agronomy14112656
Zhou Q, Lyu D, Li W, Wen Y, Wang Z. Effects of Irrigation Amount and Salinity Levels on Maize (Zea mays L.) Growth, Water Productivity and Carbon Emissions in Arid Region of Northwest China. Agronomy. 2024; 14(11):2656. https://doi.org/10.3390/agronomy14112656
Chicago/Turabian StyleZhou, Qijin, Desheng Lyu, Wenhao Li, Yue Wen, and Zhenhua Wang. 2024. "Effects of Irrigation Amount and Salinity Levels on Maize (Zea mays L.) Growth, Water Productivity and Carbon Emissions in Arid Region of Northwest China" Agronomy 14, no. 11: 2656. https://doi.org/10.3390/agronomy14112656
APA StyleZhou, Q., Lyu, D., Li, W., Wen, Y., & Wang, Z. (2024). Effects of Irrigation Amount and Salinity Levels on Maize (Zea mays L.) Growth, Water Productivity and Carbon Emissions in Arid Region of Northwest China. Agronomy, 14(11), 2656. https://doi.org/10.3390/agronomy14112656